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Abstract: This paper presents a quantitative method for the risk-based evaluation of Total 

Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum 

fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic 

compounds. These compounds can be measured and described in terms of TPH carbon 

ranges. Toxicity factors published by USEPA and other parties allow development of  

risk-based, air and soil vapor screening levels for each carbon range in the same manner as 

done for individual compounds such as benzene. The relative, carbon range makeup of 

petroleum vapors can be used to develop weighted, site-specific or generic screening levels 

for TPH. At some critical ratio of TPH to a targeted, individual compound, the 

overwhelming proportion of TPH will drive vapor intrusion risk over the individual 

compound. This is particularly true for vapors associated with diesel and other middle 

distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene 

gasolines if an adequately conservative, target risk is not applied to individually targeted 
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chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual 

compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum. 

Keywords: petroleum; TPH; carbon ranges; benzene; soil gas; soil vapor; vapor intrusion; 

risk assessment 

 

1. Introduction 

Much emphasis has been placed in the past ten-plus years on the potential intrusion of chlorinated 

solvent vapors into buildings from underlying contaminated soil and groundwater. The study of vapor 

intrusion associated with subsurface releases of petroleum fuels is, in comparison, still in its infancy. 

The complex chemistry of petroleum fuels and the difficulty of predicting the fate and transport of 

vapors in the subsurface hamper the development of easy-to-use guidance that can be applied under 

multiple site scenarios. This paper addresses the first issue. Other efforts are currently underway to 

compile field data and address the second topic.  

Petroleum-contaminated soil and groundwater are traditionally assessed in terms of Total Petroleum 

Hydrocarbons (TPH) and targeted, individual compounds such as benzene, toluene, ethylbenzene, 

xylenes and naphthalene (BTEXN). The buildup of methane vapors at petroleum-release sites can also 

pose potential fire and explosion hazards. This topic is beyond the scope of this paper, however.  

As noted in Table 1, non-specific, aliphatic and aromatic compounds collectively quantified as TPH 

make up the overwhelming mass of liquid fuels. Risk-based assessment of TPH in soil is well 

established and in use in numerous states [1–9]. While relatively straight forward, the quantitative 

inclusion of TPH in vapor intrusion investigations is less-well established and few papers and guidance 

documents have been published on this topic [10,11]. Some states require an assessment of potential 

vapor intrusion hazards associated with both TPH and individually targeted compounds at sites where 

long-term, in situ management of petroleum-contaminated soil or groundwater is proposed [12].  

Table 1. Range of current and past BTEX and naphthalene (BTEXN) concentrations in 

petroleum fuels. 

Chemical Gasolines 1 Diesel 2 Residuel Fuels 3 

Benzene 0.1–4.9% 0.003–0.1% 0.06–0.1% 

Ethylbenzene 0.1–3% 0.007–0.2%  

Toluene 1–25% 0.007–0.7% 0.1–0.2% 

Xylenes 1–15% 0.02–0.5% 0.2–0.3% 

Naphthalene <1% 0.01–0.8%  
1 Gasoline ranges after [1,13,14]; 2 Diesel #2 [1]; 3 Lubricating and motor oil [1]. 

This paper considers a series of key questions related to potential vapor intrusion concerns posed by 

TPH in contaminated soil and groundwater: (1) “How are the chemistry and toxicity of petroleum 

vapors characterized and evaluated?”; (2) “What is the composition of vapors emitted from fresh fuels 

and petroleum-contaminated soil and groundwater in terms of TPH and traditionally targeted, 
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individual compounds such as BTEXN?”; (3) “What is the chemical makeup of the TPH component of 

these vapors in terms of aliphatic and non-BTEXN aromatic carbon ranges?”; (4) “What is the toxicity 

of the TPH in terms of the weighted, carbon range composition?”; (5) At what critical ratio of TPH to 

an individual compound will the former begin to drive relative vapor intrusion risk over the latter,  

due to its overwhelming dominance of soil vapors?”; (6) “Under what site scenarios might vapor 

intrusion be driven by TPH rather than a individual compound such as benzene?” 

The methodology described in this paper consists of six components: (1) Categorization of 

petroleum fuels into broad types based on the number of carbon atoms in compounds that typify the 

fuels, (2) Characterization of the non-BTEXN, TPH component of the fuels in terms of aliphatic and 

aromatic “carbon ranges”, (3) Assignment of inhalation toxicity factors to volatile carbon ranges,  

(4) Calculation of risk-based, carbon range screening levels for indoor air and soil vapor,  

(5) Calculation of weighted screening levels for TPH based on the carbon range makeup of petroleum 

vapors, and (6) Calculation of the “critical ratio” of TPH in soil vapor to an individual chemical (e.g., 

benzene), at which point TPH will drive vapor intrusion risk over the individual compound even when 

a conservative, target risk is applied to the latter. These tools are then applied to two example sets of 

soil vapor data, the first associated with releases of gasolines and the second from sites associated with 

releases of middle distillates. The results are used to evaluate the relative role of TPH in vapor 

intrusion in comparison to traditionally targeted compounds such as benzene.  

2. Methods 

2.1. Categorization of Fuel Types 

Petroleum fuels can be broadly categorized as “gasolines”, “middle distillates” and “residual fuels”, 

following the methodology used by the American Petroleum Institute [15]. The chemistry of these 

fuels has been extensively studied [1,16]. These categories in part reflect the number of carbon atoms 

in individual compounds that characterize the fuels (Figure 1). Compounds with less than 

approximately sixteen carbon atoms are considered to be “volatile” to “semi-volatile,” with a 

propensity to partition into the vapor phase under ambient conditions. These compounds, which 

include a host of short-chain, aliphatic chemicals collectively measured as “TPH” as well as aromatic 

chemicals such as benzene, toluene, ethylbenzene, xylenes and naphthalene, are the primary target of 

vapor intrusion investigations. A summary of the BTEXN composition of petroleum fuels is provided 

in Table 1. Non-specific, TPH aliphatic and aromatic compounds comprise the remainder of the fuels. 

Gasolines, including automotive gasoline and older jet fuels such as AVGAS, are dominated by 

“lighter” compounds with six to twelve carbon atoms. This causes gasolines to be highly volatile in 

comparison to other types of fuels. The amount of benzene, toluene, ethylbenzene and xylenes in 

gasolines can vary dramatically, from just a few percent to greater than 20%, depending on the refiner, 

the desired performance of the fuel and the historical time period that the fuel was produced (see Table 1). 

The benzene content of automotive gasolines can in particular vary significantly, from less than 0.1% 

to greater than 5% [14]. Recent regulations in the United States limit the average amount of benzene in 

gasolines to less than one-percent after the year 2011 in order to reduce health effects from exposure to 
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vapors and exhaust [17,18]. Older formulations of jet fuels and aviation gasoline likewise contained a 

relatively minor amount of benzene [13]. 

Figure 1. Composition of typical petroleum fuels with respect to the number of carbon 

molecules in individual compounds. 

 

Middle distillate fuels (e.g., diesel, kerosene, JP-8 jet fuel, etc.) are dominated by hydrocarbon 

compounds with approximately nine to twenty-five carbon atoms and a relatively minor fraction of 

BTEX (see Table 1). Naphthalene, a suspected carcinogen, can comprise up to one-percent of these 

fuels. As a result, these fuels are less volatile than gasolines. Middle distillate fuels do, however, 

include a minor but important component of lighter and more volatile aliphatic compounds and, to a 

lesser extent, aromatic compounds. As discussed below, these aliphatic compounds not surprisingly 

dominate vapors emitted from these fuels under ambient conditions. Older jet fuels such as JP-4 are a 

mixture of gasoline and kerosene and again, while less volatile than gasolines, display a distinct vapor 

phase that is dominated by lighter-range aliphatic and aromatic compounds. 

Residual fuels (e.g., Fuel Oil Nos. 4, 5, and 6, lubricating oils, “waste oils”, asphalts, etc.) are 

characterized by complex, polar PAHs and other high molecular weight hydrocarbon compounds with 

carbon ranges that generally fall between C24 and C40. Residual fuels lack a significant amount of 

volatile compounds (e.g., see Table 1) and, aside from the potential generation of methane,  

are generally assumed to pose a minimal vapor intrusion risk. This subsequent focus of this paper will 

therefore be on vapors associated with gasolines and middle distillate fuels. 
  

Gasolines 

Middle Distillates 

Fuel Oils 

Volatile/Semi-Volatile 

69 °C 126 °C 216 °C 343 °C 402 °C 449 °C 

Methane 

C0 

PAHsBTEX

C2 C4 C6 C8 C10 C12 C16 C20 C24 C28 C32 C36
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2.2. Characterization Total Petroleum Hydrocarbons Using Carbon Ranges 

Understanding the chemical makeup of the TPH component of petroleum fuels and more 

importantly the vapors emitted from these fuels is important, first step to evaluate the role of these 

compounds in vapor intrusion. Petroleum is a complex mixture of hundreds of different compounds 

composed of hydrogen and carbon or “hydrocarbons”. These compounds can be collectively grouped  

into “aromatic” and “aliphatic” carbon ranges, based in part on the number of carbon atoms in  

each compound [1]. 

