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Abstract
Interest in urban neighborhood form is strong among scholars trained in multiple disciplines. The
increasing popularity of this field calls for a set of metrics that can be used to describe meaningful
patterns of built features in neighborhood environments. This study employs national-level
datasets from Add Health, the National Land Cover Dataset (NLCD) 2001, the U.S. Census
TIGER, and the U.S. Geological Survey to construct neighborhood form metrics for 20,467
residents, whose residential environments cover a wide array of geographic areas representative of
comprehensive neighborhood types across the United States. Buffers of different sizes (1 km, 3
km, 5 km, and 8 km, respectively) are drawn around each resident’s location as the unit of
analysis. For the four sets of 20,467 neighborhood environments, 27 neighborhood form metrics
are selected, computed, and further reduced through factor analysis. The results suggest that the
derived subsets of univariate metrics can be applied across neighborhood types to characterize
diverse neighborhood environments.
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1. Introduction
In recent decades, increasing public concern over the set of negative impacts of urban sprawl
– the loss of open land resources, longer commutes, increased greenhouse gas emissions,
and lower levels of physical activity – has led to policy efforts that seek to change the course
of urban growth patterns (Calthorpe and Fulton 2001). Notably, a range of urban and city
planning efforts, such as the smart growth movement that emerged in the 1980s, openly
sought to avoid urban sprawl and improve public health through reshaped physical form of
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neighborhoods (Duany and Plater-Zyberk 1992; Centers for Disease Control and Prevention
2005), and to create “place types” to help policy makers and the public choose desirable
patterns of urban development (Wheeler and Beebe 2011). These movements still popularly
appear in the dialogue between research scholars, land use planners, policymakers and the
general public.

The continuing efforts in creating alternative types of neighborhoods have brought
increasing attention to the need for understanding neighborhood form attributes in order to
describe patterns of development at the neighborhood scale. Researchers and practitioners
have developed numerous metrics to quantify the physical form of neighborhoods. However,
despite ongoing efforts on developing measures of neighborhood form, there are several
issues with current practice in computing measures. First, the set of measures included in
one study sometimes do not sufficiently capture the complexity of urban form. Description
of urban form relying on one-dimensional measures, like development density or land use,
has failed to adequately describe neighborhoods in a comprehensive manner (Gill et al.
2008). Thus there is a need for a set of metrics covering different dimensions of
neighborhood form. Second, some commonly used indicators are possibly ill-defined. As
Talen (2003) writes, “too much discussion about cities is devoid of measurement …
Examples are words such as suburb, public realm, mixed use, diversity and access. These
concepts are vital to the discussion, but have been difficult to pin down.” It is necessary to
have better-defined and measurable metrics, which can be either quantitative or qualitative.
Third, more recently, the proliferation of spatial data sources and Geographic Information
System (GIS) tools for spatial data analysis has made a variety of new spatial metrics
available. However, many of these computed spatial metrics are correlated and redundant
measures. For example, when quantifying street network connectivity, shall we calculate the
Alph or the Beta Connectivity Index, or both? Calculating highly correlated metrics creates
computational burden and thus necessitates the identification of the most relevant set of
metrics (Schwarz 2010).

There is also a lack of consistent metrics across different studies, limiting our ability to
study and compare urban environments across cities, regions, or countries (Schwarz 2010).
Few studies use nationally representative data sets to establish metrics and describe the full
gamut of neighborhood characteristics, due to the difficulty of compiling and standardizing
nation-wide neighborhood data. Rather, the majority of the literature on neighborhood form
metrics draws conclusions from only a small subset of neighborhoods in one or several
metropolitan areas. For examples, Southworth and Owens (1993) observe eight suburban
neighborhoods in metropolitan San Francisco by qualitatively illustrating a set of metrics
related to streetscapes, growth patterns, land use organizations, and size and shape of lots
and houses. Similarly, Wheeler (2003) includes two cities (Portland, Oregon, and Toronto,
Ontario) in his studies on categorizing development patterns. He employs attributes
including street patterns, size and shape of lots, designing features of buildings and sites, and
land use mix to define a range of neighborhoods developed at different historical periods.
More recently, Song and Knaap (2007) have developed a range of metrics to quantify
neighborhood form for Portland metropolitan area and these metrics capture dimensions
such as street design, density, land use mix, and access to commercial activities and different
transportation modes. They employ the parcel-level GIS data to compute the metrics and
these data might not be available in other localities.

To address some of the aforementioned issues, the purpose of this study is to help choose a
set of neighborhood form metrics that one study can employ to capture a range of important
aspects of neighborhood form, such as connectivity, access, density, and land use variety.
Through applying the method of factor analysis, we can identify a reduced set of metrics
minimizing the computation of correlated and single out redundant measures. To do so, we
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first calculated a large number of candidate metrics for a sample of 20,467 representative
neighborhoods across the U.S., a factors analysis is then used to single out a smaller number
of independent axes. Such an analysis suggests a minimum set of metrics that can used to
quantify physical form of neighborhoods. We also perform a cluster analysis to validate that
the reduced set of metrics sufficiently produces consistent results. Previous studies have
employed factor analysis to identify a small set of urban form metrics (Riitters et al. 1995;
Schwarz 2010). For example, Riitters et al. calculated fifty-five metrics of landscape pattern
for 85 maps of land use and land cover and used a factor analysis to identify a reduced set of
26 metrics. Our study expands Riitters et al.’s study but differs in that we are interested in
identifying neighborhood form metrics for smaller scale neighborhoods, while Riitters et al.
aimed to identify metrics for 120km by 180km landscape maps.

