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Kappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors.

Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated

aversion are not known. Using in vivo microdialysis in rats and mice, we demonstrate that intra-mPFC administration of the selective KOR

agonist U69,593 decreased local dopamine (DA) overflow, while reverse dialysis of the KOR antagonist nor-Binaltorphimine (nor-BNI)

enhanced mPFC DA overflow. Extracellular amino-acid levels were also affected by KORs, as U69,593 reduced glutamate and GABA

levels driven by the glutamate reuptake blocker, l-trans-pyrrolidine-2,4-dicarboxylate. Whole-cell recordings from mPFC layer V

pyramidal neurons revealed that U69,593 decreased the frequency, but not amplitude, of glutamatergic mini EPSPs. To determine

whether KOR regulation of mPFC DA overflow was mediated by KOR on DA terminals, we utilized a Cre recombinase-driven mouse

line lacking KOR in DA neurons. In these mice, basal DA release or uptake was unaltered relative to controls, but attenuation of mPFC

DA overflow by local U69,593 was not observed, indicating KOR acts directly on mPFC DA terminals to locally inhibit DA levels.

Conditioning procedures were then used to determine whether mPFC KOR signaling was necessary for KOR-mediated aversion.

U69,593-mediated conditioned place aversion was blocked by intra-mPFC nor-BNI microinjection. These findings demonstrate that

mPFC KORs negatively regulate DA and amino-acid neurotransmission, and are necessary for KOR-mediated aversion.
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INTRODUCTION

The endogenous kappa-opioid receptor (KOR) system is
implicated in motivation, mood, and stress-related beha-
viors (Shippenberg et al, 2007; Bruchas et al, 2010; Knoll
and Carlezon, 2010; Tejeda et al, 2012). Synthetic and
naturally occurring KOR agonists produce psychotomimetic
and anxiogenic effects in humans (Pfeiffer et al, 1986; Walsh
et al, 2001). They decrease brain reward function and
produce conditioned aversive effects in rodents (Mucha and
Herz, 1985; Todtenkopf et al, 2004). KOR-mediated aver-
sion may involve modulation of monoamine systems,
including the mesolimbic dopamine (DA) pathway, and is
a useful behavioral model of mood control of behavior.
Mesolimbic, but not mesocortical, 6-OHDA lesions or

nucleus accumbens (NAcc) DA D1 receptor blockade
abolish conditioned place aversion (CPA) produced by
systemically administered KOR agonists (Shippenberg et al,
1993). These data suggest that modulation of mesocortical
DA transmission by KORs is not necessary for KOR-
mediated CPA. However, anatomical mapping studies
demonstrated that medial prefrontal cortex (mPFC) KOR
activation is sufficient to produce CPA, pointing to the
mPFC as a putative locus of KOR-mediated aversion (Bals-
Kubik et al, 1993). Thus, it remains to be determined
whether mPFC KOR signaling is necessary for KOR-
mediated aversion.

Although there is strong evidence for an inhibitory role of
KORs in regulating mesolimbic DA neurotransmission,
little is known about their role in regulating mPFC DA
neurotransmission. KORs directly inhibit mesocortical DA
neurons thereby reducing mPFC DA overflow (Margolis
et al, 2006). However, whether mPFC KORs modulate
extracellular DA dynamics in vivo has not been studied. In
the mPFC, KOR immunoreactivity is present in monoamine
axonal varicosities and presynaptic terminals of asymmetric
and symmetric synapses (Svingos and Colago, 2002),
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providing an anatomical framework for mPFC KOR systems
to locally regulate DA and amino-acid neurotransmission.
Here, we assessed whether mPFC KORs regulate DA, GABA,
and glutamate transmission using a combination of in vivo
microdialysis, whole-cell recordings, and conditional
knock-out of KOR in DA neurons in mice. We also assessed
the contribution of mPFC KORs to the conditioned aversive
effects of a systemically administered KOR agonist.

MATERIALS AND METHODS

Subjects

Adult male Sprague–Dawley rats (Charles River) weighing
300–400 g (4PND 60) were utilized. For conditional knock-
out of KOR in DA neurons, we utilized a DAT promoter-
driven Cre transgenic mouse line (DATCre; Slc6a3Cre;
(Backman et al, 2006)) and KORloxP mice (Dr Jennifer
Whistler; University of California, San Francisco, CA, USA).
DATCre and KORloxP mice maintained on a pure C57BL/6J
background were cross bred to obtain control mice
(DATCre/wt; KORwt/wt) and knock-out mice lacking KOR in
DA neurons: DAT-KOR KO mice (DATCre/wt; KORloxP/loxP).
KORloxp mice were generated by flanking Exon 2, contain-
ing the start codon, of the Oprk1 gene with loxp sequences.
DATCre mice were generated by inserting an internal
ribosome entry-linked Cre recombinase gene downstream
from the Slc6a3 gene stop codon. Both mouse strains were
in congenic C57BL/6 background at the time of cross-
breeding. KOR knock-out in DAT-expressing neurons was
confirmed by PCR analysis of DNA from olfactory bulb and
VTA/substantia nigra tissue, and was absent in cortex,
striatum, or cerebellum (Supplementary Methods;
Supplementary Figure S1). Additionally, double fluorescent
in situ hybridization (FISH) was performed to determine
the specificity of the mutation in the SN/VTA region. Adult
male mice (20–30 g; 4PND 60) were housed in tempera-
ture- and humidity-controlled facilities accredited by the
American Association for the Accreditation of Laboratory
Animal Care under a 12-h light/dark cycle with ad-libitum
chow and water. Experiments were conducted in accordance
with the guidelines of the Institutional Care and Use
Committee of the National Institute on Drug Abuse (NIDA),
University of Maryland, Baltimore, and Medical University
of South Carolina.