Compounds formed by single or multiple, six-carbon rings are referred to as “aromatic”. Aromatic 

compounds include the familiar chemicals benzene, toluene, ethylbenzene and xylenes (BTEX) as well 

as naphthalene and other “polyaromatic” hydrocarbons. A small percentage of additional, aromatic 

compounds are included in the TPH component of fuels. These include alkylated	 compounds	 such	 as	
trimethylbenzene, which although sometimes reported by laboratories as part of an environmental 

investigation are not traditionally evaluated in human health and ecological risk assessments as 

individual chemicals. 

Compounds formed by chains or non-aromatic rings of carbon and hydrogen are referred to as 

“aliphatic” and include such chemicals as pentane, hexane and octane. These compounds make up the 

bulk of petroleum fuels [1]. A host of additional terms are used to classify aliphatic compounds in 

more detail, depending for example on the presence or absence of ring structures, nature of carbon 

bonds, saturation with hydrogen and overall chemical structure (e.g., “alkanes”, “alkenes”, “olefins” 

and “cycloalkanes”, etc.).  

Evaluation of each individual, TPH-related aromatic and aliphatic compound as part of an 

environmental investigation is not feasible or practical due to the large number of compounds involved 

and the lack of physiochemical and toxicological information for these chemicals. The TPH 

component of petroleum is instead evaluated in terms of “carbon ranges” of aliphatic and aromatic 

compounds. Carbon ranges are defined by groups of aliphatic or aromatic compounds that exhibit 

similar physiochemical and, presumably, toxicological characteristics. Carbon range fractions 

designated by Massachusetts are the most commonly referenced in the United States (see Figure 1) [19]: 

 C5-C8 aliphatics; 

 C9-C12 aliphatics; 

 C13-C18 aliphatics; 

 C19-C36 aliphatics; 

 C9-C10 aromatics; 

 C11-C22 aromatics. 

These carbon range groups represent a consolidation and simplification of a larger number of ranges 

originally published by the TPH Criteria Working Group, an environmental consortium of regulators, 

consultants and oil company experts convened to develop a more comprehensive, risk-based approach 

for the evaluation of petroleum-contaminated soil and groundwater [20]. This was done in part on 

available toxicity factors for individual ranges. Compounds that fall within the C5-C8 aliphatic carbon 

range are the most volatile, although C9-C12 aliphatics and C9-C10 aromatics also fall in this 

category. Compounds that fall within the C13-C18 aliphatic and C11-C22 aromatic carbon ranges are 
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considered to be “semi-volatile.” Aliphatic compounds with greater than 18 carbon atoms and aromatic 

compounds with greater than ten carbon atoms are not considered to be volatile. Carbon ranges can also 

be defined in terms of “Equivalent Carbons,” based on the boiling point of individual compounds [5,20]. 

As discussed below, assignment of physiochemical and toxicological parameter values to individual 

carbon ranges allows for quantitative inclusion of TPH in environmental risk assessments in the same 

manner as individual compounds. This includes the development of risk-based screening levels for 

water, soil, soil vapor and indoor air. This approach was first developed by the Total Petroleum 

Hydrocarbon Criteria Working Group [20]. Guidance on the use of carbon-range approaches to 

quantitatively evaluate the non-BTEX, TPH component of petroleum-contaminated media was 

subsequently developed by a number of state agencies (e.g., [2–6,8,9]). 

The bulk chemistry of petroleum fuels in terms of TPH carbon ranges and commonly targeted, 

individual, aromatic compounds is summarized in Table 2 (after [2,21]). Aliphatic compounds 

dominate both the TPH and overall component of petroleum fuels. Gasolines are dominated by C5-C8 

aliphatics and C9-C12 aromatics, although the proportion of the latter can vary widely depending on 

the fuel blend. Residual fuels are dominated by longer-chain aliphatics and a lesser amount of 

polyaromatic hydrocarbons. 

Table 2. Example carbon range makeup of non-BTEXN, TPH component of petroleum 

fuels (exact carbon range makeup of individual fuels will vary). 

Carbon Range Gasolines 1 Diesel 1 Residual Fuels 2 

C5-C8 aliphatics 45% <1% <1% 

C9-C18 aliphatics 12% 35% <1% 

C19+ aliphatics <1% 43% 75% 

C9-C12+ aromatics 43% 22% 25% 
1 Indiana Department of Environmental Management [21]; 2 Massachusetts Department of Environmental 

Protection [2]. 

Physiochemical constant values published by Massachusetts [2], currently most in use in the US, 

are summarized in Table 3. Values for BTEX and naphthalene are included for comparison [22].  

The chemical makeup of vapors emitted from petroleum fuels is predictable based on the composition 

of the fuels and the theoretical partitioning of chemicals into sorbed, dissolved and vapor phases upon 

release to the environment [23]. Vapors emitted from fresh gasolines can be predicted to be dominated 

by C5-C8 aliphatics (and C2-C4 aliphatics, if present) based both on the abundance and relative 

volatility of these compounds, with a variable but lesser amount of BTEX and other aromatic 

compounds depending on the specific fuel blend (see also [24] and [25]). While less volatile than 

gasolines, diesel and other middle distillate fuels contain variable amounts of C5-C8 aliphatics and a 

relatively large component of C9-C18 aliphatics (see Table 2). These compounds should again 

dominate vapors emitted from the fuels. The relative proportion of C5-C8 to C9-C12 aliphatics in 

vapors will depend in part on the original composition of the fuel (see also [26]). The fraction of 

BTEX in the vapors should be significantly smaller than for gasolines, given their lower relative 

abundance. 
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This general makeup of petroleum vapors is indeed observed in the case studies presented later in 

this paper. As discussed in the case studies, soil vapor samples from some of the middle  

distillate-release sites contain a significant proportion of C5-C8 “gasoline-range” compounds. 

Requesting a lab to test a sample for “diesel-range” hydrocarbons as the sum of C9 and higher 

compounds is reasonable for soil, since this fraction dominates the liquid fuel and should similarly 

dominate the TPH present in the soil. Requesting that TPH be quantified in terms of traditional,  

diesel-range compounds for soil vapor could result in a significant underreporting of the total TPH 

present, however. Laboratories should instead be requested to report TPH in soil vapors simply as the 

sum of C5 to C12 hydrocarbons for both gasoline- and middle distillate-contaminated sites. Testing for 

additional, heavier vapor-phase compounds (e.g., C13+ aliphatics) may also be necessary. This is 

discussed further in the following section, as well as in the example case studies. 

Table 3. Default physiochemical constants for BTEXN and TPH carbon ranges. 

Chemical/Carbon 

Range 1 

Molecular 

Weight 

Vapor 

Pressure 

(atms) 

Solubility 

in Water 

(mg/L) 

Henry’s 

Constant 

(unitless) 

Partition Coeff, 

koc (cm3/g) 

Diffusion 

Coefficient (cm2/s)

air water 

Benzene 78 0.1 1,790 0.23 146 0.09 1 × 10−5 

Ethylbenzene 106 0.01 169 0.32 446 0.068 8.5 × 10−6

Toluene 92 0.04 526 0.27 234 0.078 9.2 × 10−6

Xylenes 106 0.01 161 0.29 375 0.068 8.4 × 10−6

Naphthalene 128 1.0 × 10−4 30 0.018 1,540 0.06 8.4 × 10−6

C5-C8 Aliphatics 93 0.1 11 54 2,265 0.08 1 × 10−5 

C9-C12 Aliphatics 149 8.7 × 10−4 0.07 65 150,000 0.07 1 × 10−5 

C13-C18 Aliphatics 170 1.4 × 10−4 3.5 × 10−4 69 680,000 0.07 5.0 × 10−6

C19-C36 Aliphatics 280 1.1 × 10−6 1.5 × 10−6 110 4.0 × 10−8   

C9-C10 Aromatics 120 2.9 × 10−3 51 0.33 1,778 0.07 1 × 10−5 

C11-C22 Aromatics 150 3.2 × 10−5 5.8 0.03 5,000 0.06 1 × 10−5 
1 Constants for BTEXN from USEPA RSL guidance [22]; vapor pressures from TOXNET [27]; Carbon 

range values from Massachusetts DEP [2] except C13-C18 Aliphatics (based on EC > 12–16) and C19-C36 

Aliphatics (based on EC > 16–35 aliphatics) [20]. 

2.3. Assignment of Inhalation Toxicity Factors to Carbon Ranges 

Key to the risk-based assessment of TPH in vapor intrusion investigations is the assignment of 

inhalation toxicity factors or “Reference Concentrations (RfC)” to individual, volatile carbon ranges.  

