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Abstract
Although population differences in gene expression have been established, the impact on
differential gene expression studies in large populations is not well understood. We describe the
effect of self-reported race on a gene expression study of lung function in asthma. We generated
gene expression profiles for 254 young adults (205 non-Hispanic whites and 49 African
Americans) with asthma on whom concurrent total RNA derived from peripheral blood CD4+

lymphocytes and lung function measurements were obtained. We identified four principal
components that explained 62% of the variance in gene expression. The dominant principal
component, which explained 29% of the total variance in gene expression, was strongly associated
with self-identified race (P<10−16). The impact of these racial differences was observed when we
performed differential gene expression analysis of lung function. Using multivariate linear models,
we tested whether gene expression was associated with a quantitative measure of lung function:
pre-bronchodilator forced expiratory volume in one second (FEV1). Though unadjusted linear
models of FEV1 identified several genes strongly correlated with lung function, these correlations
were due to racial differences in the distribution of both FEV1 and gene expression, and were no
longer statistically significant following adjustment for self-identified race. These results suggest
that self-identified race is a critical confounding covariate in epidemiologic studies of gene
expression and that, similar to genetic studies, careful consideration of self-identified race in gene
expression profiling studies is needed to avoid spurious association.
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INTRODUCTION
High-throughput gene expression profiling provides an opportunity to investigate the
molecular basis of disease susceptibility, and the feasibility of such studies in large clinical
populations has been greatly enhanced by the improved affordability of expression
microarrays. Though many early technical barriers to such studies, including issues
regarding large sample processing and normalization, have been essentially resolved, it
remains unclear to what extent population-specific differences in gene expression can
interfere in the interpretation of differential expression studies. Several modestly powered
studies have demonstrated population-specific differences in the expression of hundreds of
genes, [Spielman et al., 2007; Storey et al., 2007; Zhang et al., 2008] with ongoing
speculation regarding the relative contribution of genetic vs. environmental factors to these
differences. In many instances, differential gene transcript abundance represents an
intermediate stage between non-coding DNA sequence variation and susceptibility to
complex diseases [Cheung et al., 2003], and suggests that between-population differences in
gene expression may, in part, contribute to the observed ethnic differences across a spectrum
of phenotypes, including susceptibility to infectious disease and other complex traits such as
pharmacogenetic responses [Kirkpatrick and Dransfield, 2009; Ormerod et al., 2008; Van
Dyke et al., 2009].

Common non-coding genetic variants have been mapped for a substantial proportion of
human transcripts, with evidence of between-population allelic heterogeneity observed at
many of these loci [Cheung and Spielman, 2009; Stranger et al., 2007]. Approximately 10–
15% of total human DNA sequence variation can be attributed to between-population
differences in ancestry that arose as a result of successive rounds of migration, genetic drift,
and differential selective pressures [Barbujani et al., 1997; Romualdi et al., 2002; Rosenberg
et al., 2002]. In genetic association studies, the presence of unrecognized subgroups of
genetically distinct ancestry, so-called population substructure or population stratification,
can result in spurious genotype-phenotype association in situations where the distributions
of both the tested alleles and clinical phenotypes differ across subgroups. The potential
negative impact of population substructure on genetic association studies has been well
documented, motivating a variety of new statistical methodologies and study design
strategies to address this problem, including careful matching of cases and controls
according to genetic ancestry, measurement of and adjustment for population substructure
[Patterson et al., 2006; Price et al., 2006], and family-based association testing methods
[Lange et al., 2004].

In contrast, the impact of ancestry on interpretation of differential gene expression studies
has been largely ignored. Previous studies of population differences in gene expression have
been limited by relatively modest sample size, and have been performed exclusively in
subsets of the Coriell HapMap lymphoblastoid cell lines. It has been suggested that some of
the observed race-based differences in gene expression may have resulted from non-genetic
technical confounders, thereby overestimating the impact of ancestry on gene expression
[Akey et al., 2007]. We set out to explore these issues in a larger cohort of self-identified
non-Hispanic white and African American subjects for whom gene expression profiles were
generated from primary peripheral blood CD4+ lymphocytes. Herein, we confirm substantial
differences in gene expression patterns between self-identified racial groups that cannot be
explained by technical differences. Furthermore, we demonstrate that failure to account for
these differences can introduce spurious evidence of differential gene expression with
clinical outcomes, suggesting that self-reported racial differences in gene expression are a
critical confounder of epidemiologic studies of gene expression.