Surgery

Rats were anesthetized with Equithesin (1% pentobarbital,
2% magnesium sulfate, 4% chloral hydrate, 42% propylene
glycol, 11% ethanol) and implanted with a unilateral
microdialysis guide cannula (CMA11; CMA microdialysis)
or bilateral microinjection guide cannulas (C235G; plastics
one) aimed at the mPFC (þ 3.2 mm (AP); ±0.6 mm (ML);
2.3 and 2.2 mm from brain surface (DV) for microdialysis
and microinjection experiments, respectively; Paxinos and
Watson (1998)). A subset of rats was implanted with an
intra-jugular vein catheter and a mPFC unilateral micro-
dialysis guide cannula. Mice were anaesthetized with
ketamine (80 mg/kg; i.p.) and xylazine (8 mg/kg; i.p.) and
implanted with a unilateral microdialysis guide cannula
aimed at the mPFC (CMA7; CMA microdialysis; AP þ 1.8 to

1.9 mm; ML: � 0.3 mm; DV: � 1.75 mm; Paxinos and
Franklin (2001)).

In vivo Microdialysis

Animals recovered from surgery for 5–7 days before
dialysis. Before testing (B14 h), a microdialysis probe
(CMA/11; 0.24� 3 mm membrane for rat; CMA/7;
0.24� 2 mm membrane for mouse; CMA Microdialysis)
was inserted through the guide cannula. Probes were
perfused with aCSF overnight (145 mM NaCl, 2.8 mM KCl,
1.2 mM MgCl2, 1.2 mM CaCl2, 5.4 mM glucose, pH 7.2–7.4;
0.3 ml/min; CMA102 syringe pump; CMA microdialysis).
The following day, fresh aCSF was pumped (0.6 ml/min).
Following a 2 h equilibration period, four to six 10 (amino
acids) or 15 (DA) min baseline samples were collected
before experimental manipulation. To examine the effects of
systemic U69,593 administration on mesocortical DA
transmission, rats were challenged with repeated intrave-
nous vehicle injections (heparinized saline, pH 7.2–7.4) or a
vehicle injection followed by escalating doses of U69,593
(0.02 and 0.04 mg/kg). To examine the role of mPFC KOR in
regulating local neurotransmission, perfusate containing
U69,593 (0.5 and 1.0 mM), nor-BNI (0.5 and 1.0 mM),
DAMGO (100 mM), and/or l-trans-pyrrolidine-2,4-dicarbox-
ylate (tPDC; 1 mM) were administered via reverse dialysis.
During no-net-flux microdialysis experiments five different
concentrations of DA were included in the perfusate (DAin:
0, 1.25, 2.5, 5, and 10 nM) in a pseudo-random order to
determine extracellular DA (DAext; x intercept) and extrac-
tion fraction (Ed; slope), an indicator of DA uptake. Three
15 min samples were collected at each DAin concentration to
determine DA in the dialysate (DAout).

High Performance Liquid Chromatography

Dialysate DA concentrations were analyzed using high
performance liquid chromatography (HPLC) with electro-
chemical detection (see supplementary Methods (Chefer
et al, 2005)). Dialysates were injected into either a BAS
HPLC system (Bioanalytical Systems) consisting of a BAS-
Phase II HPLC column, a BAS PM-92e HPLC pump, and a
BAS LC-4C amperometric detector or an Eicom HTEC-500
HPLC system with an integrated amperometric detector,
consisting a PP-ODS HPLC column and a HTEC-500 pump.

Capillary Electrophoresis with Laser-Induced
Fluorescence

GABA and glutamate dialysate concentrations were esti-
mated using a capillary electrophoresis P/ACE MDQ system
(Beckman, USA) coupled to an external ZETALIF laser-
induced fluorescence detector (Picometrics, France), as
previously described (see Supplementary Methods; (Chefer
et al, 2009)). The capillary (50 mm ID, 350 mm OD,
Polymicro Technologies; 62 cm long; 46 cm to detection
window) was loaded with 0.020 ml of sodium cyanide
(300 mM, pH 10.5) and 0.040 ml of naphthalene-2,3-dicar-
boxaldehyde (15 mM). Then, 0.33 ml of the contents were
delivered into the dialysate (2.0 ml). After 5 min
of derivatization, separation in running buffer was
achieved by applying a 24-kV potential (33 1C). Fluorophore
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excitation was achieved via a laser diode (Picometrics;
410 nm excitation; 490 nm emission).