A summary of published inhalation toxicity factors for carbon ranges is presented in Table 4. Lower RfCs 

reflect progressively increasing toxicity (i.e., less of the chemical is required to result in a health effect). 

The TPH Criteria Working Group published an extensive overview of the carbon range chemistry 

of petroleum fuels in the late 1990s and assigned preliminary toxicity factors to each fraction [28].  

The US Department of Health and Human Services quickly published updated guidance in 1999 [29]. 

The Massachusetts Department of Environmental Protection published initial guidance during the 

same time period and last updated their factors for carbon range fractions in 2003 [19].  

The Washington Department of Ecology published toxicity factors for TPH carbon ranges in 2005 and 

2006 [5]. In 2009, the California EPA Department of Toxics Substances Control published guidance 
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and proposed toxicity factors similar to those proposed by MADEP [30]. The USEPA National Center 

for Environmental Assessment published a detailed review of TPH carbon range toxicity and 

recommended Provisional Peer-Reviewed Toxicity Values (PPRTVs) in 2009 [16]. 

Table 4. Published inhalation toxicity factors for petroleum aliphatic and aromatic carbon 

ranges (listed in order of publication). 

Reference RfC (mg/m3) RfC (µg/m3) 
TPH Criteria Working Group [28]   
(C5-C8) Aliphatics 18.4 18,400 
(C9-C18) Aliphatics 1.0 1,000 
(C9-C16) Aromatics 0.2 200 
USDHHS 1 [29]   
(C5-C8) Aliphatics 2.2 2,200 
(C9-C18) Aliphatics 0.3 300 
(C9-C16) Aromatics 0.01 10 
Massachusetts DEP [19]   
(C5-C8) Aliphatics 0.2 200 
(C9-C18) Aliphatics 0.2 200 
(C9-C18) Aromatics 0.05 50 
Washington DOE 2 [5]   
(C5-C8) Aliphatics 6.0 5,950 
(C9-C16) Aliphatics 0.3 298 
(C9-C10) Aromatics 0.399 399 
(C11-C12) Aromatics (naphthalene) 0.003 3.0 
(C13-C16) Aromatics 0.2 175 
CalEPA-DTSC 3 [30]   
(C5-C8) Aliphatics 0.7 700 
(C9-C18) Aliphatics 0.3 300 
(C9-16) Aromatics 0.05 50 
USEPA4 [16]    
(C5-C8) Aliphatics (noncancer) 0.6 600 
(C9-C18) Aliphatics 0.1 100 
(C9-C16) Aromatics 0.1 100 

1 ATSDR C5-C8 aliphatics RfC converted to 2.2 mg/m3 from 0.6 ppm based on hexane molecular weight of 86; 

C9-C16 aromatics RfC converted to 0.01 mg/m3 from 0.002 ppm based on naphthalene molecular weight of 128;  
2 Washington DOE Inhalation Reference Dose extrapolated to a Reference Concentration: using RfC (mg/m3) 

= RfD (mg/kg-day) × 70 kg × (1/20m3-day); 3 California EPA toxicity factors withdrawn in 2010 pending 

review of additional data; 4 USEPA toxicity factors selected for calculation of risk-based indoor air and soil 

vapor screening levels. 

The variability of published toxicity factors for individual carbon ranges is important, since this 

directly affects the estimated risk (or more appropriately noncancer hazard) posed by TPH in a vapor 

intrusion study. Of particular interest is the RfC assigned to C5-C8 aliphatics, since as discussed above 

and noted in case studies below, these compounds tend to dominate the TPH component of petroleum 

vapors. For example, the inhalation RfC published by USEPA (600 μg/m3) is less conservative (i.e., 

higher) than the correlative toxicity factor published by Massachusetts (200 μg/m3) but an order of 

magnitude or more lower than toxicity factors published by the State of Washington (equal to 5,950 μg/m3) 

and the earlier toxicity factor the TPH Criteria Working Group (18,400 μg/m3). 

Based on a review of published guidance, the State of Hawaii [8] opted to incorporate PPRTVs for 

volatile carbon ranges published by the USEPA [16]. Conclusions drawn from the case studies 
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presented would necessarily differ based on the toxicity factors selected for the carbon ranges.  

Full consensus is rarely if ever reached on toxicity values for specific chemicals, however, including 

toxicity factors posted to USEPA’s IRIS database—considered to be the most supportable and 

defensible database available. States as well as USEPA routinely draw on available information for 

assessment of the health risk posed by chemicals that are not currently listed in IRIS. Indeed, Regional 

Screening Levels published in USEPA’s guidance document are based in part or entirely on PPRTV 

toxicity factors for over one-hundred of the chemicals listed [22]. 

A summary of the PPRTV inhalation toxicity factors [16] for carbon ranges and inhalation toxicity 

factors for BTEXN is provided in Table 5. The toxicity factors address systemic, noncancer health 

hazards. Cancer risk is assumed to be driven by well-studied, individual compounds such as benzene, 

ethylbenzene and naphthalene [8,22]. 

Table 5. Inhalation toxicity factors for targeted VOCs and carbon range fractions. 

Chemical IUR 1 (µg/m3)−1 RfC 2 (µg/m3) 

Benzene 7.8E−06 30 

Ethylbenzene 2.5E−06 1,000 

Toluene  5,000 

Xylenes  100 

Naphthalene 3.4E−05 3.0 

C5-C8 aliphatics  600 

C9-C18 aliphatics  100 

C9+ aromatics  100 
1 Inhalation Unit Risk [22]; 2 Reference Concentration; BTEXN RfCs from USEPA [22]; Carbon Range RfCs 

from USEPA [16]. 

2.4. Calculation of Risk-Based Air and Soil Vapor TPH Screening Levels 

Calculation of risk-based screening levels for TPH in indoor air and soil vapor or direct inclusion in 

human-health risk assessments is relatively straight forward following assignment of inhalation 

toxicity factors to volatile carbon ranges. Accurate quantitative evaluation of vapor intrusion risks 

based on soil and groundwater data is much more difficult, as discussed earlier, due to the variability 

of biodegradation and attenuation processes on a site-by-site basis. This likewise impedes the 

development of meaningful TPH screening levels for other than subslab or very shallow soil vapors [8]. 

The collection of sub-slab soil vapor samples helps to minimize uncertainty regarding the fate and 

transport of petroleum vapors in the subsurface, since these vapors can be assumed to undergo 

minimal, additional attenuation prior to intruding into an overlying building. 

For the purposes of this paper, the PPRTV toxicity factors published by the USEPA in 2009 [16] 

were selected for calculation of example, indoor air and subslab soil vapor screening levels for 

individual carbon ranges (see Table 4). The development of indoor air and subslab, soil vapor 

screening levels for vapor intrusion can be condensed into three relatively simple steps: (1) Calculation 

of a target indoor-air goal based on the assigned toxicity factor and default exposure assumptions  

(e.g., exposure frequency and duration); (2) Assignment of an indoor air: subslab soil vapor attenuation 
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factor based on a comparison of vapor flow rates into a building and air flow rates through the building 

and (3) Calculation of a soil vapor screening level. A summary of these steps is provided below. 

Indoor air screening levels can be calculated using the ambient air equations presented in the 

USEPA Regional Screening Level guidance [22]: 

Carcinogens:	Cia ൌ
TR ൈ ATc ൈ 365 days/year

IUR ൈ EF ൈ ED
 (1)

 

Noncarcinogensሻ: Cia ൌ
TR ൈ ATnc ൈ 365 days/year

1
RfC ൈ EF ൈ ED

 
(2)

where: 

Cia = Indoor air concentration (µg/m3); 

TR = Cancer Target risk (10−6, unitless); 

THQ = Noncancer Target Hazard Quotient (1.0, unitless); 

ATc = Carcinogen Averaging Time (70 years); 

ATnc = Noncancer Averaging time (30 years); 

IUR = Cancer Inhalation Unit Risk (chemical-specific, (µg/m3)−1) 

RfC = Noncancer Reference Concentration (chemical-specific, µg/m3); 

EF = Exposure frequency (350 days/year); and 

ED = Exposure duration (30 years). 

Default exposure and target risk parameter values used for calculation of the indoor air screening 

levels are noted above and based on residential exposure assumptions used for development of the 

USEPA RSLs [22]. 

Example indoor-air screening levels for BTEX, naphthalene and carbon ranges based on the above 

equations and exposure assumptions and toxicity factors noted in Table 4 are presented in Table 6. 

Noncancer screening levels for benzene, ethylbenzene and naphthalene are not shown, since they 

would be higher than and over ridden by cancer-based screening levels. A target excess cancer risk 

was of 10−6 was used for carcinogenic VOCs. A target Hazard Quotient of 1.0 was used for  

noncancer-based screening levels. Note that these screening levels do not directly take into account 

cumulative risk posed by the potential presence of other chemicals with similar health effects. This is 

less of an issue for screening levels based on cancer risk, since they are set at the most conservative 

end of the target risk range of 10−4 to 10−6. Consideration of potential cumulative risk is especially 

important for screening levels based on noncancer concerns, however, since no safety margin is 

included (i.e., maximum target Hazard Index often set at 1.0) [22].  

