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Structural modulation of gut microbiota in life-long
calorie-restricted mice
Chenhong Zhang1, Shoufeng Li2, Liu Yang2, Ping Huang2, Wenjun Li2, Shengyue Wang3, Guoping Zhao3,

Menghui Zhang1, Xiaoyan Pang1, Zhen Yan4,5, Yong Liu2 & Liping Zhao1,6

Calorie restriction has been regarded as the only experimental regimen that can effectively

lengthen lifespan in various animal models, but the actual mechanism remains controversial.

The gut microbiota has been shown to have a pivotal role in host health, and its structure is

mostly shaped by diet. Here we show that life-long calorie restriction on both high-fat or low-

fat diet, but not voluntary exercise, significantly changes the overall structure of the gut

microbiota of C57BL/6 J mice. Calorie restriction enriches phylotypes positively correlated

with lifespan, for example, the genus Lactobacillus on low-fat diet, and reduces phylotypes

negatively correlated with lifespan. These calorie restriction-induced changes in the gut

microbiota are concomitant with significantly reduced serum levels of lipopolysaccharide-

binding protein, suggesting that animals under calorie restriction can establish a structurally

balanced architecture of gut microbiota that may exert a health benefit to the host via

reduction of antigen load from the gut.
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S
ince the initial study demonstrating the health-promoting
and lifespan-extending effects of calorie restriction (CR) in
mice1, benefits related to alleviating the metabolic syndrome

have been observed in many mammals, including non-human
primates and humans2,3. Despite various efforts, the actual
mechanism remains controversial4,5.

Two recent, life-long metabonomic studies in dogs and
monkeys revealed that CR was associated with changes in urinary
bacterial metabolites, suggesting a potential connection among
the gut microbiota, CR and aging6,7. Humans are considered
supraorganisms with a vastly diverse and highly populated
microbiota in the gut8,9, which can function as a metabolic organ
to significantly modulate nutrition, metabolism and the immunity
of its host10. After the host digests and absorbs nutrients from the
diet, the remaining part will reach the colon to maintain a highly
diverse and populated chemostatic culture11,12. The composition
and amount of the diet work as a dominant force in shaping the
gut microbiota12,13.

Changes in the gut microbiota responding to different
diets, such as a high-fat diet versus normal chow, may have a
pivotal role in the development of obesity and related diseases13–

18. Gut microbiota disrupted by a high-fat diet may produce
higher amounts of endotoxin and increase gut permeability,
leading to a higher plasma level of endotoxin, a higher level of
inflammation and eventually the development of metabolic
disorders13,14,19,20. Our recent study showed that one
endotoxin-producing strain isolated from the gut of an obese
human caused obesity and insulin resistance in germ-free mice.
These bacterium-induced obese mice had a significantly elevated
serum endotoxin load and increased systemic and local
inflammation, indicating a causative role of the endotoxin-
producing members in the gut microbiota in metabolic
syndrome21. However, it remains to be elucidated how far and
to what direction the gut microbiota can be shifted by changing
only the amount of food intake such as in CR treatment.