[3H] DA Uptake

Rats were decapitated, and mPFC was dissected and
obtained for [3H] DA uptake assays as previously described
(Supplementary Methods; (Zapata et al, 2007)). mPFC
synaptosomes (30 mg) were incubated in 0.3 ml of Krebs-
Ringer-HEPES buffer containing 0.1 mM ascorbic acid, and
0.1 mM pargyline in the presence of vehicle or U69,593 at
37 1C. Uptake was initiated by the addition of 40 nM [3H]
DA and terminated after 5 min.

Electrophysiology

Young adult male Sprague–Dawley rats (200–300 g; 4PND
50) were anesthetized with chloral hydrate (400 mg/kg, i.p.)
and decapitated for whole-cell recording of layer V
pyramidal neurons (Supplementary Methods). Brains were
removed into ice-cold aCSF (95% O2-5% CO2) containing:
125 mM NaCl, 25 mM NaHCO3, 10 mM glucose, 3.5 mM KCl,
1.25 mM NaH2PO4, 0.5 mM CaCl2, and 3 mM MgCl2 (pH
7.45, 295-300 mOsm). Coronal slices (300 mm) containing
the mPFC were obtained in ice-cold aCSF and incubated in
95% O2-5% CO2 aCSF (B35 1C) solution for 45 min before
recording. Patch electrodes (6–9 MO) were filled with
0.125% Neurobiotin, 115 mM K-gluconate, 10 mM HEPES,
2 mM MgCl2, 20 mM KCl, 2 mM MgATP, 2 mM Na2-ATP,
and 0.3 mM GTP (pH 7.25–7.30; 280–285 mOsm). Whole-
cell current-clamp recordings were performed with a
computer-controlled amplifier (Multiclamp 700A), digitized
(Digidata 1322), and acquired with Axoscope 9 (Molecular
Devices; 10 kHz sampling rate). Baseline activity was
monitored for 10 min during which membrane potential
and input resistance were measured, before recording 2 min
of miniature excitatory post-synaptic potentials (mEPSPs)
in the presence of tetrodotoxin (TTX) and presence or
absence of picrotoxin or nor-BNI (0.1 mM). U69,593-
containing aCSF was superfused for 10 min before recording
2 min of mEPSPs.

Conditioned Place Aversion

Conditioning procedures were carried out using an
apparatus consisting of two discrete Plexiglas chambers
connected by a smaller, gray center chamber (see
Supplementary Methods). mPFC bilateral guide cannulas
were implanted 4–5 days before conditioning procedures
(see Figure 5). During the pre-test, rats were given free
access to all compartments for 15 min and time spent in
each compartment was recorded. Four–six hours after the
pre-test, 0.5 ml aCSF or nor-BNI (5.0 mg/0.5 ml) was bilat-
erally injected into the mPFC. Nor-BNI has been shown to
produce long-lasting behavioral effects that persist for
weeks after administration (Endoh et al, 1992). The
subsequent day, rats were injected with vehicle or U69,593
(0.32 mg/kg; s.c.) and immediately confined to their initially
preferred compartment for 45 min. On alternate days, rats
were injected with vehicle and confined in their non-
preferred compartment. This 2-day procedure was repeated
three times over six consecutive days. During the post-test,

rats were allowed access to all compartments and tested for
their preference for 15 min.

Drugs

U69,593, nor-BNI, and DAMGO were supplied by the
Research Technology Branch of NIDA (Rockville, MD,
USA). Stock solutions of U69,593 (10 mM) were dissolved in
0.1 N HCl and diluted in either sterile saline or aCSF (pH
7.2–7.4 with NaOH). Nor-BNI and tPDC (Tocris) were
dissolved in aCSF. Concentrations of U69,593 and nor-BNI
used in the present study have been previously used (Lemos
et al, 2012; Hjelmstad and Fields, 2001, 2003; Margolis et al,
2003; Margolis et al, 2003, 2006; Iremonger and Bains, 2009;
Mu et al, 2011).

Histology

Brains were removed, frozen, and sectioned (40 mm).
Histological verification of the microdialysis probe location
in rats and mice (Supplementary Figure S2) and micro-
injection cannula tips (Figure 5A) was obtained from
coronal sections.

Statistical Analysis

Results were analyzed using repeated measures ANOVA,
one-way ANOVA, or Student’s t-test, where appropriate.
Post-hoc analyses were carried out using Fisher’s LSD test or
a paired t-test. Area under the curve (AUC) values were
obtained using the standard trapezoidal method. A-priori
planned comparisons were carried out utilizing a paired or
Student’s t-test with Bonferroni correction for CPA experi-
ments (n¼ 3 to prevent type I errors).