Calculation of a subslab soil vapor-to-indoor air attenuation factor (AF) essentially reduces to: 

AFሺunitlessሻ ൌ
Vapor Flux Rate

Vapor Flux Rate  Indoor Air Exchange Rate
 

(3)

For the purposes of this paper, indoor air-soil vapor attenuation factors of 0.001 (residential 

scenario) and 0.0005 (commercial/industrial scenario) published by the state of Hawaii were referred 

to for calculation of soil vapor screening levels [8]. These attenuation factors are based on building 
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ventilation rates typical of tropical and Mediterranean climates and may not be appropriate for use in 

colder regions where buildings are heated for much of the year, but are adequate for demonstration 

purposes. The rapid breakdown of aliphatic compounds under aerobic conditions is anticipated to 

significantly lower the persistence of aliphatic compounds in indoor air in comparison to chlorinated 

solvents and play an important role in the reduction of long-term, vapor intrusion risk [31]. A detailed 

discussion of this issue is beyond the scope of this paper, however, and the noted attenuation factors 

are presented for use as examples only. 

Table 6. Example indoor air and subslab, soil vapor screening levels for petroleum-related chemicals. 

Chemical 
Indoor Air 1 Subslab Soil Vapor 2 

Residential 
(µg/m3) 

Commercial/Industrial 
(µg/m3) 

Residential 
(µg/m3) 

Commercial/Industrial 
(µg/m3) 

Benzene 0.31 1.6 310 3,200 
Ethylbenzene 0.97 4.9 970 9,800 
Toluene 5,200 22,000 5,200,000 44,000,000 
Xylenes 100 440 100,000 880,000 
Naphthalene 0.072 0.36 72 720 
C5-C8 aliphatics 630 880 630,000 1,760,000 
C9-C18 aliphatics 100 150 100,000 300,000 
C9-C16 aromatics 100 150 100,000 300,000 
1 Based on target cancer risk of 10−6 (benzene, ethylbenzene, naphthalene) or noncancer Hazard Quotient of 

1.0 (toluene, xylenes and carbon range compounds); 2 Based on indoor air-soil vapor (subslab) attenuation 

factors of 0.001 for residential structures and 0.0005 for commercial/industrial structures (after [8]; for 

example only). 

Soil-gas screening levels (Csg) are subsequently calculated as: 

Csg ൌ
Indoor Air Goal

AF
 (4)

Example subslab soil-gas screening levels for BTEXN and volatile aliphatic and aromatic carbon 

ranges, and TPH using the above approach are included in Table 6. 

Screening levels for C5-C8 aliphatics are the least stringent of the carbon range compounds  

(e.g., indoor air screening level 630 µg/m3), reflecting the higher inhalation Reference Concentration 

assigned to this fraction of 600 µg/m3. Screening levels for C9-C18 aliphatics and C9-C16 aromatics 

are most stringent, reflecting the lower Reference Concentration of 100 µg/m3 common to both 

fractions and generating an identical indoor air screening level of 100 µg/m3, after rounding.  

The screening levels are based on a target, noncancer hazard quotient of 1.0. 

The example soil-gas screening levels do not take into account an expected decrease in vapor 

concentrations over time due to biodegradation and source area depletion and can be overly 

conservative for sites with limited contamination. Mass-balance approaches can be used to estimate 

maximum, average vapor concentrations over the assumed exposure duration based on an estimate of 

the mass of the chemical present in the source area. 

As discussed later in this paper, a comparison of TPH carbon range screening levels to screening 

levels for individual compounds provides a useful tool to determine if the former might drive vapor 
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intrusion risk over the latter at a site. Calculation and use of a single, TPH screening level weighted 

with respect to the representative (or assumed), carbon range makeup of petroleum vapors at a site will 

significantly speed up this process, however, and avoid the need to collect expensive carbon range data 

for every sample. Variability in TPH composition within a site due to biodegradation and other factors 

that affect partitioning (e.g., soil moisture and organic carbon content) can complicate this assessment, 

however. In these cases use of the most conservative, weighted RfC calculated for the site may be 

warranted. 

2.5. Calculation of Weighted, TPH Screening Levels 

The use of TPH soil vapor data is generally preferable for initial screening of petroleum-

contaminated sites due to the added cost and the currently limited number of laboratories that can 

provide vapor-phase carbon range data. The following equation can be used to calculate weighted 

inhalation Reference Concentration (RfC) for TPH based on the site-specific carbon range makeup of 

TPH in soil vapor or indoor air [8,10]: 

Weighted	RfC	 ቀ
µg
mଷቁ

ൌ
1

൬
Fraction	C5 െ C8	Aliphatics
C5 െ C8	Aliphatics RfC ൰  ൬

Fraction	C9 െ C18	Aliphatics
C9 െ C18 Aliphatics RfC ൰  ቀFraction	C9 െ C16	Aromatics

C9 െ C16	Aromatics RfC ቁ൨
(5)

This approach can be used to calculate weighted TPH toxicity factors (RfCs) and associated indoor 

air and soil vapor screening levels based on either site-specific data or an assumed, carbon range 

makeup of TPH vapors for a specified fuel type. 

Very few studies have been published regarding the detailed, carbon range makeup of vapors from 

common petroleum fuels. Carbon range data presented in the USEPA Petroleum Vapor Intrusion (PVI) 

database were used to approximate the chemistry and ultimately the weighted toxicity of TPH vapors 

associated with gasolines (see paper Supplementary Material) [32]. The database is intentionally 

biased toward gasoline-contaminated sites, although as noted later in this paper significantly high 

TPH:Benzene ratios for some samples suggest that data from diesel-contaminated sites may also be 

included. 

For illustration purposes in this paper, the average carbon range makeup of the data presented in the 

USEPA database was used to approximate the carbon range makeup of gasoline vapors in general.  

The review was limited to samples from gasoline-only sites with paired TPH and benzene data and 

reported concentrations of TPH >1,000 µg/m3. The latter filter was included in order to limit potential 

biases due to laboratory detection limits or interference from background, petroleum vapors associated 

with unrelated, indoor or outdoor sources [2]. Apparent duplicate sample data for some sites was also 

ignored (i.e., identical concentrations of TPH and benzene). A total of 364 samples from 48 sites met 

these criteria (see paper supplement). Carbon range data were included for 35 samples from ten of the 

original 48 sites. The average carbon range composition of TPH in the samples is 77.3% C5-C8 

aliphatics, 15.4% C9-C12 aliphatics and 7.3% C9-C10 aromatics. The aliphatic and aromatic makeup 

of the samples spans a broad range, with the median composition more biased toward C5-C8 aliphatics 

than the mean composition. The proportion of C5-C8 aliphatics in the samples ranges from 12% to 100%, 
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with a median of 88%. The proportion of C9-C12 aliphatics ranges from 0% to 77%, with a median of 

10%. The proportion of C9-10 aromatics ranges from 0% to 55%, with a median of median 2%. 

For the purposes of this example, the average carbon range makeup of the samples in the USEPA 

PVI database report [32]was used to generate a weighted, TPH RfC for gasoline vapors of 279 µg/m3 

using Equation 5 above: 

Weighted RfC	 ൌ
1

ቂቀ0.773600 ቁ  ቀ0.154100 ቁ  ቀ0.073100 ቁቃ
ൌ 279 μg/m3 (6)

Risk-based screening levels and associated “critical ratios” for TPH vapors associated with gasoline 

(TPHg) based on this example RfC are used later in this paper to evaluate a soil vapor database for 

gasoline-contaminated sites published by the USEPA. 

Even less data are available for the carbon range makeup of vapors from diesel and other middle 

distillates. A limited, field study by the Hawaii Department of Health (HDOH) identified a highly 

variable composition of vapors for diesel fuels and jet fuels, with C5-C8 aliphatics dominating at some 

sites and C9-C12 aliphatics dominating at others [10]. Data from this study are discussed later in this 

paper. The study intentionally focused on diesel- and middle distillate-contaminated sites, as a 

compliment to the developing, USEPA database for gasoline-contaminated sites. Sorbent tube data 

suggested an insignificant amount of C13-C18 aliphatics and C11-C16 aromatics in the samples.  