Sharma et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2013 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



METHODS
STUDY POPULATION AND SAMPLE COLLECTION

Study subjects were young adults ages 16–23 with mild-to-moderate persistent asthma who
had previously participated in the Childhood Asthma Management Program (CAMP), a 4.5
year multicenter clinical trial established to investigate the long-term effects of inhaled anti-
inflammatory medications for the treatment of asthma [1999]. Subjects were of self-reported
non-Hispanic white or African American ancestry. Complete trial design, methodology, and
the primary outcomes analysis of the CAMP study have been previously published [1999
[2000]. The clinical trial was followed by two consecutive 4-year observational studies:
CAMP Continuation Studies 1 and 2 (CAMPCS/1 and CAMPCS/2) [Strunk et al., 2009].
The analysis presented here was limited to phenotype data, including a pre-bronchodilator
spirometric measurement of lung function, as well as a concurrent blood draw for gene
expression profiling studies, collected during the Year 3 or Year 4 CAMPCS/2 follow-up
visit at four of the eight CAMP study centers (Baltimore, Boston, Denver, and St. Louis).
Spirometry performance was required to meet American Thoracic Society criteria for
acceptability and reproducibility [1995]. Approval was obtained from the Institutional
Review Boards of Brigham and Women’s Hospital (Boston, MA) and each of the CAMP
participating institutions. Informed consent was obtained from study participants if they
were over the age of 18 years old. Otherwise, an informed consent was obtained from
parents of participating children, and the child’s assent was obtained prior to study
enrollment.

PERIPHERAL BLOOD CD4+ LYMPHOCYTE EXPRESSION PROFILING
In total, 17 cc of blood was collected in BD Vacutainer CPT tubes (BD Diagnostics,
Franklin Lakes, NJ) and placed on ice. Each clinical center followed a standardized protocol
for the technical aspects of sample collection and CD4+ T cell isolation. Within 1 hr of
collection, samples were centrifuged for 20 min at 1,700 RCF, followed by mononuclear
cell layer isolation, and suspension in 10 ml of PBS. CD4+ lymphocytes were isolated using
anti-CD4+ microbeads by positive column separation (Miltenyi Biotec, Auburn, CA)
according to a previously published protocol [Jonuleit et al., 2000; Zorn et al., 2004]. Pilot
studies in four subjects confirmed CD4+ lymphocyte yields of ~4 × 106 at ≥95% purity per
collection using this technique. Total RNA was extracted using the RNeasy Mini Protocol
(QIAGEN, Valencia, CA) [Chambers et al., 1999; Gonzalez et al., 1999; Gu et al., 2000].
Analysis using the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) confirmed
average total RNA yields of 2 μg per collection, with no evidence of DNA contamination,
minimal evidence of RNA degradation, and 28S:16S ratios of 2.0.

Genome-wide gene expression profiles were generated with Illumina HumanRef8 v2
BeadChip arrays (Illumina, San Diego, CA) using 100 ng of CD4+ total RNA from each
sample and the Illumina BeadStation 500G according to the protocol. Briefly, total RNA
was used to generate cDNA by reverse transcription, followed by biotin-labeled cRNA
synthesis using the MessageAmp kit (Ambion, Austin, TX) [Pabon et al., 2001]. Labeled
cRNA was combined with formamide and hybridization buffer, followed by overnight
hybridization to HumanRef8Bead-Chip arrays. To avoid possible batch effects, chip batch
and chip position (i.e. array positions A–H) were randomly assigned using a random number
generator. Following randomization, we verified the effectiveness of this approach by
assessing for stochastic differences in chip composition with respect to gender, clinic, race,
and asthma severity, and observed essentially uniform distribution of these covariates, with
no evidence of clustering by batch run or chip position. Following hybridization, chips were
washed, blocked, stained with streptavidin-Cy3 dye, and scanned on the Illumina BeadArray
scanner with images captured using the Illumina BeadScan software and processed with
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Illumina BeadStudio software (version 3.1.7). Raw expression intensities were processed
using the lumi package [Du et al., 2008] with background adjustment with robust multi-
array average convolution [Irizarry et al., 2003] of each array. Combined samples were
normalized using variance stabilization and normalization [Huber et al., 2002; Lin et al.,
2008]. The complete raw and normalized microarray data are available through the Gene
Expression Omnibus of the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/geo/, accession number GSE22324).