RESULTS

For in vivo microdialysis experiments, microdialysis probe
membranes spanned anterior cingulate, prelimbic, and
inframlimbic cortexes in rats and mice (Supplementary
Figure S2).

Systemic Administration of the Selective KOR Agonist
U69,593 Decreases Extracellular DA Levels

Acute intravenous administration of U69,593 decreased
mPFC DA overflow in rats (Figure 1). Analysis of DA levels
revealed a main effect of sample-type (baseline, vehicle
infusion, U69,593 infusion; F(3,66)¼ 10.09; Po0.001), no
main effect of treatment (controls treated with repeated
vehicle vs U69,593-treated; F(1,11)¼ 4.02; P¼ 0.07) and a
significant sample-type x treatment interaction
(F(3,66)¼ 4.38; P¼ 0.011; Figure 1b). AUC analysis (of the
three samples corresponding to the each challenge) also
revealed a main effect of sample-type (F(2,22)¼ 12.21;
Po0.01), no main effect of treatment (F(1,11)¼ 1.32;
P¼ 00.27), and a significant sample-type x treatment
interaction (F(2,22)¼ 5.47; P¼ 0.03; Figure 1c). Post-hoc
analysis revealed a significant decrease in DA after
administration of 0.04 mg/kg U69,593 relative to vehicle
administration (Po0.05) and vehicle-treated control rats
(Po0.05).
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mPFC KORs Tonically Inhibit Local DA Overflow

Reverse dialysis of U69,593 decreased mPFC DA levels in
rats (Figure 1c and d). ANOVA revealed a main effect of
sample-type (baseline, U69,593 infusion, washout;
F(2,78)¼ 14.88; Po0.001), no main effect of dose (0, 0.5,
1.0 mM; F(1,13)¼ 0.17; P¼ 0.84), and a sample-type x dose
interaction (F(4,78)¼ 6.15; Po0.01; Figure 1c). AUC (of the
first three U69,593 samples) comparisons indicated an effect
of dose (F(2,22)¼ 8.021; P¼ 0.01; Figure 1d). Post-hoc
analysis demonstrated that intra-mPFC U69,593 (0.5 and
1.0 mM) administration decreased DA levels relative to aCSF
controls (Po0.01).

Reverse dialysis of the KOR antagonist nor-BNI signifi-
cantly enhanced basal dialysate DA levels in rats. Repeated

measures ANOVA revealed an effect of sample-type (base-
line, nor-BNI, washout; F(2,108)¼ 6.80; P¼ 0.013; Figure 1e),
but no main effect of dose (F(2,108)¼ 1.73; P¼ 0.21) or
sample-type x dose interaction (F(4,108)¼ 1.53; P¼ 0.22).
ANOVA comparing AUC values (of the first three nor-BNI
samples) across nor-BNI doses revealed an effect of dose
(F(2,20)¼ 3.709; P¼ 0.045; Figure 1f). Post-hoc analysis
showed that reverse dialysis of 1.0 mM nor-BNI enhanced
extracellular DA levels relative to aCSF controls (Po0.05).
These results indicate that mPFC KORs negatively mod-
ulates mPFC extracellular DA levels and this system is
tonically active.

Nor-BNI may initially act as a functional MOR antagonist
(Endoh et al, 1992). Nor-BNI failed to antagonize the effects
of intra-mPFC perfusion of the selective MOR agonist,
DAMGO (100 mM), on DA overflow in rats. Analysis
revealed a main effect of sample-type (baseline, nor-BNI
and/or DAMGO infusion; F(1,34)¼ 30.504; Po0.001;
Figure 1g), no main effect of treatment (nor-BNI alone,
DAMGO alone, nor-BNI/DAMGO; F(2,17)¼ 0.87; P¼ 0.44) or
sample-type x treatment interaction (F(2,34)¼ 0.66;
P¼ 0.53). ANOVA comparing AUC values across different
treatments during the three sample period corresponding to
DAMGO infusion, revealed an effect of treatment
(F(2,20)¼ 3.709; P¼ 0.045; Figure 1h), with significantly
enhanced DA in DAMGO and nor-BNI/DAMGO groups
relative to nor-BNI alone (po0.05). Thus, nor-BNI does not
enhance DA via MOR antagonism.