For the purposes of this paper, the hypothetical TPH composition for diesel and other middle distillate 

vapors of 25% C5-C8 aliphatics, 75% C9-C12 aliphatics and 0% C9-C16 aromatics adopted by HDOH 

for use in their guidance was selected. This generates a carbon range-weighted, TPH RfC for middle 

distillate vapors (TPHd) of 130 µg/m3: 

Weighted	RfC	 ൌ
1

ቂቀ0.25600ቁ  ቀ0.75100ቁ  ቀ0.00100ቁቃ
ൌ 130 μg/m3	 (7)

Note that the HDOH study did not identify a significant proportion of aliphatic compounds greater 

than C12 and aromatic compounds greater than C10 at any of the sites investigated. Laboratory-based 

studies have suggested a dominance of heavier compounds in vapors from some middle distillate fuels, 

however [26]. This would not significantly alter the weighted RfC for middle distillate vapors, since 

the toxicity of these compounds is assumed to be identical to medium-weight aliphatics and aromatics 

(see Table 4). 

Table 7. Example, indoor air and soil vapor screening levels for TPH based on default, 

carbon range compositions for gasolines and middle distillates noted in text. 

Fuel Type 
Weighted 

RfC (µg/m3) 

Indoor Air 1 Subslab Soil Vapor 2 

Residential 

(µg/m3) 

Commercial/ 

Industrial 

(µg/m3) 

Residential 

(µg/m3) 

Commercial/ 

Industrial 

(µg/m3) 

Gasolines 279 290 410 290,000 810,000 

Middle Distillates 130 140 190 140,000 380,000 

1 Based on noncancer Hazard Quotient of 1.0; 2 Based on indoor air-soil vapor (subslab) attenuation factors 

of 0.001 for residential structures and 0.0005 for commercial/industrial structures (for example only) (after [8]). 
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The weighted, TPH toxicity factors for gasoline and diesel vapors can now be used to calculate 

TPHg and TPHd screening levels for indoor air and soil vapor in the same manner as done for 

individual compounds. Total Petroleum Hydrocarbon screening levels based on the equations and 

exposure assumptions discussed earlier are presented in Table 7. These screening levels can now be 

used to estimate “critical ratios” where the proportion of TPH in vapors in comparison to individual, 

targeted compounds such as benzene reaches a point that TPH will drive vapor intrusion risk. 

2.6. Calculation of TPH Critical Ratios 

The relative risk posed by two (or more) different chemicals under a given exposure pathway  

(e.g., vapor intrusion) is in part a function of toxicity and concentration. Aliphatic compounds that 

dominate TPH are, for example, significantly less toxic than benzene at equivalent exposure 

concentrations. This can be seen by a simple comparison of indoor air and soil vapor screening levels 

for carbon ranges and benzene in Tables 6 and 7. At some “critical ratio”, however, the overwhelming 

proportion of TPH in the vapors will override the risk posed by benzene and TPH will “drive” vapor 

intrusion risk. (Note that the term “risk” is used in a generic fashion to denote “noncancer hazard” 

and/or “excess cancer risk.”) 

This ratio represents the weighted, indoor air, TPH screening level calculated for the samples 

divided by the indoor air screening level for benzene. If the ratio of TPH to benzene in soil vapor 

measured in the field exceeds this value, then the concentration of TPH in indoor air (or soil vapor) 

would in theory still exceed its risk-based screening level even though the concentration of benzene 

was at or below its respective screening level. If the critical ratio is not exceeded, then the 

concentration of TPH in indoor air (or soil vapor) would be at or below its respective screening level 

when the screening level for benzene is met. In the first case, TPH can be said to “drive” vapor 

intrusion risk, since screening and/or remediation of a site to address TPH vapors would coincidentally 

address potential vapor intrusion risks posed by benzene. In the second case, benzene can be said to 

drive vapor intrusion risk (i.e., potential vapor intrusion risks posed by TPH would be adequately 

addressed at the point that the risk posed by benzene is addressed. This assumes, among other factors, 

that the average ratio of TPH to benzene calculated for the samples reflects the ratio in subslab soil 

vapor at the point that vapors intrude an overlying building. 

As noted in Table 6, screening levels for TPH in indoor air or soil vapor can be up to 2,032 times 

higher than screening levels for benzene (e.g., C5-C8 aliphatic indoor air screening level of 630 µg/m3 

divided by benzene indoor air screening level of 0.31 µg/m3 = 2,032). In this case, TPH will always 

drive vapor intrusion risk when the TPH:Benzene ratio exceeds 2,032:1, even if a conservative, target 

risk of 10−6 is applied to benzene. Similarly, screening levels for TPH can be almost 8,750 times 

higher than screening levels for naphthalene (i.e., maximum TPH indoor air screening level of  

630 µg/m3 divided by minimum naphthalene indoor air screening level of 0.072 µg/m3). This ratio will 

decrease as the proportion of longer-range aliphatics in petroleum vapors increases, along with the 

toxicity of the TPH vapors in general (i.e., less TPH required to drive vapor intrusion risk over 

individual compounds).  
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Table 8 presents a summary of critical ratios for TPH and individual compounds based on the 

example, indoor air and soil vapor screening levels presented in Tables 6 and 7 and the assumed, 

carbon range makeup of TPH vapors for gasoline and middle distillate fuels presented in Table 2.  

Table 8. Example critical ratios over which TPH in soil vapor will drive vapor intrusion 

risk over individual compound. 

Chemical 
Critical Ratio 1,2 

TPH Gasoline Vapors TPH Middle Distillate Vapors 

Benzene 935 452 

Ethylbenzene 299 144 

Toluene 0.06 0.03 

Xylenes 2.9 1.4 

Naphthalene 4,028 1,944 
1 TPH vapor intrusion screening level (Table 7) divided by individual compound screening level (Table 6);  
2 Ratio at which TPH will exceed vapor intrusion screening level when individual compound is at or below 

its respective screening level (based on a target cancer risk of 10−6 or a noncancer Hazard Quotient of 1.0). 

A critical ratio of 935:1 (290 µg/m3/0.31 µg/m3) is generated for TPH:Benzene, based on an 

assumed TPH vapor composition of 75% C5-C8 aliphatic compounds and 25% C9-C12 aliphatic plus 

aromatic compounds. The TPH critical ratios are reduced by a factor of two for vapors associated with 

diesel and other middle distillate fuels (i.e., less TPH required to drive risk over individual 

compounds), based on an assumed TPH vapor composition of 25% C5-C8 aliphatic compounds and 

75% C9-C12 aliphatic and C9-C10 aromatic compounds. 

Default or site-specific critical ratios provide a very simple and quick tool to determine the potential 

significance of TPH as a vapor intrusion risk driver at a site where both TPH and benzene soil vapor 

data are available. For example, if the TPH:Benzene ratio exceeds 2,032:1 at a site then TPH will 

always drive vapor intrusion risk over benzene, regardless of the carbon range makeup of the TPH 

(i.e., even if TPH is composed of 100% C5-C8 aliphatics) and even if a conservative, excess cancer 

risk of 10−6 is applied to benzene. The same is true when the TPH:Naphthalene ratio exceeds 8,750:1.  

In such cases, TPH vapors could still pose a vapor intrusion risk even though screening levels for 

individually targeted compounds are met. The lowest possible TPH:Benzene critical ratio using a 

benzene target risk of 10−6 is 323:1, based on a TPH vapor composition of 100% C9-C12+ aliphatics 

and/or C9-C10 aromatics (i.e., 100 µg/m3 divided by benzene indoor air screening level of 0.31 µg/m3; 

see Table 6). In this example, TPH could drive vapor intrusion risk over benzene at a TPH:Benzene 

ratio as low as 323:1, depending on the actual carbon range makeup and weighted toxicity of the TPH.  

Similar, example critical ratios were calculated for other targeted compounds (i.e., TEXN).  

The ratio increases for compounds that are more toxic than benzene (e.g., naphthalene critical ratio 

8,750:1) and decreases for compounds that are less toxic (e.g., toluene critical ratio 0.06:1). In other 

words, a higher proportion of TPH in soil vapor (or indoor air) is required to overwhelm the vapor 

intrusion risk posed by an individual compound as the toxicity of the targeted compound increases. 

The relative role of TPH in vapor intrusion risk will ultimately depend on the actual carbon range 

chemistry of the TPH and the associated toxicity and the target risk used to screen for individual 

compounds. Less TPH is required to overwhelm the risk posed by an individual chemical as the 
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proportion of more toxic, C9-C18 aliphatics (or C9-C16 aromatics) increases. Critical ratios are also 

necessarily dependent on the toxicity factors applied to individual, TPH carbon ranges. Toxicity 

factors published by the State of Massachusetts [19], for example, are more conservative than USEPA 

toxicity factors by a factor of two to three [16]. Critical ratios based on Massachusetts toxicity factors 

would be lower (i.e., more conservative) by a similar amount. 

In the next section of this paper, these screening tools are applied to the soil vapor database 

compiled by the USEPA and to a separate petroleum vapor study carried out by the State of Hawaii in 

order to evaluate the relative role of TPH in vapor intrusion at petroleum-contaminated sites. The first 

database focuses on soil vapor sample data from purported gasoline releases. The Hawaii study focuses 

primarily on soil vapor data from middle distillate releases, and serves as a supplement to the  

USEPA database. 