STATISTICAL ANALYSES
Two probe-filtering steps were applied prior to statistical testing. First, in order to avoid
technical biases that can result from allele-specific differences in hybridization (i.e. SNPs
residing within the probe can interfere with normal RNA-probe hybridization, suggesting
between subject differences in expression when no such difference truly exists), we
excluded from consideration the 1,659 probes that target genomic sequence known to harbor
common sequence polymorphism (as reported in dbSNP) or that were not uniquely
mappable to one genomic locus. Second, because only a fraction of all known transcripts are
expressed in any given cell type, we excluded from consideration all probes mapping to
transcripts that showed no evidence of dynamic expression in our CD4+ lymphocytes. We
used the following criteria to define these uninformative probes: (i) those probes with low
overall intensity (less than of 25% of samples with intensity of at least log2(100)); and (ii)
those probes with low population variance across samples (less than twofold difference in
interquartile range). By applying these filters, the final data set employed for all subsequent
analyses included 10,294 probes corresponding to transcripts that map to autosomes.

We performed principal components analysis (PCA) using singular value decomposition
(SVD) in the Bioconductor pcaMethods package [Stacklies et al., 2007]. Specifically, if X is
the N × G matrix of expression values centered so that column means are zero, the SVD of
X = UDVt, where V is a diagonal matrix of eigenvalues and U and V are orthogonal
matrices. The decomposition is computed so that the elements of D are decreasing from the
northwest corner. The columns of the matrix product XV are N-vectors, and the leftmost
column is denoted the first principal component. This N-vector is a re-expression of
transcript abundance data, and is regarded as a response variable in ANOVA or linear
regression analyses; likewise for other columns of XV, which constitute lower order
principal components. We then tested the identified principal components for association
with known demographic, phenotypic, and environmental covariates using ANOVA for
discrete variables and Spearman correlations for continuous variables.

Differential gene expression analysis was performed for 10,294 autosomal probes using the
Significance Analysis of Microarray (SAM) test statistic as implemented in the siggenes
package [Tusher et al., 2001]. An estimate of the number of differentially expressed genes
between self-reported White (non-Hispanic) individuals and African Americans was derived
using a conservative false-discovery rate (FDR) of 0.001 [Benjamini and Hochberg, 1995;
Schwender, 2003]. Using the list of differentially expressed genes, we identified a subset of
genes demonstrating consistent evidence of differential expression between self-identified
racial groups from our analysis and in those that have been previously reported [Spielman et
al., 2007; Storey et al., 2007; Zhang et al., 2008]. We then performed canonical pathway
analysis using Ingenuity Pathway Analysis (Ingenuity Systems®, www.ingenuity.com)
software on the list of differentially expressed genes that were common to the previously
reported studies. To test the effect of self-identified race in an epidemiologic study of gene
expression, we generated linear models using the limma package in Bioconductor [Smyth,
2004] to test for the association of gene expression with pre-bronchodilator forced
expiratory volume in one second (FEV1), with and without covariate adjustment for self-
identified race, age, gender, height, and height2. In order to determine the effect of principal
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components adjustment in gene expression studies, we tested the association of gene
expression with pre-bronchodilator FEV1 by performing linear models with adjustment for
PCs 1–4.

RESULTS
BASELINE CHARACTERISTICS

We generated Illumina HumanRef8 (v2) gene expression profiles for 254 young adults (205
self-identified non-Hispanic whites; 49 self-identified African Americans) with asthma on
whom concurrent total RNA derived from peripheral blood CD4+ lymphocytes and
measures of lung function were available. Characteristics of the subjects at the time of
sample collection are shown in Table I. The age and gender distributions were similar
between the self-identified non-Hispanic white and African American subjects. Furthermore,
there was no significant difference in lung function (pre-bronchodilator FEV1 (% predicted),
pre-bronchodilator FVC (% predicted), or pre-bronchodilator FEV1/FVC) or self-reported
tobacco smoke exposure between the two groups. Asthma controller medication use was not
significantly different between the two groups (P<0.05). Although African American
subjects had higher Immunoglobulin E (IgE) levels (P = 0.02), other measures of asthma
severity including the peripheral blood eosinophil level were not significantly different than
non-Hispanic white subjects (P = 0.11).

