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Drug-related cues are potent triggers for relapse in people with cocaine dependence. Dopamine (DA) release within a limbic network of

striatum, amygdala and hippocampus has been implicated in animal studies, but in humans it has only been possible to measure effects in

the striatum. The objective here was to measure drug cue-induced DA release in the amygdala and hippocampus using high-resolution

PET with [18F]fallypride. Twelve cocaine-dependent volunteers (mean age: 39.6±8.0 years; years of cocaine use: 15.9±7.4) underwent

two [18F]fallypride high-resolution research tomography–PET scans, one with exposure to neutral cues and one with cocaine cues.

[18F]Fallypride non-displaceable-binding potential (BPND) values were derived for five regions of interest (ROI; amygdala, hippocampus,

ventral limbic striatum, associative striatum, and sensorimotor striatum). Subjective responses to the cues were measured with visual

analog scales and grouped using principal component analysis. Drug cue exposure significantly decreased BPND values in all five ROI in

subjects who had a high-, but not low-, craving response (limbic striatum: p¼ 0.019, associative striatum: p¼ 0.008, sensorimotor

striatum: p¼ 0.004, amygdala: p¼ 0.040, and right hippocampus: p¼ 0.025). Individual differences in the cue-induced craving response

predicted the magnitude of [18F]fallypride responses within the striatum (ventral limbic: r¼ 0.581, p¼ 0.048; associative: r¼ 0.589,

p¼ 0.044; sensorimotor: r¼ 0.675, p¼ 0.016). To our knowledge this study provides the first evidence of drug cue-induced DA release

in the amygdala and hippocampus in humans. The preferential induction of DA release among high-craving responders suggests that

these aspects of the limbic reward network might contribute to drug-seeking behavior.

Neuropsychopharmacology (2013) 38, 1780–1788; doi:10.1038/npp.2013.77; published online 1 May 2013

Keywords: addiction; craving; reward; striatum; limbic; conditioning

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

The amygdala and hippocampus potently influence learning
and memory (Robbins et al, 2008), responses to motiva-
tionally important cues (Tracy et al, 2001; Tye and Janak,
2007), and the development and expression of habit-like
behaviors (Lingawi and Balleine, 2012). Less attention has
been given to how they affect responses to drug-related
cues, but lesioning or inactivating these regions diminishes
cue-precipitated drug-seeking behaviors (Meil and See,
1997; Kantak et al, 2002; Rogers and See, 2007), whereas
electrical stimulation increases them (Vorel et al, 2001;
Hayes et al, 2003). In humans, functional neuroimaging
studies have identified both amygdala and hippocampal
activations to drug-related cues (Grant et al, 1996; Childress

et al, 1999; Wexler et al, 2001), but the neurotransmitters
mediating these effects remain unknown.

One plausible candidate transmitter is dopamine (DA).
Mesolimbic DA transmission is thought to influence the
ability of drug cues to capture and sustain interest, and
foster the development and expression of habit-like,
stimulus-response behaviors (Berridge, 2007). In laboratory
animals, these effects have been studied primarily within the
striatum. However, exposure to cocaine cues can also induce
DA release within the amygdala (Weiss et al, 2000), an effect
known to influence cue-induced cocaine-seeking behavior
(See et al, 2001; Ledford et al, 2003; Berglind et al, 2006). The
role of hippocampal DA transmission on responses to drug
cues remains unknown, but emerging evidence supports an
influence in the formation and activation of emotionally
potent memories (Shohamy and Adcock, 2010). Together,
these observations highlight the importance of DA transmis-
sion within multiple regions in the acquisition, selection and
maintenance of reward-seeking behaviors.

In humans, drug cue-induced DA responses have been
reported in the striatum (Volkow et al, 2006; Wong et al,
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2006; Boileau et al, 2007), but not elsewhere in the brain
reflecting limitations of the PET tracer, [11C]raclopride. A
more recently developed tracer, though, [18F]fallypride, has
higher affinity than [11C]raclopride for D2/D3 receptors
enabling the measurement of DA release in regions where the
concentration of DA receptors is substantially lower than
striatum (Mukherjee et al, 2002; Slifstein et al, 2010). In the
present study, we used this tracer with high-resolution PET
to assess the ability of drug cues to induce DA release in the
amygdala, hippocampus, and striatum of volunteers meeting
diagnostic criteria for cocaine dependence.