Recently, Zhou et al.22 identified genetic modulators of aging
by analysing mid-life gene expression in the liver of a mouse
model with life-long dietary and exercise interventions. In that
study, male C57BL/6 J mice were subjected to either a low-fat diet
(10% fat, D12450B, Research Diets) or a high-fat diet (60% fat,
D12492, Research Diets). For each type of diet, animals were
divided into three groups: (1) fed ad libitum with sedentary
activity in the cage (LFD or HFD), (2) fed 70% of the ad libitum
(LFDþCR or HFDþCR) or (3) fed ad libitum with voluntary
wheel-running exercise (LFDþ Ex or HFDþ Ex). Each group
had 30 individually caged animals, and the entire trial lasted
almost 4 years until all animals died22. The longest living and
healthiest animals were in the LFDþCR group. Relative to the
LFD group, their median lifespan (153 weeks) and maximum
lifespan (185.5±1.6 weeks) increased by approximately 20% and
25%, respectively. The LFDþCR group also exhibited the lowest
and most stable body weight and fat content, as well as the best
metabolic phenotypes, such as glucose homoeostasis and serum
lipid profile, at the different indicated ages throughout their
lifespan. The HFD group had the shortest lifespan and the worst
metabolic phenotypes. Compared with the HFD control group,
restricted high-fat diet intake (HFDþCR) resulted in dramatic
extensions of the median and maximum lifespans (both by
B36% from 101 to 137 weeks and from 118.8±1.5 to 161.9±1.5
weeks, respectively), which became similar to those of the LFD
(127 and 148.7±3.1 weeks, respectively) and LFDþ Ex (131 and
159.6±3.7 weeks, respectively) groups. In addition, similar
metabolic phenotypes were observed among these groups.
Voluntary running exercise resulted in a significant increase in
the median and maximum lifespan (by B13%, from 101 to 114
weeks, and by B18%, from 118.8±1.5 to 139.7±1.9 weeks,

respectively) when animals were fed ad libitum on high-fat diet
but not on low-fat diet. Together, these data demonstrate that
obesity-related metabolic syndrome is highly associated with
accelerated aging and reduced lifespan. CR can more effectively
alleviate diet-associated metabolic disorders and attenuate aging
than voluntary exercise, leading to a prolonged healthy lifespan,
consistent with early studies in rats22.

In the current study, we use faecal and serum samples from the
same animal trial as Zhou et al.22 to investigate the impact of life-
long CR and voluntary exercise on the endotoxin load and
architecture of gut microbiota and pinpoint the association
between a specific combination of populations in the gut
microbiota and the variations in healthy phenotype and lifespan
of their hosts. Our findings suggest that an improved architecture
of gut microbiota may be a critical element in mediating the
health-promoting actions of CR, highlighting the potential of
modulation for gut microbiota in developing effective anti-aging
dietary interventions.

Results
Overall structural changes of gut microbiota in life-long CR.
To determine whether the CR-mediated protection of mice
against obesity-associated metabolic syndrome and promotion of
healthy aging are associated with alteration of gut microbiota
structure, we first profiled the overall structural changes of gut
microbiota from all available animals at 62, 83 and 141 weeks of
age by bar-coded pyrosequencing of the V3 region of 16S rRNA
genes. Of 293,557 valid reads from 288 samples with an average
of 1,019 reads per sample (±205 s.d.), 4,613 species-level
operational taxonomic units (OTUs) were delineated using 97%
as a homology cut-off value (Supplementary Fig. S1).

b-Diversity analysis can indicate the extent of similarity
between microbial communities by measuring the degree to
which membership or structure is shared between communities23.
Based on the data matrix of the weighted UniFrac distance,
unweighted pair-group method using arithmetic averages and
principal coordinate analysis showed both age-dependent and
diet-responsive structural rearrangement of gut microbiota (Fig. 1
and Supplementary Fig. S2). Although no significant age-related
shift of gut microbiota was observed around mid-life ages
(between 62 and 83 weeks), the gut microbiota from all groups of
mice alive at the late-life age of 141 weeks displayed the same
trend of moving into an ‘aging space.’ Conversely, separated
microbiota clusters were observed in high-fat diet-fed mice
relative to low-fat diet-fed mice at the two mid-life ages.
Moreover, in parallel with its profound effects on health
improvement and longevity, CR showed more prominent
impact on the overall architecture of gut microbiota than
exercise, particularly with unique microbiota clusters detected
in the LFDþCR group both at mid-life and late-life ages. The
differences between the gut microbiota of animals with or without
voluntary exercise were not significant in the present study. These
results suggest a possible correlation of the clustering pattern of
gut microbiota with the health conditions in response to life-long
nutritional intervention.