PRINCIPAL COMPONENTS ANALYSIS
PCA was used to investigate the variance in gene expression across subjects in the study
(Fig. 1). The first four principal components (PCS 1–4) explain a large proportion (62%) of
the total variance in gene expression, the largest of which (PC1) explained 29%.
Importantly, the distribution of PC1 loadings differed greatly by self-designated race, with
positive PC1 values observed for most African American subjects and negative values for
most self-reported white subjects (t-test P = 1.61 × 10−8). PC1 was also associated with
study clinic, and weakly with a history of active smoking (Table II). Multivariable linear
modeling confirmed self-identified race (not clinic) as the primary determinant of PC1, and
clinic as the sole recognizable determinant of PC2 (data not shown). Though weaker
associations were noted for gender with PC3 (P = 0.04), and IgE (P = 0.01) and FEV1 (P =
0.03) with PC4, we could not identify any measured covariate to explain the bulk of
variation for these latter two principle components. Additional PCs (PC5–PC10) each
explained less than 3% of the total variance in gene expression and were thus not considered
further.

Given the noted association of principle components 1, 2, and 4 with study clinic, we
repeated the PCA, stratified by study clinic, to address whether the differences in gene
expression by self-reported race were stable when accounting for possible site-specific
differences in sampling (Online Supplemental Table EI). Despite the smaller sample sizes of
these stratified analyses, persistent differential expression by self-identified race was noted
in all four centers, suggesting that the effect of self-reported race on gene expression are
independent of the study site and are not a function of study design.

DIFFERENTIAL EXPRESSION BY RACE
Given our findings of self-designated race as a major determinant of global gene expression
patterns in the CAMP data set, we performed differential gene expression analysis across the
two self-identified racial groups (Fig. 2). At a conservative FDR of 0.001, we found
evidence for differential gene expression between self-identified non-Hispanic white and
African American subjects of 3,743 genes (36%)—a similar proportion to that observed by
Zhang et al. [2008] (Online Supplement Table EII). When comparing this gene set with the
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prior studies [Spielman et al., 2007; Storey et al., 2007; Zhang et al., 2008], we identified
between 297 and 871 genes that were differentially expressed in both our data and in at least
one of the previous studies. A total of 105 genes demonstrated consistent evidence of
differential expression between racial groups in all previous studies, several of which have
been implicated in racial differences in disease susceptibility. Examples include CREB1 in
major depression [Dong et al., 2009] and SMARCA4 in breast cancer risk [Haiman et al.,
2009]. We note that many of the genes differentially expressed by self-designated race
clustered in specific gene networks and pathways, including several overlapping immune-
response pathways, apoptosis signaling, and hormonal and metabolic pathways (Table III).

THE EFFECT OF RACE IN EPIDEMIOLOGIC ANALYSES OF GENE EXPRESSION
Given the extensive influence of self-identified race on gene expression, we explored the
potential impact of these differences on the context of epidemiologic studies of clinical
phenotypes, by modeling the relationship between peripheral blood CD4+ lymphocyte gene
expression and FEV1, a spirometric measure of lung function (Table IV). Whereas
unadjusted linear models identified 624 genes significantly associated with FEV1 (P<0.05
after correction for multiple comparisons), inclusion of self-identified race as a covariate
resulted in a substantial drop–(95%)—in the number of detected genes. All the genes that
dropped out with this adjustment were among those differentially expressed by self-
identified race (Online Supplementary Table EII). Though further adjustment for other
covariates known to be associated with lung function led to additional gene drop out (with
no gene identified in the final model), the covariate with the single greatest impact on the
analysis was self-identified race (Table IV). Linear models of pre-bronchodilator FEV1
percent predicted, which incorporates adjustment for age, gender, race, height, and height2,
were used to confirm these findings and demonstrated no significant associations after these
adjustments. Of note, when modeling FEV1 with principal components 1–4 included as
covariates several genes were identified that were significantly associated with FEV1 (Table
V). Similar results were obtained without adjustment for PC4, despite the observed
correlation of PC4 with FEV1 (results not shown).