mPFC KORs do not Regulate Mesocortical DA Uptake

U69,593 (100 nM) administration did not modify total [3H]
DA uptake in mPFC synaptosomes (t24¼ 0.339, NS;
Supplementary Table S1) in rats. Administration of
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Figure 1 mPFC KORs tonically inhibit local DA overflow. (a) Time
course of mPFC dialysate DA levels after repeated challenge with systemic
administration of vehicle (open squares; n¼ 7) or escalating doses of
U69,593 (filled squares; n¼ 7). Vertical arrows depict the time of vechicle
or U69,593 (0.02 mg/kg then subsequently 0.04 mg/kg). *Reflects a
significant sample-type x treatment interaction. (b) AUC values of DA
levels after vehicle or U69,593 challenge in control (open bars) and
U69,593-treated (filled bars) groups. *and #reflect a significant difference
from baseline and from vehicle controls after intravenous administration of
0.04 mg/kg at that corresponding time point, respectively. (c) Time course
of mPFC dialysate DA levels after reverse dialysis administration of vehicle
(white squares; n¼ 8), 0.5 mM U69,593 (gray squares; n¼ 8), or 1.0 mM
U69,593 (black squares; n¼ 8). **Reflects a significant sample-type x
treatment interaction. (d) AUC values of DA levels after vehicle or
U69,593 challenge. *and **reflect a significant difference from vehicle
controls. (e) Time course of mPFC dialysate DA levels after reverse dialysis
administration of vehicle (white triangles; n¼ 8), 0.5mM nor-BNI (gray
triangles; n¼ 7), or 1.0 mM nor-BNI (black triangles; n¼ 6). (f) AUC values
of DA levels after vehicle or nor-BNI challenge. *Reflects a significant
difference from vehicle controls. (g) Time course of mPFC DA overflow
after reverse dialysis administration of 1.0 mM nor-BNI (black triangles;
n¼ 6), 100 mM DAMGO (white squares; n¼ 6), or 100 mM DAMGO/
1.0 mM nor-BNI (black squares; n¼ 8). **Reflects a main effect of sample-
type. (h) AUC values of DA overflow after nor-BNI and/or DAMGO
challenge. *Reflects a significant difference from rats challenged with
nor-BNI alone. (a, c, e, g) Abscissa, microdialysis fractions (15 min). Data
points reflect the mean±SEM. Black bar depicts period of infusion of the
indicated drug.

Prefrontal cortex kappa-opioid receptors
HA Tejeda et al

1773

Neuropsychopharmacology



U69,593 to mPFC synaptosomes in the presence of a NET
(nisoxetine) or DAT (GBR 12909) blocker failed to alter
DAT- or NET-mediated DA uptake, respectively, (DAT-
mediated t24¼ 0.468, NS; NET-mediated t24¼ 0.563, NS).

mPFC KORs Inhibit Glutamate Overflow and
Glutamate-Driven GABA Overflow

Intra-mPFC perfusion of U69,593 (1mM) and nor-BNI
(1 mM) were without effect on local glutamate and GABA
overflow in rats (Figure 2a and b). Analysis of extracellular
glutamate did not reveal a main effect of sample-type (ie,
baseline, drug infusion, washout samples; F(2,140)¼ 2.672;
P¼ 0.087), treatment (U69,593 or nor-BNI; F(1,14)¼ 0.27;
P¼ 0.87), or a sample-type x treatment interaction
(F(2,140)¼ 1.093; P¼ 0.349). Analysis of extracellular GABA
did not reveal a main effect of sample-type (ie, baseline,
drug infusion, washout samples; F(2,140)¼ 0.947; P¼ 0.401),
treatment (F(1,14)¼ 0.108; P¼ 0.748), or a sample-type x
treatment interaction (F(2,140)¼ 2.456; P¼ 0.105).

Extracellular glutamate levels are buffered by rapid
reuptake potentially masking inhibitory effects of KORs
(Herrera-Marschitz et al, 1996; Rawls and McGinty, 1997).
The glutamate reuptake blocker tPDC produces TTX- and
Ca2þ -sensitive elevations in dialysate glutamate (Herrera-
Marschitz et al, 1996; Rawls and McGinty, 1997; Kreuter
et al, 2004). Intra-mPFC perfusion of U69,593 (0.5 and
1.0 mM) decreased tPDC-induced elevation in dialysate
glutamate in rats (Figure 2c and d). Repeated measures
ANOVA revealed a main effect of sample-type (baseline,
tPDC perfusion period; F(1,51)¼ 50.368; Po0.001), no main
effect of treatment (tPDC alone, 0.5 or 1.0 mM U69,593/
tPDC; F(1,51)¼ 2.371; P¼ 0.124), and a significant sample-
type x treatment interaction (F(2,51)¼ 7.066; P¼ 0.006).
ANOVA of AUC values (of the tPDC sample period)
revealed an effect of treatment (F(2,19)¼ 6.984; P¼ 0.006;
Figure 2d). Post-hoc analysis revealed that both reverse
dialysis of 0.5 and 1.0 mM U69,593 attenuated tPDC-evoked
glutamate levels (Po0.05). Interestingly, tPDC also elevated
extracellular GABA levels, an effect blocked by 0.5 and
1.0 mM U69,593 pretreatment (Figure 2e). Repeated mea-
sures of ANOVA showed no main effect of sample-type
(baseline, tPDC perfusion period; F(1,51)¼ 1.265; P¼ 0.276),
a main effect of treatment (tPDC alone, 0.5 or 1.0 mM
U69,593/tPDC; F(2,17)¼ 4.343; P¼ 0.03), and a sample-type x
treatment interaction (F(2,51)¼ 4.492; P¼ 0.027). Nor-BNI
infusion (1.0 mM) in the presence of the glutamate reuptake
blocker tPDC, failed to modify the tPDC-induced extra-
cellular glutamate response (Figure 2f). Thus, mPFC KORs
inhibit local glutamate overflow, and prevent glutamate-
induced elevations in extracellular GABA levels.