Specific phylotypes modulated by life-long CR. As an algorithm
to robustly identify features that are statistically different among
biological classes, linear discriminant analysis (LDA) effect size
(LEfSe)24 was employed to identify specific phylotypes
responding to life-long CR at both mid-life (62 weeks of age)
and late life (141 weeks of age). We did not analyse data at
83 weeks of age because there is no significant age-related shift of
gut microbiota between 62 and 83 weeks.
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In mid-life, 34 phylotypes at the OTU level were discovered as
high-dimensional biomarkers for separating gut microbiota
between LFD and LFDþCR mice (Fig. 2a and Supplementary
Table S1). Sixteen of these OTUs were higher, and eighteen were
lower in the CR than in the ad libitum group. For example, the
abundances of these selected phylotypes in Streptococcaceae
(OTU65 belonging to Lactococcus) and TM7 (OTU98) were
lower in CR animals. Interestingly, OTU45 in the genus
Lactobacillus was one of the most predominant phylotypes in
bacterial communities of LFDþCR mice but was notably low in
LFD mice (12.4% versus 0.05%, respectively; Po0.001, one-way
ANOVA).

At the late-life age of 141 weeks, 27 OTUs were higher and 27
were lower in the LFDþCR group than in the LFD group
(Fig. 2b and Supplementary Table S2). Ten of these OTUs were
also significantly different between the two treatment groups in
mid-life. For example, although OTU45 in the genus Lactoba-
cillus was not the predominant phylotype in bacterial

communities of LFDþCR mice, the relative abundance of this
OTU was still higher in LFDþCR mice than in LFD mice (1.7%
versus 0.024%, respectively; Po0.001, one-way ANOVA).
Different from mid-life, the OTUs belonging to Bifidobacterium
were higher in LFDþCR mice, but the OTU469 of Desulfovi-
brionaceae was lower in LFDþCR mice. Some members in the
genus Bifidobacterium are well-known probiotic strains25, and
some in the family Desulfovibrionaceae have previously been
found to be positively associated with obesity and
inflammation13.

The mice had a significantly different gut microbiota structure
between the LFD and HFD groups (Supplementary Fig. S3),
confirming results of previous studies13,18. CR also shifted the gut
microbiota in mice fed with high-fat diet but not as dramatic
compared with their low-fat diet companions (Fig. 1b,c and
Supplementary Fig. S4). In mid-life, 30 phylotypes were
selected as key variables for separating the gut microbiota
under different food intake conditions (Fig. 2c and
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Figure 1 | Age-dependent and diet-responsive alteration trajectories of global gut microbiota structures. (a) Unweighted pair-group method using

arithmetic average based on the weighted UniFrac distance of gut microbiota from the six groups of mice at 62, 83 and 141 weeks (wk) of age. The

average relative abundance (% of total 16S rRNA gene V3 region sequences) of bacterial lineages of the gut microbiota within each group of mice is

displayed as pie charts at the phylum level. Weighted UniFrac principal coordinate analysis of animals at (b) 62 (LFD, n¼ 21; LFDþCR, n¼ 29; LFDþ Ex,

n¼ 22; HFD, n¼ 28; HFDþCR, n¼ 29; and HFDþ Ex, n¼ 23), (c) 83 (LFD, n¼ 16; LFDþCR, n¼ 22; LFDþ Ex, n¼ 19; HFD, n¼ 12; HFDþCR, n¼ 14; and

HFDþ Ex, n¼ 15) and (d) 141 (LFD, n¼6; LFDþCR, n¼ 15; LFDþ Ex, n¼6; HFD, n¼0; HFDþCR, n¼ 10; and HFDþ Ex, n¼ 1) weeks of age.
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Figure 2 | Key phylotypes of gut microbiota responding to life-long CR identified using LEfSe. (a) LFD (n¼ 21) versus LFDþCR (n¼ 29) mice at