MATERIALS AND METHODS

Participants

Non-treatment-seeking cocaine users who met DSM-IV
criteria (American Psychiatric Association, 2000) for current
cocaine dependence were recruited from the community
through local advertisements. Volunteers who tentatively met
the entry criteria following a brief telephone screen were
invited to a more in-depth face-to-face evaluation using the
Structured Clinical Interview for DSM-IV (First, 1997).
Participants were free of current axis I psychiatric disorders
other than substance use, had never experienced head trauma
with loss of consciousness, and were physically healthy as
determined by a medical exam, electrocardiogram, and
standard laboratory tests. Women were excluded if they
had a seropositive pregnancy test. All participants had a
current or past history of other illicit substance use, but
reported cocaine as their drug of choice (Supplementary
Table 1). No participants were currently seeking treatment
for their substance use problems or planning to quit within
the month following the study. The study was carried out in
accordance with the Declaration of Helsinki and approved by
the Research Ethics Board of the Montreal Neurological
Institute. All participants provided written, informed consent.

Procedure

Each subject had one MRI and two PET sessions carried out
on separate days. Subjects were asked to abstain from
psychotropic drugs for at least 24 h before the PET sessions,
and on the morning of each test day, urine drug
screens were administered (Triage Drugs of Abuse Panel,
Biosite Diagnostics, sensitive to amphetamines, barbitu-
rates, benzodiazepines, cannabinoids, cocaine, opiates, and

phencyclidine) and results were recorded. Female partici-
pants were given a urine pregnancy test before each PET
session; none tested positive (Assure FastRead hCG
Cassette, Conception Technologies, San Diego, California,
USA). As gonadal hormone levels fluctuate during the
menstrual cycle and these changes are thought to influence
reward-related neurotransmission (Becker, 2009), female
participants were tested during their follicular phase when
estradiol and progesterone levels are lower and more stable.
Menstrual phase was verified by self-report and all were
tested in the first 7 days of their cycle.

On the neutral cue session (Figure 1), participants
developed, 2 h before scanning began, an autobiographical
script with the investigator in which they recalled a relaxing,
uneventful day that they could clearly remember, and
narrate in detail. The development and rehearsal of this
script lasted for 30 min. They were then presented with
paperclips, pencils, and erasers, asked to doodle or write a
few sentences and erase them, and manipulate the
paperclips. This object manipulation lasted about 15 min.
Subjects were then shown a 10-min video clip of people in
everyday situations. Additional non-drug-themed neutral
videos were watched while lying on the PET bed.

Procedures were similar on the cocaine cue test session
(Figure 1). Two hours before scanning began participants
developed an autobiographical script with the investigator,
in which they described in detail a subjectively positive drug
experience. Intranasal cocaine powder users were presented
with a mirror, a razor blade, a straw, and a bag of white
powder (lactose). Crack cocaine users were provided with a
crack pipe, a spoon and a rock-shaped crystal (salt).
Subjects were told that the substance was genuinely cocaine
or crack. Subjects were asked to use the razor to divide the
powder into lines several times and to hold the straw, or
touch and smell the crystal and put it in the pipe or spoon.
This object manipulation lasted for 15 min. For the following
15 min, subjects watched a cocaine-themed video. Additional
cocaine-themed videos were watched while lying on the PET
bed. The videos showed images of people buying, using, and
becoming intoxicated by cocaine (powder or crack depend-
ing on the subject’s preferred form of the drug), as well as
images of the drug itself and drug paraphernalia.

Neuroimaging

Each participant underwent two PET scans on a Siemens
high-resolution research tomograph and one T1-weighted
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Figure 1 Test day procedures and timing. Time points are defined according to start of emission scan (time point 0). a: Arrival at the PET unit, baseline
measurements, and urine drug test. b: Develop autobiographical script, manipulate paraphernalia, watch video highlights (context different on neutral and
cue day as described in Supplementary Section in full detail). c: Collect subjective measures, lay down in camera, insert intravenous catheter for tracer
injection. d: Six-min transmission scan. e: Emission scan, watching videos through video glasses. f: 30-min break. g: Reinstall in the scanner, continue neutral, or
cue videos. h: Six-min transmission scan. i: End of the scan, removal from the scanner, self report of subjective measures. j: Debriefing.
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MRI session for PET/MR co-registration. PET sessions
consisted of a bolus injection of 3.30±0.24 mCi [18F]fall-
ypride and two dynamic image acquisition scans (90-min
and 60-min) separated by a 30-min break. A 6-min 137Cs
transmission scan for attenuation correction was performed
at the beginning and end of every scan session.