mPFC KORs Inhibit Presynaptic Glutamate Release onto
mPFC Pyramidal Neurons

Bath application of U69,593 (1 mM) decreased CNQX/APV-
sensitive mEPSP frequency, but not amplitude in rats
(Figure 3a–e). U69,593 decreased mEPSP frequency
(t8¼ 3.935; Po0.01; Figure 3a–c). mEPSP amplitude did
not differ significantly before and after U69,593 adminis-
tration (Figure 3d and e). The decrease in mEPSP frequency
was not observed in cells treated with physiological aCSF
(t6¼ 1.934; P¼ 0.101; Figure 3f). Using picrotoxin to isolate
CNQX/APV-sensitive synapses, U69,593 decreased mEPSP
frequency (t10¼ 2.381; Po0.05; Figure 3g). Pretreatment
with nor-BNI (0.1 mM) blocked U69,593-induced decrease
of mEPSP frequency (t6¼ 0.939; P¼ 0.384; Figure 3h).
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These results suggest that KORs inhibit presynaptic
glutamate release.

We subsequently conducted an ANOVA of baseline
mEPSP frequency in the aCSF controls (both treated with
subsequent aCSF or U69,593), nor-BNI-pretreated, and
picrotoxin-pretreated cells. ANOVA revealed an effect of
treatment (F(2,25)¼ 13.97; Po0.001), with nor-BNI pre-
treated cells showing decreased mEPSP frequency relative
to aCSF- and picrotoxin-treated cells (Po0.05). This
suggests that nor-BNI pretreatment decreased presynaptic
glutamate release, however, the mechanism by which this
occurs is not clear. Nor-BNI-induced decreased mEPSP
frequency by nor-BNI may potentially occlude any inhibi-
tory effects produced by U69,593. To determine whether
this explained the lack of a U69,593 effect in nor-BNI-
treated cells, we conducted a t-test in a subset of cells with a
low mEPSP frequency. In these cells, a significant decrease

in mEPSP frequency in response to U69,593 is still observed
(t(6)¼ 4.449; P¼ 0.0043; data not shown), suggesting that
nor-BNI did not occlude the U69,593-mediated inhibition of
mEPSP frequency by producing a floor effect.

KORs on mPFC DA Terminals Directly Inhibit mPFC
DA Overflow

No-net-flux microdialysis experiments revealed no differ-
ence in basal DA dynamics between control and DAT-KOR
KO mice in Ed (Figure 4c; t16¼ � 0.533, NS) or mPFC
DAext (Figure 4d; t24¼ 0.011, NS). However, reverse
dialysis of U69,593 inhibited mPFC DA overflow
in control mice, an effect that was absent in DAT-KOR
KO mice (Figure 4e and f). Analysis revealed
a sample-type (baseline, U69,593 infusion, washout) x
genotype (control and DAT-KOR KO) interaction

aCSF U69,593

Fr
eq

ue
nc

y 
(H

z)

aCSF U69,593

A
m

pl
itu

de
 (

m
V

)

0

1

aCSF
U69,593

0 100 150 200 250

Interval (ms)

aCSF
U69,593

0.6

Amplitude (mV)

aCSF

U69,593

***

CNQX + APV

0
aCSF aCSF

Fr
eq

ue
nc

y 
(H

z)

*

5 
m

V

500 ms

5.0

4.0

3.0

2.0

1.0

0.0

5.0

4.0

3.0

2.0

1.0

picrotoxin picrotoxin
+ U69,593

NOR-BNI NOR-BNI
+ U69,593

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

1.2

0.8

0.6

0.4

0.2

0

1

1.2

0.8

0.6

0.4

0.2C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

2.0

1.5

1.0

0.5

0.0
0.50.1 0.2 0.3 0.4

50

Figure 3 mPFC KORs inhibit presynaptic glutamate release in rats. (a) Representative trace depicting glutamatergic CNQX/APV-sensitive mEPSPs before
(top) and after (middle) bath application of U69,593 (1.0 mM). CNQX/APV bath application abolished the presence of all mEPSPs (bottom). (b, c) mEPSP
frequency, but not amplitude (d, e) is decreased after U69,593 application in the presence of physiological aCSF (n¼ 9 cells from four animals). ***Reflect a
significant difference in mEPSP frequency after U69,593 application relative to baseline. Open circles indicate example trace. Black circles indicate the mean.
(f) These effects are not observed in cells treated with physiological aCSF (n¼ 7 cells from two animals). (g) In the presence of picrotoxin, U69,593 similarly
decreases mEPSP frequency (n¼ 11 cells from five animals). *Reflect a significant difference in mEPSP frequency after U69,593 application relative to
baseline. (h) Nor-BNI (0.1mM) pretreatment blocks U69,593-induced decreases in mEPSP frequency (n¼ 7 cells from three animals) in the presence of
normal aCSF.