62 weeks. (b) LFD (n¼ 6) versus LFDþCR (n¼ 15) mice at 141 weeks. (c) HFD (n¼ 28) versus HFDþCR (n¼ 29) mice at 62 weeks. The left

histogram shows the LDA scores computed for features (on the OTU level) differentially abundant between the ab libitum and CR mice. The right heat

map shows the relative abundance (log 10 transformation) of OTUs.
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Supplementary Table S3); 18 of them were higher and 12 were
lower in the HFDþCR group than in the HFD group. All the
phylotypes in Porphyromonadaceae were higher in the HFDþCR
than in the HFD group. Most of the OTUs responding to CR in

HFDþCR mice were not found in LFDþCR mice. Only three
OTUs (in Lactococcus (OTU65), Bacteroidales (OTU366) and
Peptostreptococcaceae (OTU37), respectively) were reduced, and
three OTUs in Tannerella (OTU119, 155 and 267) were increased
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Figure 3 | Key phylotypes of gut microbiota responding to aging. (a) LFDþCR mice (n¼ 15). (b) LFD mice (n¼ 6). The left histogram shows the LDA

scores computed for features (OTU level) differentially abundant between 62 and 141 weeks. The right heat map shows the relative abundance (log 10

transformed) of OTUs.
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by CR both with mice fed with high-fat diet and low-fat diet.
Because all the HFD mice had died before 141 weeks, we could
not obtain any data regarding gut microbiota responding to
restriction of high-fat diet intake at the late-life stage of mice.

We also employed partial least square discriminate analysis to
confirm the results, and the identified specific phylotypes
responding to life-long CR were similar to those from LEfSe
(Supplementary Figs S5 and S6).

We also identified a few OTUs that were different between the
mice in the exercise group and their ad libitum companions by
LEfSe; however, the relative abundance of these OTUs was very
low (Supplementary Fig. S7). Conversely, efforts to classify groups
with or without voluntary exercise on the same diet with partial
least square discriminate analysis did not establish validated
models, indicating that the differences between the gut micro-
biota of animals with or without voluntary exercise were not
significant in the present study.

Structural modulation of gut microbiota during aging. Further
analysis suggested that CR significantly affected the succession of
gut microbiota during aging. Division-level analysis showed that
the Firmicutes/Bacteroidetes ratio of gut microbiota in all the
mouse groups decreased from 62 to 141 weeks (Fig. 1a). Using
LEfSe, we compared the gut microbiota of mice in each group
between mid-life and late life to identify the specific phylotypes
with OTU levels associated with aging.

In LFD mice, the phylotypes mainly responsible for decrease of
the phylum Firmicutes during aging were in the genus
Allobaculum (12 OTUs; 28.1% at 62 weeks versus 0.20% at 141
weeks) (Fig. 3a and Supplementary Table S4). In LFDþCR mice,
not only OTUs in the genus Allobaculum (29.7% at 62 weeks
versus 7.2% at 141 weeks) but also OTUs in the genus
Lactobacillus (21.0% at 62 weeks versus 2.0% at 141 weeks)
made a significant contribution to the decrease of Firmicutes
during aging (Fig. 3b and Supplementary Table S5).

Conversely, the increase of the phylum Bacteroidetes during
aging in LFD mice was due to the increase of OTUs in the genus
Bacteroides (family Bacteroidaceae; 0.84% at 62 weeks versus
26.7% at 141 weeks). However, in LFDþCR mice, OTUs in the
family Porphyromonadeceae (9.4% at 62 weeks versus 28.2% at
141 weeks), instead of bacteria in Bacteroides, were largely
responsible for the increase of Bacteroidetes with age. Thus, the
apparent phylum level changes associated with aging were
actually mediated by different phylogenetic groups in animals
with or without CR treatment.