3. Application of Method to Case Studies 

3.1. Selection of Representative Case Studies 

In the previous sections we reviewed the basic chemistry and toxicity of petroleum vapors in terms 

of TPH carbon ranges and targeted, individual compounds such as benzene. We presented published 

toxicity factors for carbon ranges and summarized the approach for calculation of risk-based, indoor 

air and soil vapor screening levels, including screening levels for TPH in general. We then presented 

the concept of “critical ratios” of TPH to individual, targeted compounds that can be used to quickly 

assess the relative role of TPH in potential vapor intrusion threats on a site-by-site basis.  

In the following discussions, we apply these tools to two sets of case studies for  

petroleum-contaminated sites in order to answer the ultimate question posed at the beginning of this 

paper: “Do field data support conditions where vapor intrusion concerns posed by petroleum could be 

driven by the TPH rather by individual compounds such as benzene?” Data are first screened in terms 

of TPH:Benzene ratios and the potential for TPH to play a significant role in vapor intrusion risk 

reviewed. The carbon range makeup of the TPH is then evaluated in more detail. Weighted, TPH 

reference doses are then used to calculate more site specific (or database-specific), TPH screening 

levels for indoor air and soil vapor and the data re-evaluated.  

The first set of case studies reflect a soil vapor sample data set being compiled by the USEPA for 

primarily gasoline-contaminated sites. The second set of case studies and data are based on a study 

carried out by the State of Hawaii under a grant from the USEPA for sites contaminated with diesel 

and other middle distillate fuels. The sites included in the Hawaii study were targeted to fill in gaps in 

the USEPA database and more closely evaluate the potential for non gasoline-contaminated sites to 

pose potential vapor intrusion threats. 

Both data sets focus primarily on the nature of petroleum vapors within the immediate vicinity of 

the source area (i.e., within fifteen feet of contaminated soil or groundwater). The fate and transport of 

vapors at increasing distances from the source areas is not directly reviewed, although characteristics 

such as the ratio of TPH to key, indicator compounds such as benzene can shed light on this subject. 

The reviews presented below are intended for illustration purposes only and are not intended to be a 

comprehensive evaluation of the sites involved. The USEPA data are, for example, summarized in 
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terms of individual sample points rather than the range and average for sites. This introduces a 

potential bias toward sites with a higher number of sample points in comparison to those with only a 

few sample points. For the purposes of this paper it is assumed that this bias is small and that the data 

in general are adequately representative. 

3.2. Vapors Associated with Gasolines 

As introduced earlier, the USEPA Office of Underground Storage Tanks (UST) has compiled a 

“Petroleum Vapor Intrusion” database of soil vapor data for seventy sites in the US, Canada and 

Australia [32]. The database focuses on known or presumed, gasoline-contaminated sites associated 

with releases from USTs. Although limited in terms of the total number of petroleum release sites in 

these countries, in the hundreds of thousands in the US alone, the database provides a useful snapshot 

of the chemistry of vapors associated with gasoline-contaminated sites. A summary of data used in the 

following evaluation of the database is provided in the supplement to this paper.  

Figure 2 presents a summary of TPH-to-Benzene ratios for soil vapor samples included in the 

USEPA PVI database. As discussed earlier, only samples with reported concentrations of TPH greater 

than 1,000 µgm3 were considered in order to limit potential biases due to laboratory detection limits or 

interference from outdoor air [2]. A total of 364 samples met these criteria and included data for both 

TPH and benzene (see paper supplement). The inclusion of benzene in reported TPH concentrations is 

not known. The consistently high ratio of TPH to benzene in the samples negates a significant bias 

with respect to double counting of benzene in the TPH data. Non-specific, TPH hydrocarbon 

compounds clearly dominate petroleum vapors in the samples included in the USEPA database.  

The ratio of TPH to benzene ratio is consistently greater than 4:1, however, with a median ratio of 

301:1, an average of 5,566:1 and a high of 4,000,000:1. The TPH:Benzene ratio varies by an order of 

magnitude or more at most sites where multiple samples were collected and up to three orders of 

magnitude at some sites (see supplement). The potential causes of this variability are discussed below. 

As depicted in Figure 2, the ratio of TPH to benzene exceeds the default, critical ratio of 900:1 

(rounded from 935:1, see Table 8) developed earlier for gasoline vapors in 33% of the samples 

included the database. This implies that the overwhelming proportion of aliphatic compounds in these 

samples would cause TPH, and not benzene, to drive potential vapor intrusion risks. In other words,  

if vapor intrusion were indeed a concern at these sites (e.g., subslab soil vapor screening levels 

exceeded and intrusion pathways present), then remediation of the site to reduce benzene in soil vapor 

down to target screening levels may not adequately address the noncancer risk posed by the TPH 

component of the vapors. Screening and/or remediation of the site to address TPH concerns would, 

however, concurrently address vapor intrusion concerns associated with benzene (i.e., benzene would 

be below respective screening level at the point that TPH screening level was met). 

Recall that this ratio assumes a target risk for benzene of 10−6 and a correlatively conservative 

indoor air and subsequent soil vapor screening level (e.g., target indoor air goal of 0.31 µg/m3 for 

residential scenarios; see Table 6). If a less conservative, target risk were used to calculate screening 

levels then the risk of missing potential vapor intrusion problems posed by TPH would be much 

higher. For example, the critical TPH:Benzene ratio associated with a target risk of 10−5 for the latter 

would be 90:1, adjusting the previous example downward by a factor of ten (i.e., 290 µg/m3 divided by 



Int. J. Environ. Res. Public Health 2013, 10                 

 

 

2458

3.1 µg/m3). In the case of the samples referenced from the USEPA database, the TPH:Benzene ratio 

exceeds this critical ratio 78% of the time (see Figure 2). This highlights the importance of 

quantitatively including TPH in vapor intrusion studies when a less conservative, target risk and 

associated screening levels are applied for individual compounds such as benzene. Note that this is not 

affected by attenuation factors assumed in the screening levels, since they are presumably identical for 

both benzene and TPH. 

Figure 2. Summary of TPH to benzene ratios for soil vapor samples included in the 

USEPA PVI database (n = 364). Reflects gasoline-only sites with >1,000 µg/m3 TPH. 

 

The relatively high proportion of TPH to benzene for a significant number of vapor samples from 

gasoline-only sites included in the USEPA database was initially surprising, given the traditional focus 

on only the BTEX fraction of these fuels [33]. As discussed earlier, seemingly low levels of benzene in 

the samples could be due to a number of factors, including: (1) Inadvertent inclusion of vapor data 

associated with middle distillate fuels in the database, (2) An original, minimal concentration of 

benzene in the gasoline released, (3) Preferential removal of benzene from soil vapors due to 

partitioning into soil moisture, and/or preferential biodegradation. Given the relatively high 

concentration of TPH reported in the samples (up to 31,000,000 µg/m3), the dominance of C5-C8 

aliphatics over C9-C12 aliphatics in seven of nine samples with carbon range data and a TPH:Benzene 

ratio >900:1 (see supplement), and laboratory studies that suggest a much lower biodegradation rate 

for aromatics than aliphatics [34], the most likely cause for at least some of the samples appears to be 

an initially low concentrations of benzene in the gasoline released at the site. Likely variation in the 

degradation and removal of aliphatic and aromatic compounds between and even within sites 

complicates interpretation of the data. A more detailed study of this issue is beyond the scope of this paper. 

As discussed earlier, several oil companies have moved toward low-benzene gasolines in recent 

years in order to lower the toxicity of auto exhaust as well as soil and groundwater contaminated by 

inadvertent releases of the fuels. Releases associated with some of these fuels appear to have been 
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captured in the USEPA database. This is an important observation, given a common assumption that 

benzene can be used as a stand-alone tool to evaluate the risk posed by releases of gasoline to the 

environment, including vapor intrusion (e.g., see [32]). This evaluation appears to have focused on 

traditionally targeted, individual compounds and did not specifically consider the relative role of TPH 

in vapor intrusion. Indeed, the TPH:Benzene ratio exceeds the maximum critical ratio of 2,032:1 in 

24% of the soil vapor samples from supposed gasoline-only sites (see supplement). This implies that 

TPH would drive vapor intrusion risk over benzene regardless of both the target risk applied to 

benzene (e.g., 10−6 excess cancer risk) and the carbon range composition of the TPH vapors (e.g., best 

case 100% C5-C8 aliphatics). 

3.3. Vapors Associated with Diesel and Other Middle Distillate Fuels 

The PVI database being compiled by the USEPA focuses on vapors associated with  

gasoline-contaminated soil and groundwater. As presented earlier, the Hawaii Department of Health 

(HDOH), through a grant from the USEPA, carried out a field study of the chemistry and toxicity of 

vapors associated soil and groundwater contaminated with diesel and other middle distillate fuels in an 

effort to supplement the USEPA database [10]. Particular emphasis was placed on the aliphatic and 

aromatic makeup of the TPH component of petroleum vapors and the potential for TPH to drive 

potential vapor intrusion risk over individual compounds such as benzene, toluene, ethylbenzene, 

xylenes and naphthalene. 