Prefrontal cortex kappa-opioid receptors
HA Tejeda et al

1775

Neuropsychopharmacology



(Figure 4e; F(2,36)¼ 3.825; P¼ 0.041). Comparison of AUC
values (of the first three U69,593 samples) revealed a
significant difference between the control and DAT-KOR
KO mice (Figure 4f; t9¼ 2.867, P¼ 0.019). Thus, U69,593
inhibits mPFC DA levels by acting on mPFC DA varicosity
KORs. This also provides functional evidence that DAT-
KOR KO mice lack functional KORs in mesocortical DA
terminals.

mPFC KOR Signaling is Necessary for KOR-Mediated
Aversion

Intra-mPFC microinjection of a KOR agonist produces CPA
(Bals-Kubik et al, 1993). We hypothesized that mPFC KOR
signaling is necessary for KOR-mediated CPA in rats. We
predicted that intra-mPFC nor-BNI (5 mg/0.5 ml) would
block the ability of systemic U69,593 (0.32 mg/kg; sc) to
produce CPA (Figure 5c). A-priori planned comparisons
demonstrated that U69,593 decreased time spent in the
U69,593-paired chamber in aCSF-treated rats during the
post-test relative to the pre-test (Po0.01), an effect not
apparent in aCSF- and nor-BNI-treated rats conditioned
with vehicle. Intra-mPFC nor-BNI-treated rats conditioned
with U69,593 did not display a significant decrease in the
time spent in the U69,593-paired compartment during the
post-test relative to the pre-test. aCSF-treated rats condi-
tioned with U69,593 spent less time in the U69,593-paired
compartment during post-testing relative to nor-BNI-
treated counterparts (Po0.01). Bilateral guide cannula tips
were primarily located in the dorsal mPFC including the
prelimbic cortex and ventral anterior cingulate cortex
(Figure 5a).

DISCUSSION

Systemic administration of a KOR agonist inhibited
mesocortical DA transmission. Activation and blockade of
mPFC KORs inhibited and enhanced local DA overflow,
respectively. DA uptake was unaffected by KOR activation.
Utilizing mice lacking KOR in DA neurons, we confirmed
that mPFC KOR inhibition of local DA levels is via direct
action on DA terminals. Thus, KOR inhibition of DA is
tonically active and is due to inhibition of DA release by
KORs on mPFC DA terminals. mPFC KOR activation
attenuated tPDC-induced elevations in glutamate and
GABA. Whole-cell recordings demonstrated that KOR
activation decreased glutamatergic mEPSP frequency, but
not amplitude, suggesting a presynaptic site of action.
U69,593-mediated CPA was abolished by intra-mPFC KOR
blockade, indicating mPFC KOR signaling is necessary for
KOR-mediated aversion.

Here, we provide evidence that mesocortical DA neuro-
transmission is directly and negatively modulated by mPFC
KOR systems. mPFC DA overflow was inhibited by systemic
U69,593 administration. mPFC-projecting VTA DA neurons
are hyperpolarized by U69,593, resulting in decreased mPFC
DA levels (Margolis et al, 2006). As KORs are also found on
axonal varicosities in mPFC (Svingos and Colago, 2002), we
determined the role of local KORs in modulating local DA
levels. mPFC extracellular DA levels were reduced by
reverse dialysis administration of U69,593 and enhanced
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by nor-BNI. This is consistent with findings that KOR
activation decreases DA efflux in frontal cortex synapto-
somes and slices (Heijna et al, 1990; Grilli et al, 2009).
mPFC KOR activation may alter local DA tone indirectly by
modulating other systems regulating DA terminals and/or
DA neuron activity. To elucidate if KORs on DA terminals
mediate inhibition of DA by intra-mPFC U69,593, we
determined whether intra-mPFC U69,593-induced decreases
in local DA levels were altered in DAT-KOR KO mice.
U69,593 inhibited mPFC DA levels in control mice, an effect
that was absent in DAT-KOR KO mice. Thus, mPFC KOR-
mediated inhibition of DA overflow is governed by KORs on
DA varicosities.

The inhibitory effects of KOR agonists on extracellular
DA levels are attributed to KOR-mediated inhibition of DA
release (Spanagel et al, 1992). However, work from our
laboratory has demonstrated that KOR signaling in the
NAcc upregulates DAT function in vivo (Thompson et al,
2000; Chefer et al, 2005). In mPFC synaptosomes U69,593
failed to modify total DA uptake, DAT-, and NET-mediated
DA uptake. Collectively, these results suggest that KORs
on DA terminals in the mPFC tonically decrease extra-
cellular DA levels by decreasing DA release. As there is no
difference in extracellular DA levels and uptake in controls
and DAT-KOR KO mice, it is likely that release is unaltered.
This suggests that developmental compensation in mPFC
DA dynamics occurs in absence of a functioning mesocorti-
cal KOR system.