Correlation of mid-life gut microbiota with lifespan. We next
used the Kendall tau rank correlation coefficient to directly
measure the correlation between the phylotypes of gut microbiota
in mid-life and the lifespan based on two types of diet. We
identified that 45 OTUs significantly correlated with lifespan in
mice fed on low-fat diet. Except for one Bacteroidales OTU, the
remaining 15 OTUs significantly positively correlated with life-
span belonged to Firmicutes. Particularly, eight OTUs in Lacto-
bacillus showed strong correlation with lifespan. The 30
phylotypes negatively correlated with lifespan were distributed in
the five Phyla of Bacteroidetes, Firmicutes, Proteobacteria, Acti-
nobacteria and TM7 (Fig. 4a and Supplementary Table S6). In the
mice on the high-fat diet, 20 OTUs were positively correlated, and
18 OTUs were negatively correlated with lifespan, most of which
were in Firmicutes and Bacteroidetes, except for two Actino-
bacteria OTUs (Fig. 4b and Supplementary Table S7). Because of
the strong impact of different diet backgrounds on the gut
microbiota, only three OTUs in Lactococcus (OTU65), Bacteroi-
dales (OTU366) and Peptostreptococcaceae (OTU37) showed the

same behaviour both in mice on low-fat diet and high-fat diet.
These three OTUs were negatively correlated with lifespan. We
also found that the OTUs belonging to the same family or genus
could have opposite correlation with lifespan. For example, in the
mice fed with low-fat diet, there were three OTUs in Lachnos-
piraceae positively correlated with lifespan, but the other four
OTUs in the same family were negatively correlated with lifespan.

Mid-life metabolic phenotypes, such as food intake, body
weight and fat content, were highly correlated with lifespan, a
finding that has been reported by Zhou et al22. Most of the OTUs
significantly positively correlated with lifespan showed strong
negative correlation with food intake, body weight and fat
content, and vice versa (Fig. 4a,b).

CR reduces antigen load to the hosts from the gut microbiota.
Through long-term CR, the relative abundance of the OTUs
negatively correlated with lifespan was significantly reduced, and
the relative abundance of OTUs positively correlated with life-
span was increased in mice both on low-fat diet and high-fat diet
(Fig. 5a,b and Supplementary Figs S8 and S9). The serum levels of
lipopolysaccharide (LPS)-binding protein (LBP) from all available
animals at mid-life were measured to determine the antigen load
from the gut microbiota. Compared with their ab libitum
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companions, LBP levels were lower in mice from the two CR
intervention groups (Fig. 5c,d). Conversely, exercise showed no
significant impact on both the relative abundance of OTUs cor-
related with lifespan and the serum level of LBP. These results
suggest that modulation of the gut microbiota by CR could sig-
nificantly reduce the antigen load to the host, contributing to CR-
induced lifespan extension.

Discussion
Among the efforts to understand the mechanisms by which
reduced dietary intake improves health and lifespan, the current
study is unique in that it focused on the changes of gut microbiota
induced by life-long CR to determine whether these changes are
associated with improved healthy phenotypes and lifespan.

Different dietary composition can mould the divergent
structure of gut microbiota13,26–29. For example, human
populations with a modern western diet or a rural diet showed
distinct gut microbiota structures29. The changes in overall
structure of gut microbiota induced by high-fat diet versus
normal chow may act as an important mediator in the aetiology
of obesity and related metabolic diseases via disrupting host
lipometabolism regulation15,18,30–32 and inducing low-grade
inflammation13,14,19,20.

In the current study, we also observed shifting of gut
microbiota induced by high-fat diet versus low-fat diet (data
shown in Supplementary Materials). However, the most interest-
ing result was that, compared with the ad libitum group, mice
with 30% restriction of low-fat diet had a unique gut microbiota,
demonstrating that the gut microbiota can be substantially
modulated by only restricting the intake of diet. This is different

from previous reports that dietary restriction had little effect on
the gut microbiota33–35. This discrepancy may be due to the short
duration of CR, different model systems used (rat and human)
and limitation of technology for analysis of gut microbiota used
in previous studies. The 454 pyrosequencing method used in the
present study, although with its own bias due to the primer design
(V3 region targeted) and chosen DNA extraction method, can
still allow much deeper and more comprehensive analysis of
changes in the gut microbiota responding to CR than that in
previous reports.