[18F]Fallypride non-displaceable binding potential values
(BPND¼ FND * (Bavail/KD; please see Supplementary
Methods) were calculated (Cunningham et al, 1991; Innis
et al, 2007) using the Simplified Reference Tissue Model
(Lammertsma and Hume, 1996) with the basis functions
method (Gunn et al, 1997). The gray matter of the
cerebellum was used as the reference region, as it is devoid
of D2/D3 receptors. Regions of interest (ROIs) were defined
on each individual’s MRI in stereotaxic space, and BPND

values were derived for inter-group comparisons using
Turku PET centre tools (http://www.turkupetcentre.net/).
Regional BPND values were weighted with the volume size
when combining both hemispheres (see Supplementary
Section for additional details).

ROI Analysis

We focused on a restricted number of a priori defined ROIs
based on the areas implicated in cue responsivity and the
ability of [18F]fallypride to detect effects there. The striatal
sub-regions were based on the functional organization of
limbic, associative and sensorimotor sub-compartments as
proposed by Laruelle, Haber and colleagues (Haber and
McFarland, 1999; Mawlawi et al, 2001; Martinez et al, 2003):
ventral striatum (limbic striatum), pre-commissural dorsal
caudate (posterior caudate/associative striatum), pre-com-
missural dorsal putamen (posterior putamen/associative
striatum), post-commissural caudate (anterior caudate/
associative striatum), and post-commissural putamen
(anterior putamen/sensorimotor putamen). The two extra-
striatal regions were hippocampus and amygdala. Regions
were segmented using F.I.R.S.T. (FMRIB’s Integrated
Registration and Segmentation Tool) (http://www.fmri-
b.ox.ac.uk/fsl/first/index.html; Patenaude et al, 2011), and
then checked and modified manually if necessary.

Behavioral Measures

Drug craving and subjective mood states were assessed
using 17 Likert-like visual analog scale (VAS) items (happy,
rush, high, euphoria, excited, anxious, energetic, mind-
racing, alert, bored, interested, urge for cocaine, desire
cocaine, crave cocaine, want cigarette, want alcohol, and
want other drug). The VAS questionnaire was administered
at baseline, 30 min before the start of the scan and then
every 30 min after the start of the scan. The Cocaine
Selective Severity Assessment Scale was administered as a
measure of early cocaine abstinence symptoms at the
baseline of each scan day (Kampman et al, 1998). The total
score was used as a measure of subjective withdrawal state.

Statistical Analysis

All data were analyzed using IBM SPSS Version 20 for
Macintosh. Data were analyzed using the General Linear
Model GLM procedure for repeated measures to model three

within-subject factors of hemisphere (left and right), region
(limbic striatum, associative striatum, sensorimotor striatum,
amygdala, and hippocampus), and session (neutral, cocaine
cue), and one between-subjects factor of group (high craving,
low craving). Mauchly’s test of sphericity suggested that the
GLM, including both striatal and extrastriatal regions,
violated the assumption of homogeneity of variance. We
corrected for this by using lower-bound estimates to assess
significance in the ANOVA; this is the most conservative
correction available. Reanalyzing the data as separate
ANOVAs for striatal and extrastriatal regions avoided the
homogeneity issue but increased the risk of type I errors due
to failure to correct for multiple testing. As the results were
consistent with both analyses, we included all ROIs in one
ANOVA and chose the more conservative option (lower-
bound estimates of sphericity). Planned pairwise compar-
isons were performed to delineate the source of significant
differences on ANOVA.

To estimate cue-induced change in subjective states, an
average change from baseline score was calculated for each
individual in each test session (delta score) and compared
with Student’s paired t-test. Because of substantial coli-
nearity of the VAS items, distinct factors were generated. In
brief, differences in VAS delta scores between the two
sessions were calculated. These double delta scores were
then grouped using principal component analysis. Factors
with eigenvalues above one were extracted and varimax
rotated when more than one factor was detected.

Individual differences in the magnitude of regional BP
changes (%DBPND¼ (BPND_Neutral—BPND_cue)/BPND_Neutral

* 100) were correlated with subjective states using Pearson
product moment correlations. In all analyses, statistical
significance was set as pp0.05. Data normality for BP
change scores were assessed with the Shapiro–Wilk test and
met the assumption of normality.

RESULTS

Characteristics of Participants

Twelve volunteers completed the study (Table 1). Partici-
pants reported smoking crack cocaine (N¼ 9) or taking it
intra-nasally (N¼ 3) at least once a week for an average of
16 years (range: 3–25 years, average 7.5±4.5 grams of
cocaine per week). All participants had a current or past
history of other illicit substance use (Supplementary
Table 1) but reported cocaine as their drug of choice. No
participants were currently seeking treatment for their
substance use problems.