DISCUSSION
We explored the impact of self-identified race on epidemiological gene expression studies
using microarray and spirometric data from a cohort of self-reported non-Hispanic white and
African American asthmatics. In this study, we not only confirmed differences in gene
expression due to self-identified race, but also demonstrated how these differences can
confound epidemiologic studies. These results suggest that similar to genetic association
studies, self-identified race is a critical confounder of epidemiologic studies of gene
expression and must be considered and accounted for in population-based gene expression
studies.

Self-reported racial designation does not arise through biological processes, but rather
reflects a social construct derived from geographic ancestry, social dynamics, and historical
mating patterns. Nevertheless, genetic divergence in allele frequency distributions and
linkage disequilibrium patterns between racial groups is well documented [Gabriel et al.,
2002; Stephens et al., 2001]. Though these genetic differences likely explain a proportion of
the observed racial differences in disease susceptibility and drug response [Burchard et al.,
2003], non-genetic differences such as epigenetic factors, environmental exposures, and
cultural differences play significant roles as well. Similarly, though race-specific differences
in gene expression due to between-population differences in allele frequency distribution
have been documented [Cheung and Spielman, 2009; Stranger et al., 2007; Zhang et al.,
2008], evidence for a larger non-genetic influence is also clear. While the source of these
differences, whether epigenetic, environmental, or behavioral, remains unclear, a better

Sharma et al. Page 6

Genet Epidemiol. Author manuscript; available in PMC 2013 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



understanding of these differences and how they influence studies of gene expression in
health and disease is needed.

Though population differences in gene expression have been estimated in four prior reports
[Spielman et al., 2007; Storey et al., 2007; Stranger et al., 2007; Zhang et al., 2008], our
observations complement and extend these initial works in several important aspects.
Foremost among these is that all four prior studies were performed in subsets of the HapMap
lymphoblastoid cell lines, and as such cannot be considered truly independent from one
another. Moreover, because the HapMap cell lines of Western European ancestry (CEU)
were established many years before either the Asian (CHB and JPT) or Yoruba (YRI)
samples, the validity of between-population comparisons using these samples is
questionable [Akey et al., 2007]. In contrast, our studies were performed using RNA derived
from freshly collected primary cells (circulating peripheral blood CD4+ lymphocytes),
processed in uniform fashion irrespective of self-reported racial designation. Furthermore,
our micro-array studies included sample randomization during allocation of chip and array
position. We also filtered our data set so as not to consider transcripts interrogated by probes
that target polymorphic sequence, thus limiting spurious association due to population
differences in allele frequencies of SNP underlying probes. As such, we are assured that our
observation of abundant differential expression between self-identified racial groups are not
influenced by either batch effects resulting from differential sample processing, or due to
potential race-specific differences in the lymphocyte immortalization process in response to
Epstein-Barr virus infection.

We observed greater evidence of expression differences due to self-reported race in our
cohort compared to the prior studies, both in terms of proportion (36% vs. 5–29%) and
absolute number (3,743 vs. 464–1,320 genes). Several factors, both statistical and technical,
may explain these differences. With respect to statistical considerations, we note that we
studied a substantially larger number of subjects (on average two to three times greater than
prior reports); the greater number of detected genes in the current study likely reflects the
enhanced statistical power to detect these differences. Second, our focus on a primary cell
type (vs. immortalized cell lines in prior studies) may have improved our ability to detect
population-specific differences, in several ways. First, the technical biases that may have
been introduced through the process of cell immortalization (which can bias both towards
and away from the null) are not a factor in primary lines. Moreover, because the current
study examined RNA that was isolated from primary cells within hours of blood draw, the
observed race-specific differences in gene expression patterns in these samples reflects both
the genetic differences and the contemporary environmental differences that exist between
the self-identified racial groups. It is likely that the race-specific differences in expression
were attenuated in the prior studies as a consequence of the immortalization process and
because these cells were stored under fairly uniform (in vitro) environmental conditions.
Thus, genes that show differential patterns of expression by racial group due to race-specific
environmental differences would be underrepresented in prior studies.