Previous studies have suggested that because of the global
impact on the physiology of the intestinal tract, including the
decrease of intestinal motility, decline in the functionality of the
immune system (immunosenescence), and changes in nutritional
behaviour and life style of aged people, aging can seriously affect
the composition of gut microbiota36–39. In the current study, the
gut microbiota in all mice changed during aging; however, the
most interesting finding was that the shifts of gut microbiota with
aging were different among different dietary intervention groups.
This finding also suggests that life-long nutritional conditions
have an impact on not only the structure and composition of gut
microbiota but also the interaction between the host and gut
microbiota.

Our approach of directly measuring lifespan as well as
measuring dietary and other metabolic conditions, although
extremely tedious and costly (more than 150 mice over a time
span of 3 years), allowed us to identify the phylotypes of gut
microbiota that may be directly associated with lifespan.
Correlation analysis between the gut microbiota at mid-life and
lifespan identified phylotypes that are positively correlated with
lifespan and those that are negatively correlated with lifespan
under each of the two dietary backgrounds. On both the high-fat
diet and low-fat diet, CR increased those phylotypes that were
positively correlated with lifespan, and decreased those that were
negatively correlated with lifespan. Phylotypes positively corre-
lated with lifespan may contain beneficial bacteria, whereas those
negatively correlated with lifespan may have harmful bacteria
such as opportunistic pathogens. For example, the longest-lived
and healthiest LFDþCR group had a gut microbiota with
astonishingly high populations in Lactobacillus spp. Members in
the genus Lactobacillus spp. have been known to inhibit pathogen
adhesion to the intestinal wall, protect against pathogen-induced
gut barrier disruption and reduce inflammatory cytokines40,41. In
addition, the LFDþCR group had the lowest level of phylotypes
in Streptococcaceae and TM7. It has been shown in humans that
some strains in Streptococcaceae can induce mild inflammation,
contributing to the disproportionate morbidity associated with
chronic wounds among diabetics compared with non-
diabetics42,43. Members in TM7 may have an important role in
the early stages of inflammatory mucosal processes in
inflammatory bowel diseases44.

The increase of beneficial bacteria such as Lactobacillus and
decrease of opportunistic pathogens may reduce antigen load to
the host and help alleviate inflammation and metabolic
syndrome13,14,19,20. Our data showed that CR mice had reduced
LBP levels in the serum. LBP is a soluble acute phase protein that
binds to LPS, the most abundant gut antigen from the gut with
the most potent inflammation-provoking capacity, in eliciting
immune responses by presenting LPS to surface pattern-
recognition receptors, such as CD14 and TLR4, of immune
cells45. LBP can also bind to antigens produced by Gram-positive
bacteria and, thus, may represent one biomarker that links
antigen load in the blood and the host inflammatory response46.
The significant decrease of the ratio of the bacteria negatively and
positively correlated with lifespan in animals under CR may
minimize antigen entrance into the blood from the gut, a result
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that may constitute a crucial component in CR-mediated benefits
to the host13,14. Similar to the result of gut microbiota, the
measurement of mid-life liver gene expression of mice from the
same trial by whole-genome microarrays showed that LFDþCR
mice demonstrated a distinctive expression pattern from other
groups, which correlated with longevity and health status22. Most
notably, the gene expression levels of the toll-like receptor
signalling pathway and inflammation-related pathways were
negatively correlated with lifespan and positively correlated
with body weight and metabolic deterioration. Because the toll-
like receptor signalling pathway mainly responds to antigens such
as endotoxins from the gut microbiota47, its downregulation
supports the hypothesis that CR might display reduced antigen
load from the gut microbiota to the hosts, possibly by modulating
the structure of the gut microbiota to a more balanced state.