Subjective States Analysis

Exposure to the cocaine cues, as compared to the neutral
cues, significantly increased drug craving scores (urge,
desire, crave cocaine), effects that were maintained
throughout the PET scanning session (p-values o0.005;
Figure 2). Cocaine cue exposure also increased scores for
Rush, Anxious, Excited, Mind-racing, Interested, and
Euphoria (all t (11)4 2, po0.04); however, as many of the
VAS measures were highly inter-correlated, reflecting a
smaller number of latent constructs, principal component
analysis was used to extract factors from the time-averaged
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double delta VAS scores. Six distinct factors were identified
(Supplementary Table 2). The first factor accounted for 31%
of the variance and included four items: crave cocaine
(0.94), desire cocaine (0.85), urge for cocaine (0.85), and
alert (0.75). This factor appeared to represent focused
craving for cocaine; it was used in the subsequent
correlational analysis and to divide subjects into those
who did (n¼ 6) vs did not (n¼ 6) report positive changes in
the crave factor score.

PET [18F]Fallyride BPND Data: Effect of Cocaine Cues

The four-way group� session�ROI� hemisphere ANOVA
of BPND values yielded a three-way group� session�ROI
interaction (F1,10¼ 9.02, p¼ 0.013). Decomposition of the
interaction indicated that this reflected significant cue-
induced decreases in [18F]fallypride BPND among the high-
craving subjects (Figure 3; Supplementary Figure 1;
Supplementary Table 4). Among subjects exhibiting high-
craving factor scores, exposure to the cocaine cues,
compared with the neutral ones, led to significantly lower
BPND values in the limbic p¼ 0.019, associative p¼ 0.008,
and sensorimotor p¼ 0.004 striatum, as well as the
amygdala (p¼ 0.040). Significant effects were not seen in
the whole hippocampus. However, further exploration
suggested an effect in the right hippocampus (Least
Significant Difference post hoc: p¼ 0.047; t-test: t(5)¼ 3.15,
p¼ 0.025). These effects were not seen in subjects with low-
craving scores (pX0.1) (Figure 3; Supplementary Table 4).

As found in two PET [11C]raclopride studies (Volkow
et al, 2006; Wong et al, 2006), individual differences in
cocaine cue-induced craving predicted differences in the
measure of striatal DA release. The greater the craving
response, the greater the DA response. This association was
observed in the striatum as a whole (r¼ 0.631, p¼ 0.028)
and in all three striatal ROIs: limbic (r¼ 0.581, p¼ 0.048),
associative (r¼ 0.589, p¼ 0.044), and sensorimotor
(r¼ 0.675, p¼ 0.016; Figure 4). The effects were in the same
direction when hemispheres were investigated indepen-
dently and reached significance in left associative (r¼ 0.604,
p¼ 0.038), left sensorimotor (r¼ 0.773, p¼ 0.003), and right
limbic striatum (r¼ 0.626, p¼ 0.029). Correlations between

Table 1 Characteristics of Research Participants (N¼ 12)

Characteristics Value (mean±SD)

Age (years) 39.5±8.0 (range: 31–48)

Sex (number) Male (10/12)

Ethnicity 3 African Americans, 1 Aboriginal,
8 Europeans

Age of first use (years)a 23.7±6.5

Duration of use (years) 15.9±7.4 (range: 3–25)

Lifetime use (days) 2100.3±1548.5

Cocaine use days/week, past 5 yearsb 4.3±2.1

Amount/week (g) 7.5±4.5

Primary route of administration 9 Smoked cocaine, 3 intranasal
powder

Cigarette smokers 9 Current smokers

aDrug use information refers to cocaine use and was collected through a self-
report retrospective interview.
bFor subjects with less than 5 years history of use, this number equals lifetime
use.
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craving and changes in [18F]fallypride BPND were not
significant in the hippocampus (r¼ 0.213, p¼ 0.51) or
amygdala (r¼ 0.258, p¼ 0.42).

DISCUSSION

To our knowledge, the present study provides the first
evidence of drug cue-induced DA release in human amygdala
and hippocampus. The amygdala is thought to have an
important role in the acquisition and expression of learned
associations between emotionally important events. In
conjunction with activity in the striatum and hippocampus,

these effects influence the ability of motivationally salient
stimuli to elicit and sustain focused interest and facilitate
the selection of situation appropriate behavioral responses
(Robbins and Everitt, 2002; Phillips et al, 2003; Goto
and Grace, 2008; Robbins et al, 2008; Shohamy and Adcock,
2010).