Could our results be influenced by our exclusive focus on asthmatics such that the observed
differences are a consequence of racial differences in asthma severity? In order for asthma
status to have significantly confounded our results, two conditions would be required: (i)
significant racial differences in asthma severity in our cohort, and (ii) significant differences
in gene expression patterns by asthma severity. Our data suggest that neither condition is
prominent here. First, as described above, the observed principle components of gene
expression correlated most strongly with demographic features (including self-identified
race) but not measures of asthma severity (such as lung function or current asthma
medication usage). Second, with the exception of total serum IgE levels, there were no
significant differences between racial groups in their baseline characteristics, including
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several markers of asthma severity, such as lung function and blood eosinophil counts
(Table I). Though mean total serum IgE levels were higher in African Americans as
compared to non-Hispanic whites (P = 0.02), there was no correlation between total serum
IgE level and the first three principal components, which explain in total 57% of variation in
gene expression (see Table II). Moreover, we note that a correlation analysis of total gene
expression with total serum IgE levels identified only one transcript (IL17RB) that was
significantly correlated with total serum IgE levels (data not shown). This correlation was
observed in all subjects regardless of self-identified race. Moreover, IL17RB was not
differentially expressed by self-designated race in the current analysis here. Together, these
data suggest that neither IgE level nor other measures of asthma severity are confounders of
the racial differences in gene expression described herein.

The confirmation of widespread differences in gene expression between self-identified racial
groups has several important implications for efforts aimed at identifying the underlying
molecular causes of disease. First, as suggested in previous studies, some of these
differences may offer insights into the mechanisms underlying population differences in
disease susceptibility. For instance, racial differences in chemotherapeutic response and
cancer survival rates [Caudle et al.; Polite et al., 2008] may in part be explained by the
observed differences in expression of genes belonging to the phosphatidylinositol-3 kinase
pathway, which has been implicated in the regulation of cell survival regulation, cell cycle
progression, and cell growth. Modulation of the PI3k/Akt signaling pathway can result in
failure to activate the apoptotic pathway and has been proposed as a mechanism of drug
resistance [Fresno Vara et al., 2004]. We found this pathway to be significantly enriched for
genes differentially expressed by self-identified racial designation. Similar findings of genes
belonging to diabetes signaling pathways may in part explain the difference in prevalence
rates and natural history of this disease between Caucasians and individuals of African
descent [Fukushima et al., 2010], while the numerous differences observed in immune-
related pathways could in part explain the racial differences in humoral and cellular
responses to infection [de la et al., 2007; Donlin et al., 2010; Gale et al., 1998].

The observed between-population differences in expression also have implications for
epidemiologic studies, as illustrated in our analysis of lung function, where the relationship
between gene expression and spirometric measurements was confounded by self-reported
race. Racial designation is an important determinant of lung size, together with age and
anthropomorphic measurements, and adjustment of spirometric measures for self-identified
race is critical for reliable interpretation of epidemiological studies. Thus, though our
illustration of the impact of self-identified race on gene expression studies of lung function
may represent somewhat of a “straw man,” it nonetheless makes the point that failure to
account for population ancestry can have deleterious consequences on the ability to reliably
detect truly differentially expressed genes in population-based studies.

Similar to genome-wide genetic association studies where principal components adjustment
is used to address population structure, our results suggest that principal components may
also be used in epidemiologic studies of gene expression. Addition of principal components
as covariates in gene expression studies allows for the adjustment of both known
confounders (ie technical confounders like batch) and unmeasured confounders including
genetic ancestry when genotype data is unavailable. Using PCs to model the association of
gene expression with pre-bronchodilator FEV1, we were able to identify several biologically
plausible candidate genes for further investigation. Of the 10 genes identified to be
associated with FEV1, three have been associated with smoking-related lung disease or lung
cancer. For example, E2F3 is a transcription factor that has an established role in controlling
the cell cycle. In addition, overexpression of E2F3 has been implicated the pathogenesis of
small cell lung cancer [Cooper et al., 2006]. TSPLY5 has been shown to be differentially
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expressed in squamous cell lung cancer [Vachani et al., 2007]. Furthermore, PARP3, which
is involved with DNA repair, is downregulated in non-small cell lung cancers that reactivate
telomerase decreasing telomere lengths in these subjects [Frias et al., 2008]. In addition to
its role in lung cancer, telomere length is lower in patients with chronic obstructive
pulmonary disease (COPD) [Savale et al., 2009]. Both lung cancer and COPD are smoking-
related lung diseases, which can be associated with airflow obstruction and low lung
function in adults. While these genes are interesting candidates for investigation for their
role in impaired lung function, it is important to recognize that none of these genes would
have been identified using traditional modeling approaches. Our results suggest that a more
comprehensive analysis of the use of principal component adjustment of gene expression
studies is warranted.