Soil vapor data for petroleum-contaminated sites across Hawaii were reviewed as part of the study. 

Five sites with known, heavy contamination were targeted for detailed sampling. A limited number of 

samples were also collected over fresh fuels, although these data are not reviewed as part of this paper. 

Fuels released at sites included gasolines, including AVGAS and JP-4, JP-8 and diesel. Pipeline 

releases with widespread contamination and existing soil vapor monitoring points were targeted in 

order to ensure that vapors would be encountered and to minimize field sample collection costs. Sites 

A, B, C and E are believed to reflect a progressive domination by diesel and/or other middle distillate 

fuels such as JP-8 (similar to diesel). Site D is associated with a forty year-old release of JP-4 (mix of 

gasoline and kerosene) from a large fuel pipeline. 

TPH compounds dominated petroleum vapors at each of the five, primary sites investigated during 

the study as well as other sites reviewed during the study, with less than 1% of the total vapors 

generally attributable to BTEXN (Table 9). The average ratio of TPH to benzene in soil vapors ranged 

from 1,500:1 at a site contaminated with JP-4 and AVGAS to over 18,000:1 at a site contaminated 

primarily by diesel fuel. The average TPH:Benzene ratio exceeded 2,000:1 at the three sites where 

diesel and other middle distillate fuels were known to be present. As noted in Table 9, the maximum 

concentration of TPH in soil vapor samples collected at the sites were well above screening levels 

ultimately generated for potential vapor intrusion concerns. 

The overwhelming proportion of TPH in the soil vapors at these sites ensure that TPH will dominate 

vapor intrusion risks over benzene and other individual VOCs regardless of the actual carbon range 

makeup and weighted toxicity of the TPH, even if a conservative, target risk were used for carcinogens. 

The average TPH:Benzene ratio at an aged, JP-4/AVGAS release site included in the study ( >9,000:1; 

Site A) exceeded the default, critical ratio for gasoline vapors of 900:1 noted earlier. The TPH:Benzene 
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ratio for soil vapor samples collected at middle distillate sites was even higher. The near absence of 

benzene in soil vapors at the JP-4/AVGAS site could be associated with a preferential removal of 

vapor-phase, aromatic compounds over aliphatic compounds over time due, for example, to 

preferential diffusion into soil moisture. This could also be simply due to an absence of significant 

benzene in the original fuels released. Similar observations have been made at other gasoline-contaminated 

sites in Hawaii [10]. 

Table 9. Example TPH concentration in soil vapor, average TPH:Benzene ratio and TPH 

carbon range makeup of soil vapor samples collected in the Hawaii DOH petroleum vapor 

study (based on summa canister, TO-15 data). 

Aliphatic compounds dominate TPH vapors at all of the sites, although the relative proportion of 

C5-C8 versus C9-C12 compounds varied considerably (see Table 9). A comparison of co-located and 

concurrent Summa canister data to sorbent tube data identified only a minor contribution of C13+ 

aliphatic compounds for TPH vapors at the sites (<10%). The contribution of C9 and higher, aromatic 

TPH compounds in the samples was likewise negligible. 

Weighted TPH Reference Concentrations and associated indoor air and soil as screening levels 

based on the carbon range makeup of the TPH follow a similar trend (Table 10). The weighted TPH 

RfC and associated action levels calculated for vapors associated with a relatively recent, gasoline-

contaminated site (e.g., Site A and Site B) approach those for C5-C8 aliphatics (e.g., TPH RfC 400 to 

600 µg/m3). The weighted TPH RfC and associated action levels calculated for vapors collected from 

sites progressively dominated by diesel or other middle distillate fuels (Sites B, C and E) or associated 

with aged, JP-4 (Site D) approach those for the more toxic, C9-C12 aliphatic compounds (e.g., TPH 

RfC 100 to 200 µg/m3) and are reflective of the higher proportion of these compounds in the vapors. 

The lowest (i.e., most “toxic”), weighted Reference Concentration calculated was calculated for 

samples collected from an aged, diesel-contaminated site where TPH vapors were composed of an 

average 75% C9-12 aliphatics (Site E in Table 10). Free product on groundwater at the site was 

relatively shallow (<10 ft). Concentrations of TPH in soil vapor were perhaps an order of magnitude 

lower than would be anticipated at a site contaminated to a similar amount of gasoline. Even so, TPH 

in some samples exceeded 100,000,000 μg/m3, and were well above screening levels for potential 

vapor intrusion concerns. 
  

Site/Fuel Type 
Example 

TPH 
(μg/m3) 

Average 
TPH:Benzene 

Ratio 

Average Carbon Range Composition

Aliphatics Aromatics

C5-8 C9-10 C9-12 

Site A (JP-4/AVGAS) 300,000,000 μg/m3 1,513:1 96% 0.2% 3.3% 

Site B (mixed fuels) 220,000,000 μg/m3 4,174:1 93% 0.3% 6.8% 

Site C (JP-8 +/− JP-4) 86,000,000 μg/m3 18,710:1 72% 0.6% 27% 

Site D (JP-4/AVGAS) 2,600,000 μg/m3 9,135:1 63% 4.1% 33% 

Site E (diesel) 13,000,000 μg/m3 54,236:1 25% 0.9% 74% 
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Table 10. Weighted TPH Reference Concentration and example TPH subslab soil vapor 

screening levels for soil vapor samples collected in the Hawaii DOH petroleum vapor study. 

1 Based on average carbon range composition (see Table 9); 2 Residential exposure scenario; see equation and 

assumptions in text; 3 Assuming an indoor air:subslab soil vapor attenuation factor of 0.001; 4 TPH indoor air 

screening level divided by benzene screening level (based on target cancer risk of 10−6); Above this ratio, 

TPH in soil vapor could still pose a vapor intrusion risk even if benzene is at or below target screening levels. 
5 Based on comparison to average TPH: Benzene ratio for samples noted in previous table. 

The TPH:Benzene critical ratio for each set of study site samples is noted in Table 10.  

A comparison of these ratios to the measured, TPH:Benzene ratio for samples collected at each site 

provides insight on the relative role of TPH in overall vapor intrusion risk. As indicated in Table 10, 

benzene drives potential vapor intrusion risk over TPH for soil vapor samples collected at Site A, a  

JP-4/AVGAS release (i.e., measured TPH:Benzene ratio in soil vapor below critical ratio). Dividing 

the measured TPH:Benzene ratio by the risk-based, critical ratio for the same samples represents the 

theoretical, noncancer Hazard Quotient for TPH with respect to vapor intrusion at the point that the 

concentration of benzene in soil vapor equals the target, benzene screening level. In the case of Site A, 

a Hazard Quotient of 0.9 is calculated, suggesting that TPH will not pose a significant vapor intrusion 

risk if a target, 10−6 risk is met for benzene. Note that use of a target risk of 10−5 to screen for benzene 

would be associated with a theoretical, noncancer Hazard Quotient of approximately nine for TPH. 

This highlights the need to use a conservative, target cancer risk for benzene at sites with the 

measured, TPH:Benzene ratio of more than approximately 100:1, as a rough guide. 

It is interesting to note that screening and/or remediation of Site A with respect to TPH only and 

without consideration of benzene would at worst leave benzene in soil vapors only marginally above 

the target, 10−6 risk goal. Reducing TPH in soil vapor to 530,000 µg/m3 would in theory result in a 

concentration of benzene in soil vapor of approximately 350 µg/m3, only marginally above the 

screening level of 310 µg/m3 and equating to a cancer risk of only 1.1 × 10−6. Ignoring benzene and 

focusing only on TPH would be unlikely to leave potentially significant, vapor intrusion risks posed by 

the former unaddressed. 