In humans, the role of the amygdala in the processing of
emotionally relevant stimuli has been studied using various
methods, including functional neuroimaging (Chase et al,
2011; Tang et al, 2012), assessments of the effects of
naturally occurring selective lesions (Adolphs et al, 1995;
Tsuchiya et al, 2009), and following direct electrical
stimulation (Rayport et al, 2006). Together, these studies
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are consistent with a more extensive animal literature
indicating that the amygdala can modulate associative
learning between discrete cues and rewards, influence the
emotional intensity attached to events, and regulate striatal
responsiveness and its effects on behavioral approach
(Savage and Ramos, 2009; Buffalari and See, 2010).
Although few studies have investigated which specific
neurotransmitters are implicated, DA is a plausible
candidate. For example, in laboratory animals, exposure
to cocaine cues increases DA release in the amygdala (Weiss
et al, 2000). Moreover, several studies have demonstrated
that pharmacological manipulations of DA levels in the
amygdala influence the behavioral response to cocaine cues
(Alleweireldt et al, 2002; Di Ciano et al, 2003; Berglind et al,
2006) and affect learning and memory of the cue–drug
association (Hitchcott and Phillips, 1997). Our own study
raises the possibility that cue-induced amygdalar DA release
has a similar role in humans.

To the best of our knowledge, this is also the first report
of a dopaminergic response to cocaine cues in the
hippocampus in both the animal and human literatures. A
role of the hippocampus in episodic memory, reward
learning, and the generation of contextually appropriate
reward seeking has been indicated, though (McDonald and
White, 1993; Eichenbaum, 2013; Dickerson and
Eichenbaum, 2009). Several studies have demonstrated that
DA transmission facilitates hippocampal synaptic long-term
potentiation (Jay, 2003; Li et al, 2003) and likely has an
important role in the formation and reactivation of reward-
related memories (Shohamy and Adcock, 2010; Frey et al,
1990; Otmakhova and Lisman, 1998). In humans, neuroi-
maging studies have provided evidence of hippocampal
activation following exposure to drug cues (Grant et al,
1996; Kilts et al, 2001; Wexler et al, 2001; Chase et al, 2011;
Tang et al, 2012). Moreover, activity in dopaminergic
midbrain regions evoked by reward anticipation tasks is
associated with hippocampal activation and evidence of
enhanced hippocampus-dependent long-term memory for-
mation (Wittmann et al, 2005; Adcock et al, 2006). Thus, the
hippocampal DA signal may influence neuroplastic changes
that facilitate long-term memories of pairings between
rewards and context.

In the present study, cue-induced DA release was also
observed in the striatum. Evidence of cocaine cue-induced
striatal DA responses has been seen previously in PET
studies with [11C]raclopride (Volkow et al, 2006; Wong
et al, 2006). As observed here, individual differences in the
magnitude of the striatal DA effect co-varied with self-
reported craving. Based on studies conducted in laboratory
animals, it has been proposed that cue-induced DA release
within the ventral striatum facilitates flexible, goal-directed
approach toward reward-related stimuli (Weiss et al, 2000;
Nicola et al, 2005; Berridge, 2007). DA release in more
dorsal regions of the striatum, in comparison, may more
closely reflect the acquisition and promotion of habit-like,
stimulus-response behaviors (McDonald and White, 1993;
Ito et al, 2002; Vanderschuren et al, 2005). Accumulating
evidence, though, suggests that the primate striatum is not
parcellated into sharply delineated subregions; rather there
is a gradation of limbic cortical input, innervating
ventromedial aspects most densely, dorsolateral aspects
least so. Whereas the ventral striatum receives dense input

from the amygdala, hippocampus and limbic cortex, more
dorsal aspects receive more input from associative and
sensorimotor cortex (Haber and Knutson, 2010).

The midbrain DA system includes projections from the
substantia nigra to dorsal striatum and more limbic-
directed projections from the ventral tegmental area to the
nucleus accumbens, basolateral, and central nuclei of the
medial amygdala, and hippocampus; DAergic innervation of
the latter structure is more dense in primates than in
rodents (Haber and Knutson, 2010). As noted above,
reciprocal innervation is evident also, and stimulating the
afferent fibers from the amygdala and hippocampus
increases accumbal DA release (Floresco et al, 1998;
Floresco et al, 2001). Our finding of DA responses to
cocaine cues in all three regions—amygdala, hippocampus,
and striatum—supports the view of limbic and striatal
structures as components of an integrated system, con-
tributing to the incentive salience of motivationally relevant
cues (Robbins and Everitt, 2002; Phillips et al, 2003; Goto
and Grace, 2008; Shohamy and Adcock, 2010).