The gender of the host is known to have an impact on lifespan,
healthy phenotypes and the immune responses48–50. In addition,
gender may also be involved in the determination of the
mammalian gut microbiota. The gender-related bacteria
identified from different studies included species of Bacteroides–
Prevotella, Clostridia, Bacteroidetes and Proteobacteria and so
on28,49,51. To avoid the influence of gender as a confounding
factor, we only used male mice. The response of gut microbiota to
CR in female mice may be different from the results we observed
in the current study, and it remains an interesting issue to be
investigated.

The molecular cascades between dietary modulation, the gut
microbiota and host health remain to be elucidated. The diet can
be used by both the host and gut microbiota11,12. The
competition between the host and gut bacteria for nutrients
may determine the composition of the feeding medium for
homoeostatic control of microbiota in the lower gut. It is
conceivable that under conditions of restricted nutrient
availability, as in the case of mice in the LFDþCR group, the
host may extract nutrients (such as proteins and fats) more
thoroughly, leaving primarily indigestible plant polysaccharides
to the colon. In other words, CR without malnutrition might
actually increase the relative content of fibre in the animal’s diet.
This ‘oligotrophic condition’ with mainly fibre available for gut
microbes might promote the growth of beneficial bacteria, such as
gut barrier protectors and butyrate producers52, but suppress
opportunistic pathogens53. This hypothesis warrants further
studies.

Our results point to the health-promoting potential of a
balanced gut microbiota architecture induced by CR, revealing a
possible close connection between nutritional modulation of gut
microbiota and healthy aging. More mechanistic studies are
needed to validate and expand the interesting findings provided
here via this microbiome-wide association study54. Given the
potential key role in mediating the health-promoting actions of
CR, an architecturally improved gut microbiota may become a
novel surrogate biomarker for the development of effective anti-
aging dietary interventions.

Methods
Animal intervention and samples. The animal experimental procedures,
approved by the Institutional Animal Care and Use Committee of the Institute for
Nutritional Sciences, CAS, were described previously by Zhou et al22. Male C57BL/
6 J mice at 5 weeks of age were randomly assigned to one of the six groups (n¼ 30
for each group) and individually caged for a life-long trial: (1) low-fat diet with
sedentary activity (LFD), (2) low-fat diet with 30% CR and sedentary activity
(LFDþCR), (3) low-fat diet with voluntary running exercise (LFDþ Ex), (4)
high-fat diet with sedentary activity (HFD), (5) high-fat die with 30% CR and
sedentary activity (HFDþCR) and (6) high-fat diet with voluntary running exercise
(HFDþ Ex). All faecal and serum samples for the current study were collected from
this animal trial.

Fresh faecal matter was collected from the above animal trial at 62 weeks (LFD,
n¼ 21; LFDþCR, n¼ 29; LFDþ Ex, n¼ 22; HFD, n¼ 28; HFDþCR, n¼ 29; and

HFDþEx, n¼ 23), 83 weeks (LFD, n¼ 16; LFDþCR, n¼ 22; LFDþEx, n¼ 19;
HFD, n¼ 12; HFDþCR, n¼ 14; and HFDþEx, n¼ 15) and 141 weeks (LFD,
n¼ 6; LFDþCR, n¼ 15; LFDþ Ex, n¼ 6; HFD, n¼ 0; HFDþCR, n¼ 10; and
HFDþEx, n¼ 1) of age. At 62 weeks, eight randomly selected mice from each
group were humanely euthanized for serum samples collection for LBP analysis. All
the faecal samples were stored at � 80 �C until analysis.