A comparison of the TPH to benzene field ratio to the calculated, risk-based, critical ratio at the 

remaining four sites included in the Hawaii study clearly identifies TPH as the vapor intrusion risk 

driver. For samples collected from Site B, the measured TPH:Benzene ratio exceeds the risk-based, 

critical ratio for the same sample set by a factor of almost three (see Tables 9 and 10). In theory, this 

suggests that the noncancer, Hazard Quotient posed by TPH in soil vapor for vapor intrusion would 

Site/Fuel Type 

Weighted 

RfC 1 

(μg/m3) 

Indoor Air 

Screening 

Level 2 

(μg/m3) 

Subslab Soil 

VaporScreening 

Level 3 

(µg/m3) 

TPH:Benzene 

Critical Ratio 4

TPH:Benzene 

Measured 

Ratio 

Vapor 

Intrusion 

Risk Driver 5

Site A 510 530 530,000 1,710:1 1,513:1 Benzene 

Site B 443 460 460,000 1,484:1 4,174:1 TPH 

Site C 251 260 260,000 839:1 18,710:1 TPH 

Site D 211 220 220,000 710:1 9,135:1 TPH 

Site E 127 130 130,000 410 54,236:1 TPH 
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still approach three at the point that the concentration of benzene was reduced to a target, 10−6 risk 

(i.e., TPH in soil vapor would equal approximately 1,300,000 µg/m3 at the point that benzene equals  

310 µg/m3). The TPH:Benzene critical ratio is exceeded by an even larger degree for samples collected 

at the remaining three sites (i.e., twenty-two, thirteen and one-hundred thirty two for Sites C, D and E, 

respectively). This suggests that TPH could still pose a significant vapor intrusion hazard at the sites 

well beyond the point that a target risk of 10−6 for benzene was met. This is not surprising, given the 

relatively minor contribution of benzene to overall petroleum vapors at the sites. It is also worthwhile 

to note that naphthalene and methylnaphthalenes played a limited role in potential vapor intrusion risk 

at the middle distillate sites reviewed in the study, in spite of the assumed higher concentration of these 

chemicals in the original fuel released. The lack of significant naphthalenes in soil vapor samples is 

most likely due to the propensity of these chemicals to sorb to soil particles rather than partition into 

the vapor phase. 

The Hawaii study highlights the potential for significant, vapor intrusion concerns posed by 

subsurface releases of middle distillate fuels, including diesel, as well as low-benzene gasolines. 

Reported concentrations of TPH in shallow soil vapor samples collected within or near source areas 

were well above risk-based screening levels for vapor intrusion concerns. The study also highlights the 

need to quantitatively consider TPH in vapor intrusion risk assessments at these sites when the ratio of 

TPH to benzene in soil vapor exceeds a value of approximately 450:1 if a target risk of 10−6 is applied 

to benzene or a value of approximately 45:1 if a target risk of 10−5 is applied (e.g., TPH indoor air 

screening level of 140 µg/m3 divided by benzene screening level of 0.31 µg/m3 or 3.1 µg/m3; see 

Tables 6 and 7). 

4. Summary and Conclusions 

Vapors emitted from petroleum fuels are dominated by aliphatic and to a lesser degree aromatic 

compounds collectively measured as Total Petroleum Hydrocarbons or “TPH”. Published 

physiochemical constants and toxicity factors for volatile, TPH aliphatic and aromatic carbon ranges 

allows for quantitative, risk-based evaluation of TPH in vapor intrusion investigations in the same 

manner as carried out for traditionally targeted chemicals such as benzene, toluene, ethylbenzene, 

xylenes and naphthalene. Generic and/or site-specific TPH screening levels can be generated based on 

the assumed or known aliphatic and aromatic makeup of the petroleum vapors. 

The relative role of TPH in vapor intrusion in comparison to individually targeted compounds such 

as benzene can be quickly determined by comparison of the ratio of TPH to the compound measured in 

the field to the ratio of risk-based screening levels for these chemicals. If, for example, the ratio of 

TPH to benzene in soil vapor measured in the field exceeds this “critical ratio” based on a comparison 

of screening levels then the concentration of TPH in indoor air (or soil vapor) would still exceed its 

risk-based screening level even though the concentration of benzene was at or below its respective 

screening level. If the critical ratio is not exceeded, then the concentration of TPH in indoor air (or soil 

vapor) would be at or below its respective screening level when the screening level for benzene is met. 

In the first case, reliance on benzene data alone to assess potential vapor intrusion risks would be 

inappropriate. In the latter case, a focus on benzene for final decision making purposes should ensure 

that potential vapor intrusion risks posed by TPH will also be addressed.  
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Critical ratios are necessarily dependent on the toxicity factors applied to individual, TPH carbon 

ranges. Based on TPH toxicity factors published by the USEPA [16] and a 10−6 excess cancer risk for 

benzene, a TPH:Benzene critical ratio of approximately 900:1 serves as a conservative tool for initial 

screening of gasoline-contaminated sites (i.e., TPH could drive vapor intrusion risk when the 

concentration of TPH is more than 900 times that of benzene). This ratio is not exceeded for the 

majority (67%) of samples from gasoline-contaminated sites included a soil vapor database compiled 

by the USEPA [32]. This suggests that consideration of benzene in the absence of TPH data will be 

adequate to screen most gasoline-contaminated sites for potential vapor intrusion concerns if a 

conservative target cancer risk is applied to benzene.  

Benzene clearly drives vapor intrusion risk for only 22% of the samples in the USEPA database, 

however, if a less conservative target risk of 10−5 is applied (i.e., order-of-magnitude higher 

concentration of benzene considered acceptable). Furthermore, the measured ratio of TPH to benzene 

exceeded the screening value of 900:1 for 33% of the samples in the database, implying that TPH 

could drive vapor intrusion risk over benzene with respect to these samples depending on the target 

risk applied to the latter and the actual carbon range makeup of TPH. At least some of these sites 

appear to be associated with releases of gasoline that was originally low in benzene. In addition, the 

TPH:Benzene ratio exceeds a hypothetical, toxicity-based, maximum critical ratio of 2,032:1 in 24% 

of the soil vapor samples in the USEPA database. This implies that TPH would drive vapor intrusion 

risk over benzene regardless of both the target risk applied to benzene and the carbon range 

composition of the TPH vapors.  

Initial screening of gasoline-contaminated sites with respect to relative proportions of TPH and 

benzene present in soil vapors therefore appears to be prudent. Note that this may appear to conflict 

with the statement in the USEPA PVI database report that “available data indicate benzene is the risk 

driver for the (gasoline-release) sites evaluated” [32]. This conclusion however, was based on a 

comparison of the relative vapor intrusion risk posed by benzene to other, traditionally targeted, 

individual compounds such as toluene, ethylbenzene, xylenes and naphthalene. A detailed evaluation 

of the TPH component of the PVI database had not been carried out at the time that the USEPA report 

was published. This paper expands the database evaluation to include this comparison. 

Vapors associated with subsurface releases of diesel and other middle distillate fuels can exhibit a 

higher proportion of more toxic, C9-C12 and higher aliphatic compounds, although the magnitude of 

vapors released from contaminated soil and groundwater will be lower than for an equivalent amount 

of gasoline. In this case a lesser amount of TPH in soil vapor (or indoor air) is required before the TPH 

fraction of the vapors begins to drive vapor intrusion risk over benzene or other individual compounds. 

Based on a limited study carried out by the State of Hawaii, a critical TPH to benzene ratio of 

approximately 450:1 served as a useful tool for initial screening of vapor data at sites contaminated 

with diesel or other middle distillate fuels. The measured ratio of TPH to benzene at all of the middle 

distillate sites reviewed in the Hawaii study reviewed in this paper exceeded this ratio by a wide 

margin, suggesting that TPH will play a dominant role in vapor intrusion at sites contaminated by these 

types of fuels. Significant levels of both C5-C8 aliphatics and C9-C12 aliphatics at the sites 

investigated highlight the need to report TPH as the sum of C5-C12 compounds for soil vapor samples 

collected at middle distillate-release sites, even though this is traditionally referred to as “gasoline 

range” hydrocarbons by commercial laboratories. 
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Carbon range data for TPH in soil vapor can be used to develop site-specific vapor intrusion 

screening levels for TPH or for direct calculation of potential vapor intrusion risk. A review of case 

studies highlights the importance of including a review of TPH in vapor intrusion investigations.  

This can be done at an initial screening level by simple comparison of the measured ratio of TPH to 

benzene and other targeted compounds to the ratio of generic or site-specific, risk-based screening 

levels for these compounds. The gradual reduction of benzene in gasolines over time and high 

concentrations of aliphatic compounds in vapors associated with diesel releases highlights the need to 

consider TPH in vapor intrusion studies. 

Identification of TPH or individual compounds in soil vapor above target screening levels and/or 

critical ratios does not necessarily imply that a vapor intrusion problem indeed exists. It is worthwhile 

to note that odor thresholds for petroleum fuels are within an order of magnitude of the risk-based 

screening levels for TPH presented in this paper. Given the hundreds of thousands of petroleum 

releases identified in the US over the past twenty years, the fact that few instances of petroleum-related 

vapor intrusion have been reported suggests in itself that significant risks are most likely limited to the 

presence of heavy contamination in soil or groundwater within close proximity to a building floor.  

As discussed in numerous studies, this suggests that significant attenuation forces beyond those 

typically assumed for chlorinated solvents are in play both beneath and most likely within the subject 

buildings. Natural biodegradation of vapor-phase, petroleum compounds in contaminated soil and 

groundwater will significantly reduce the long-term vapor-intrusion risk of subsurface contamination 

in comparison to soil contaminated with an equal amount of chlorinated solvents. Regional climate, 

geology and associated building ventilation designs strongly influence local indoor air: subslab 

attenuation factors. The relative persistence of petroleum compounds in indoor air with respect to 

vapor flux rates should also be considered. 
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