The observation that cue-induced DA responses occurred
only in the high-craving subgroup may reflect a number of
factors. First, the videos contained narrative detail designed
for the local milieu, and the autobiographical script would
be expected to enhance these effects, but some participants
might be non-responsive to the mostly impersonal cues
(O’Brien et al, 1979; Staiger and White, 1991; Conklin et al,
2010). Alternatively, our low-craving participants may have
had less intent to use drugs that day; active inhibition of
craving can affect cue-induced appetitive states and cortico-
limbic activity (Wertz and Sayette, 2001; McBride et al,
2006; Volkow et al, 2010; Prisciandaro et al, 2012). Finally,
recent animal studies suggest that DA responses to reward-
related cues occur only in those subjects that imbue the cues
with incentive salience; individual differences in these
tendencies appear to be an inherited trait (Robinson and
Flagel, 2009; Flagel et al, 2010). The higher craving
individuals in our study might be particularly prone to
attribute incentive salience to drug cues. Intriguingly,
though, as both sub-groups had extensive cocaine use
histories, the observations might identify two separate
neurobiological pathways to addiction.

Our findings should be interpreted in light of the
following considerations. First, consistent with two PET
[11C]raclopride studies in cocaine dependent participants
(Volkow et al, 2006; Wong et al, 2006), we observed
evidence of cue-induced DA responses in the dorsal
striatum. In comparison, in healthy volunteers administered
only three doses of d-amphetamine, exposure to drug-
paired cues led to DA release in the ventral striatum
(Boileau et al, 2007). In the present study, cue-induced DA
responses were seen in both the dorsal and ventral striatum.
This more widespread effect could reflect the presence of
relatively more diverse cues (eg, videos, autobiographical
memories, and paraphernalia), the fact that our participants
were not inpatients but free to depart after the test sessions
and potentially use cocaine, or the use of a different tracer
plus higher-resolution camera. These features noted, the
statistically most robust effect was seen in sensorimotor
striatum, which overlaps with the area preferentially
activated in the [11C]raclopride studies (Volkow et al,
2006; Wong et al, 2006). Moreover, the present results
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suggest that exposure to a mix of personalized and novel
cues evocative of highly learned reward-related memories
and behaviors can lead to activations of both ventral and
dorsal aspects of the striatum. Second, in our study,
individual differences in craving did not correlate with the
magnitude of DA response in the amygdala and hippocam-
pus. One possibility is that, compared with the striatum, DA
responses in these regions are somewhat less closely related
to the initiation of approach behaviors, and more closely
related to stimulus intensity, context, and associative
learning (Everitt and Robbins 2005). Third, our PET scans
were 3 h in duration (time post-tracer injection). There is
broad consensus that 60–90 min is sufficient to detect
effects outside of the basal ganglia (ie, amygdala and
hippocampus); within the striatum, longer scans are
required due to the greater time needed for fallypride to
reach steady-state levels. Simulation experiments suggest
that a striatal signal begins to emerge after 2 h (Ceccarini
et al, 2012); empirical data indicate that tracer equilibrium
is clearly achieved by 3 h (Vernaleken et al, 2011). The
present study plus work conducted elsewhere further
confirm that scans of 180–210 min are sufficient to measure
striatal DA release (Buckholtz et al, 2010a; Buckholtz et al,
2010b; Treadway et al, 2012). Fourth, the associations
between cue-induced DA release and self-reported drug
craving are correlations and do not indicate causality.
However, other evidence indicates that DA contributes to
susceptibility to craving states; eg, diminishing cocaine cue-
induced increases in DA transmission leads to decreases in
craving (Berger et al, 1996; Leyton et al, 2005). Fifth, the
order of scans was fixed (neutral day first, followed by
cocaine day) to avoid pairing the PET environment with
drug cues before the neutral test session. This benefit of the
design was considered reasonable as [18F]fallypride binding
exhibits good test–retest reliability (Mukherjee et al, 2002);
indeed, if the effect seen here was due to the order of scan,
it would not have been observed only in those subjects
reporting high levels of craving. Finally, our study had a
small number of female participants. Future studies will be
needed to address possible effects of gender.
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