Several limitations to this study must be discussed. While we demonstrate that the effect of
gene expression on lung function is confounded by the effects of self-designated race, we do
recognize that several of the genes that are differentially expressed between populations may
contribute to fundamental differences in lung function. Thus, adjustments for self-identified
race may in fact result in some false-negative results as well. Finally, our gene expression
analysis of lung function was performed in peripheral blood CD4+ lymphocytes obtained
from asthmatic individuals. It is therefore possible that self-identified race would not
dominate the analysis if perhaps a tissue more proximal to the phenotype (ie airway
epithelial cells) were studied. Nonetheless, consideration of population ancestry would
remain necessary in these studies.

In summary, this study demonstrates that racial differences exist in gene expression, and
shows that self-identified race may be an important confounding factor in studies of gene
expression that examine people of diverse racial backgrounds. Furthermore, population
differences in gene expression are widespread, apparently affecting a considerably larger
number of genes than previously suspected. We have demonstrated the impact of these
differences on epidemiological gene expression studies of disease and show how principal
components adjustment may be beneficial in these studies. In the field of genetics, several
well-developed statistical approaches are available to address the confounding effects of
ancestry, including stratified analysis, family-based tests, and genomic control strategies
[Devlin et al., 2001; Horvath et al., 2001; Patterson et al., 2006; Price et al., 2006]. Our
observations support the need for the development of similar strategies for gene expression
studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Non-Hispanic white subjects are shown in black, African American subjects are shown in
red. First four principal components explain 62% of the variance in gene expression across
the CAMP samples. CAMP, Childhood Asthma Management Program.
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Fig. 2.
SAM plot demonstrating differential expression of 3,743 genes between non-Hispanic white
and African American subjects in CAMP. The genes shown in grey (n = 3,743) are
differentially expressed at a FDR = 0.001. CAMP, Childhood Asthma Management
Program; SAM, significance analysis of microarray.
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TABLE I

Baseline characteristics of subjects with CD4+ lymphocyte gene expression profiles in CAMP

Variable White (n = 205) Black (n = 49) P value

Male gender (n, %) 123 (60%) 28 (57%) 0.74

Age (years)a 20.4 (2.2) 20.6 (1.8) 0.64

Height (cm)a 171.9 (9.1) 170.5 (9.2) 0.30

Self-reported current smoking history (n, %) 26 (13%) 3 (6%) 0.31

Pre-bronchodilator FEV1 (% predicted) 97.3 (12.2) 94.4 (12.7) 0.16

Pre-bronchodilator FVC (% predicted) 109.2 (10.8) 106.9 (13.1) 0.27

Pre-bronchodilator FEV1/FVC 77.4 (7.6) 77.8 (8.4) 0.74

Inhaled corticosteroid use (n, %) 49 (23%) 11 (22%) 0.85

Long-acting bronchodilator use (n, %) 27 (13%) 6 (12%) 0.83

Total serum IgE level (IU/ml)b 312.9 (134.7–781.4) 581.7 (141–438.5) 0.02

Eosinophil count (cells/ml3)b 212 (141–360.4) 249 (141–438.5) 0.11

FEV1, forced expiratory volume in one second; CAMP, Childhood Asthma Management Program; IgE, immunoglobulin E.

a
Mean (standard deviation).

b
Median (interquartile range).
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TABLE II

Relationship between principal components of gene expression and relevant demographic and clinical
characteristics in the CAMP cohort

