Skip to main content
. 2012 Nov 8;84(8):832–842. doi: 10.1136/jnnp-2012-302825

Table 1.

tDCS studies on language functions in healthy individuals

Studies on healthy subjects Subjects Age mean±SD years Education years Polarity Electrode size (cm) Stimulated areas Reference electrode Control areas Intensity/duration Task Online/offline Effects Follow-up
Frontal tDCS
 Iyer et al39 103 (47 men) 37.5±12.9 ≥12 A/C/S 5×5 Left dorsolateral prefrontal cortex Contralateral supraorbital area No 1 and 2 mA/20 min Verbal fluency (phonemic cue) Offline Anodal tDCS (2 mA) improves verbal fluency No follow-up
 Fertonani et al41 12 (4 men) 24.1±3.7 DNR A/C/S 5×7 Left dorsolateral prefrontal cortex Right shoulder No 2 mA/8 and 10 min Picture naming Offline Anodal tDCS reduces latency of response No follow-up
12 controls (6 men) 21.8±1
 De Vries et al42 44 (21 men) 6 excluded 22.6±2.1 >15 A/S 5×7 Left inferior frontal gyrus Contralateral supraorbital area Right inferior frontal gyrus 1 mA/20 min Artificial grammar learning and grammatical decision Online Left anodal tDCS improves the overall performance in the task of grammatical decision No follow-up
10 controls (5 men) 23.7±2.4
 Liuzzi et al43 30 (12 men) 24.97±0.56 >12 A/C/S 5×5 Left motor cortex Contralateral supraorbital area Left dorsolateral prefrontal cortex 1 mA/20 min Action/objects word learning paradigm Offline Cathodal tDCS on left motor cortex reduces success rates in action words vocabulary 7, 14, 28 days after tDCS
27 controls (A) (12 men)
6 controls (B) (3 men)
24.96±0.43
24.50±0.50
 Cattaneo et al44 10 (4 men) 23.6±3.2 >12 A/S 5×7 Left inferior frontal gyrus Contralateral supraorbital area Right inferior frontal gyrus 2 mA/20 min Verbal fluency (phonemic and semantic cue) Offline Left tDCS improves verbal fluency No follow-up
8 controls (3 men) 23.8±123.5
 Holland et al45 10 (3 men) 69±DNR DNR A/S 5×7 Left inferior frontal cortex Contralateral frontopolar cortex No 2 mA/20 min Picture naming Online and during fMRI study Anodal tDCS has significant behavioural and regionally specific neural facilitation effect No follow-up
 Wirth et al46 20 (10 men) 23.5±3.7 >12 A/S 5×7 Left dorsolateral prefrontal cortex Right shoulder No 1.5 mA/30 min Semantic blocking paradigm and picture naming Online/offline (EEG) Anodal tDCS is capable of enhancing neural processes during and after application No follow-up
Temporal tDCS
 Sparing et al47 15 (10 men) 26.9±3.7 DNR A/C/S 5×7 Left posterior perisylvian area Vertex Right posterior perisylvian area 2 mA/7 min Picture naming Offline/online Left anodal tDCS reduces latency of response 5/10 min after the end of tDCS
 Floel et al48 19 (10 men) 25.36±2.7 DNR A/C/S 5×7 Left posterior perisylvian area Contralateral supraorbital area No 1 mA/20 min Verbal learning Online Anodal tDCS facilitates learning speed and accuracy No follow-up
 Fiori et al49 10 (7 men) 55±7.9 >12 A/S 5×7 Left posterior perisylvian area Contralateral fronto-polar cortex Right occipitoparietal area 1 mA/20 min Associative verbal learning Online tDCS on left posterior perisylvian area reduces naming response latency No follow-up
 Ross et al51 15 (4 men) 25.6±DNR DNR A/S 5×7 Left anterior temporal lobe Contralateral cheekbone Right anterior temporal lobe 1.5 mA/15 min People and landmark naming Online Right tDCS increases naming performance for famous people No follow-up

A, anodal tDCS; C, cathodal tDCS; DNR, data not reported; mA, milliampere; offline, the subject executes the task before and after stimulation; online, the subject executes the task during stimulation; S, sham tDCS; SD, standard deviation; tDCS, transcranial direct current stimulation.