KOR systems differentially regulate mesolimbic and
mesocortical DA pathways. Activation of VTA KORs
reduces mPFC (Margolis et al, 2006), but not NAcc, DA
levels (Spanagel et al, 1992; Devine et al, 1993; Margolis
et al, 2006). Both NAcc and mPFC DA overflow is tonically
inhibited by local KORs (Spanagel et al, 1992). However, in
the NAcc KORs decrease DA tone by inhibiting DA release
and increasing DA uptake (Thompson et al, 2000; Chefer
et al, 2005), whereas mPFC KORs do not alter DA uptake.
Although mesocortical DA systems are inhibited by VTA
and mPFC KORs, only mPFC KORs are tonically active.
KOR system recruitment may differentially shape mesocor-
tical and mesoaccumbal DA responses, depending on where
dynorphins are released (ie, cell bodies vs terminal regions)
or whether tonic KOR activity exists (ie, in DA terminals).

We found that KOR activation inhibits presynaptic
glutamatergic function in vitro and in vivo. Basal, dialysate
mPFC glutamate levels, which are not TTX-sensitive or
Ca2þ channel-sensitive (Melendez et al, 2005), were
unaltered by U69,593. tPDC-evoked elevations in extra-
cellular glutamate are TTX-sensitive and Ca2þ -dependent
(Herrera-Marschitz et al, 1996; Rawls and McGinty, 1997;
Kreuter et al, 2004), suggesting tPDC reveals synaptic
sources of extracellular glutamate. tPDC has been utilized to
unmask the inhibitory effects of U69,593 on striatal
glutamate (Rawls and McGinty, 1998). An inhibitory
role of KOR on synaptic glutamate transmission was
demonstrated using whole-cell recordings where U69,593
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produced a decrease in mEPSP frequency, but not
amplitude, in a nor-BNI-sensitive manner. This suggests
KORs inhibit glutamate release via a presynaptic site of
action and is consistent with previous findings. KOR
immunoreactivity has been localized to presynaptic term-
inals of excitatory synapses (Svingos and Colago, 2002).
Dynorphin either enhances or decreases electrically evoked
EPSPs, but not EPSPs evoked by iontophoretically applied
glutamate (Sutor and Zieglgansberger, 1984). KOR activa-
tion inhibits Kþ -stimulated glutamate release from mPFC
synaptosomes (Sbrenna et al, 1999). Prefrontal pyramidal
neurons and interneurons are innervated by limbic,
thalamic, and cortical glutamatergic afferents. However, it
is not clear which glutamatergic mPFC inputs are inhibited
by KORs, as limbic and thalamic efferent regions are rich in
KOR mRNA (Meng et al, 1993). As a proportion of DA
neurons co-release glutamate (Yamaguchi et al, 2011) and
KORs directly inhibit DA varicosities, KORs may be
inhibiting these sources of glutamate.

Intra-mPFC KOR activation is sufficient to produce CPA
(Bals-Kubik et al, 1993). As systemically administered KOR
agonists act at various neural loci to produce CPA, we
assessed whether mPFC KOR activation was necessary for
KOR-mediated aversion. mPFC nor-BNI microinjection
blocked CPA produced by systemically administered
U69,593. As mPFC KOR signaling is necessary for KOR-
mediated aversion, KOR signaling in the mPFC may encode
alterations in affect, stress/anxiety-like behavior, and/or
brain reward function. Infralimbic U69,593 or nor-BNI
microinjections produce anxiolytic and anxiogenic effects
in mice, respectively, (Wall and Messier, 2000, 2002).
Considering prelimbic and infralimbic cortices have
divergent roles in reward-seeking behavior and fear
(Peters et al, 2009), it is plausible that prelimbic KOR
signaling encodes opposite behavioral effects as infralimbic.
This is consistent with the present study where dorsal mPFC
microinjections of nor-BNI focused on the prelimbic/
ventral anterior cingulate cortex blocked KOR-mediated
CPA. The question remains whether KOR modulation
of mPFC excitation/inhibition, and not DA, mediates
this aversive effect, as mesocortical DA denervation
does not modify KOR-mediated aversion (Shippenberg
et al, 1993).

Although KORs can inhibit mPFC DA, glutamate, and
glutamate-driven GABA enhancements, it is currently not
clear how KORs ultimately modulate cortical network
activity. DA bi-directionally modulates GABAergic and
glutamatergic amino-acid transmission (Seamans and
Yang, 2004). KORs may have complex effects on informa-
tion processing in cortical circuits by altering GABA/
glutamate interactions and decreasing DA modulation. This
is evident in EEG recordings in humans and rats where
systemic KOR agonists decrease spectral power in
oscillations at various frequencies (Young and Khazan,
1984; Ranganathan et al, 2012). Understanding the role of
mPFC KOR signaling in information processing in cortical
networks may reveal an understanding of processes
underlying behavioral effects of KOR ligands. KORs may
provide a therapeutic target for ameliorating abnormal
mood/emotion and cognitive deficits in psychiatric dis-
orders associated with altered prefrontal cortical neural
activity.
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