Pyrosequencing of the V3 region of 16S rRNA genes. DNA was extracted using
the PSPsSpin Stool DNA Plus Kit (Invitek GmbH, Germany). The primers P1
and P2 (50-NNNNNNCCTACGGGAGGCAGCAG-30 and 50-NNNNNNATTAC
CGCGGCTGCT-30) correspond to positions 341 to 534 in the Escherichia coli 16S
rRNA gene, with a sample-unique DNA barcode of six-mer sequences at the 50 end,
were used to amplify the V3 region of each faecal sample by PCR. PCR reactions
were run in a thermocycler PCR system (PCR Sprint; Thermo electron, Corp., UK)
using the following programme: 3 min of denaturation at 94 �C followed by 20
cycles of 1 min at 94 �C (denaturation), 1 min for annealing (1 �C reduced for every
two cycles from 65 to 57 �C, followed by one cycle at 56 �C and one cycle at 55 �C)
and 1 min at 72 �C (elongation), with a final extension at 72 �C for 6 min. The
products from different samples were mixed at equal ratios for pyrosequencing
using the GS FLX platform (Roch, Branford, CT, USA).

Bioinformatics and statistical analysis of sequencing data. The standards for
quality control of selecting valid reads for analysis were as follows: if a sequence (a)
shows no mismatch to the barcode and 16S rRNA gene primer at sequencing end,
(b) is more than 100 nucleotides in length, (c) has no more than two undermined
bases in the sequence read and (d) finds 475% mach to a previously determined
16S rRNA gene sequence, as reported previously55–57. The sequences were aligned
using NAST, and delineation of OTUs was conducted with DOTUR at 97%
cutoff58. The length of the sequence fragments used for the analysis was from 92 to
183 nucleotides (without primer and barcode). The alpha and beta diversities were
performed using QIIME59. The GAST (Global Alignment for Sequence Taxonomy)
process was used to select the top GAST match (es) of the representative sequence
of each OTU to assign taxonomic classification60. The V3 reference databases
(V3 RefDB) and software for GAST analysis were downloaded from http://vamps.
mbl.edu/resources/software.php. The V3 RefDB is composed of publicly available,
high-quality, full-length 16S rRNA sequences from Silva release 92 (http://www.
arb-silva.de/) with taxonomic classifications obtained from the RDP Classifier
(with a minimum 80% bootstrap score) and contains 381,203 V3 tags. The
representative sequence of each OTU was assigned the taxonomic classification of
the most similar reference sequence or sequences in the V3 RefDB as described
previously60.

LEfSe24 is an algorithm for high-dimensional biomarker discovery and
explanation that identifies genomic features (genes, pathways or taxa)
characterizing the differences between two or more biological conditions (or
classes; see figure below). LEfSe emphasizes both statistical significance and
biological relevance, allowing researchers to identify differentially abundant
features that are also consistent with biologically meaningful categories
(subclasses). We performed LEfSe analysis on the website http://huttenhower.
sph.harvard.edu/galaxy. The differential features were identified on the OTU level.
The treatment groups or time points were used as the class of subjects
(no subclass). LEfSe analysis was performed under the following conditions: (1) the
alpha value for the factorial Kruskal–Wallis test among classes is o0.05 and (2) the
threshold on the logarithmic LDA score for discriminative features is 42.0.

Based on two diets, associations between each OTU (filtered for an OTU subject
prevalence of at least 10%) at 62 weeks and lifespan were determined using the
Kendall tau rank correlation coefficient under Matlab (ver. 7.1; The MathWorks,
Inc.). The OTU was considered significantly correlated with lifespan for Po0.05.
Thereafter, the Kendall tau rank correlation coefficient between these selected OTU
and physiological parameters (food intake, body weight and fat content) of mid-life
was also calculated.

Serum LBP measurements. Blood samples were collected from the tail vein after
overnight fasting and centrifuged at 12,000 r.p.m. for 30 min to pellet blood cells,
and the serum was stored at � 80 �C until further analyses. Serum LBP was
determined after a dilution of 1:800 using the Mouse Lipopolysaccharide
Binding Protein ELISA Kit (Cell Sciences, Canton, MA, USA) according to the
manufacturer’s instructions.
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