Covariate

Association P-value

PC1 PC2 PC3 PC4

Discrete variablesa

 Race 1.61 × 10−8 0.03 0.40 0.60

 Gender 0.24 0.11 0.04 0.48

 Clinic 1.1 × 10−6 2 × 10−16 0.07 0.02

 Active smoking history 0.007 0.61 0.08 0.88

 Asthma medication use

  Inhaled corticosteroids 0.71 0.05 0.77 0.27

  Long-acting beta agonists 0.50 0.98 0.60 0.64

Continuous variables

 Age 0.96 0.62 0.76 0.88

 Height 0.21 0.97 0.32 0.32

 Pre-bronchodilator FEV1 0.71 0.51 0.07 0.03

 Immunoglobulin E (IgE level) 0.22 0.74 0.57 0.01

FEV1, forced expiratory volume in one second; IgE, immunoglobulin E.

a
Discrete variables tested by two-sided t-test or ANOVA. Continuous variables tested by Spearman’s correlation.
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TABLE III

IPA-defined pathways enriched for genes with differential expression by race

Ingenuity canonical pathwaya −log10P value Molecules

PI3K/AKT signaling 4.27 JAK1, GYS1, PPP2R4, SOS1, YWHAZ, ITGA5, IKBKE,
NFKB2, MAPK7, NFKBIB, CTNNB1, ITGA4

Role of PKR in interferon induction and antiviral
response

4.05 TRAF2, TRAF3, TNFRSF1A, IKBKE, NFKB2, CASP8,
NFKBIB

Apoptosis signaling 4.00 ENDOG, TNFRSF1A, IKBKE, NFKB2, MAPK7, CAPN7,
RPS6KA1, CASP8, NFKBIB, CAPN3

Role of RIG1-like receptors in antiviral innate immunity 3.84 DHX58, TRAF2, TRAF3, IKBKE, NFKB2, CASP8, NFKBIB

CD40 signaling 3.63 TRAF2, TRAF3, CD40, IKBKE, NFKB2, MAPK7, NFKBIB,
MAP2K5

Death receptor signaling 3.02 DAXX, TRAF2, TNFRSF1A, IKBKE, NFKB2, CASP8,
NFKBIB

Induction of apoptosis by HIV1 2.98 DAXX, TRAF2, TNFRSF1A, IKBKE, NFKB2, CASP8,
NFKBIB

4-1BB signaling in Tlymphocytes 2.93 TRAF2, IKBKE, NFKB2, MAPK7, NFKBIB

FAK signaling 2.70 PAK4, SOS1, ITGA5, MAPK7, CAPN7, ITGA4, CAPN3, GIT2

CD27 signaling in lymphocytes 2.65 TRAF2, IKBKE, NFKB2, CASP8, NFKBIB, MAP2K5

a
Top 10 ingenuity pathways are shown.

Genet Epidemiol. Author manuscript; available in PMC 2013 July 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sharma et al. Page 18

TABLE IV

Effect of adjusting for race in an epidemiologic study of lung function

Covariate adjustment
Number of significant genes (P<0.05 after

correction for multiple comparisons)

Most significant gene

Symbol Unadjusted P-value Adjusted P-value

Unadjusted 624 NRCAM 7.07 × 10−8 0.0003

Race 31 PRSS16 3.22 × 10−7 0.003

Age, gender, race, height, height2 0 XTP3TPA 0.0005 0.97
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TABLE V

Effect of adjusting for principal components in an epidemiologic study of lung functiona

HUGO gene LOG fold change P-value Adjusted P-value

MMEL1 0.66 1.39 × 10−8 0.0001

C16orf74 0.10 2.01 × 10−8 0.0001

NRCAM 0.08 1.51 × 10−6 0.005

E2F3 0.10 2.05 × 10−6 0.005

RSU1 0.07 5.18 × 10−6 0.01

PARP3 0.06 8.5 × 10−6 0.01

TSPYL5 0.05 1.70 × 10−5 0.02

CD300C 0.08 1.85 × 10−5 0.02

SNX19 0.06 2.31 × 10−5 0.03

PRSS16 −0.04 2.69 × 10−5 0.03

a
Linear models adjusted for PCs 1–4. This table is restricted to results that are significant following the adjustment for multiple comparisons.
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