It is necessary to note that in addition to the apparent benefit of reducing computation work
by having a smaller but sufficient set of quantitative neighborhood form metrics, having
such a set of metrics is also useful for conducting many sorts of statistical analysis (Wheeler
2008). In studies of neighborhood form and its associated outcomes, a small set of
uncorrelated metrics can be included as independent variables in regression equations to test
their implications on outcomes such as residents’ transportation and exercising behaviors
and health outcomes. Researchers have been interested in examining quantitatively the
relationship between neighborhood form and transportation outcomes, including trip
generation, mode choices, distance traveled and auto ownership (for examples, Ewing and
Cervero 2010, Greenwarld and Boarnet 2001, Handy 1996, Krizek 2003). For health-related
disciplines, the emergence of ecologic models (Stokols 1992) has underscored the levels at
which multiple factors (personal, interpersonal, neighborhood, environment and policy) can
influence individual behavior and health outcomes. As a result, neighborhood forms metrics
on accessibility, intensity, and diversity of nonresidential land uses are used to examine
physical activity outcomes such as walking behavior and obesity (for examples, Forsyth et
al. 2008, Nelson et al. 2006, and McConville et al. 2010). Neighborhood forms have also
been related to housing markets and individuals’ preferences for neighborhood types.
Metrics such as connectivity, land use mixture and accessibility generally correlate with
higher residential land prices (Song and Knaap 2004). In summary, there is a demand for
neighborhood form metrics in quantitative analyses to associate neighborhood forms with
community and ecological outcomes. A reduced set of uncorrelated neighborhood form
metrics may be desirable to yield more generalizable results. The next section describes the
methodology and computes twenty-seven candidate metrics for 20,467 neighborhoods
defined at different scales using GIS data. We then use a multivariate factor analysis to
obtain a smaller set of reduced metrics, which are then validated to show that they produce
consistent results in quantifying different types of neighborhood form.

2. Methods
The methodology for this study consists of the following steps: (1) Acquire national level
datasets. (2) Identify the unit of analysis, i.e., the neighborhood boundaries. (3) Select and
compute a range of neighborhood form metrics. (4) Identify a minimal set of metrics using
factor analysis and validate this set of metrics using cluster analysis.

2.1 National Data sources
Four main national-level data sources are employed for this study. To extract a national
sample of neighborhoods, data is employed from Add Health, which is a school-based
longitudinal survey of youths. In the dataset, a random sample of 80 high schools and 52
junior high feeder schools was selected in 2001. Home street addresses of the participants
were identified and geocoded, with street address matches using commercial GIS databases
or global positioning system (GPS) units. The Add Health study design incorporated
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systematic sampling methods and implicit stratification to ensure this sample is
representative of US schools with respect to region of country, urbanicity, school size,
school type, and ethnicity (Harris et al. 2009). Therefore, although Add Health dataset is
constructed to have a representative sample of youth, the dataset includes a wide-ranging set
of geographic areas also representative of comprehensive neighborhood types across the
United States (Nelson et al. 2006). The dataset contains 20,467 observations, thus generating
a sample of 20,467 neighborhoods. It is necessary to note that in addition to the Add Health
dataset which can be used to extract a sample of representative residential neighborhoods in
the U.S., random samples of other geographic units such as zip codes, census tracts or
blockgroups can also be employed to generate a sample of neighborhoods.

The second data source is the 2001 National Land Cover Dataset (NLCD). This dataset is
employed to originate land cover information for neighborhood environment. NLCD land
cover classifications are collapsed into six generalized classes for analysis (Table 1). Using
the NLCD is favorable because it can provide consistent nation-wide data sets with high
level of details. While other datasets such as parcel-based land use data can provide more
fine-grained details such as lot shape, these datasets are typically localized and not available
at the national level.

The third dataset is the 2000 U.S. Census TIGER (topologically integrated geographic
encoding and referencing) line files, which are employed to assess road types.

Finally, aerial photographs from the U.S. Geological Survey are used to retrieve information
on the availability of parks.

2.2 Unit of analysis
The unit of analysis in this study is the individual neighborhood defined by various sizes of
buffers. In the study of neighborhoods, there is no consensus on what constitutes a
neighborhood (Cervero and Gorham 1995). Previous studies on neighborhoods use measures
such as buffers of different sizes (Boone-Heinonen et al. 2010; Nelson et al. 2006), U.S.
Census-defined boundaries such as zip codes (Gordon-Larsen et al. 2005), census tracts and
census blockgroups (Song and Knaap 2004), and self-defined boundaries. In this study, to
assess neighborhood characteristics, buffers of four different sizes (1 km, 3 km, 5 km, and 8
km, respectively) used in previous studies (Boone-Heinonen et al. 2010) are drawn around
each respondent’s residential location to create a sample of neighborhoods. By including
different sizes of buffers, we intend to identify four reduced sets of metrics. Researchers
have adopted buffers of different sizes to associate neighborhood forms with different
outcomes (Boone-Heinonen et al. 2010). For examples, smaller-scale buffers such as 1-km
and 3-km buffers are used to explore associations between neighborhood forms and
adolescent physical activity (Nelson et al. 2006) while 5-km and 8-km buffers are used to
test how the area affects adults’ travel and physical activity behaviors (Sallis et al. 1990).

It is necessary to note that although the neighborhoods are defined by buffers surrounding
respondents’ point address locations, neighborhood form metrics (identified in the next
section) can be calculated for different neighborhood definitions such as zip codes, tracts,
block groups, or other user-defined boundaries.

2.3 Neighborhood form metrics
In order to identify neighborhood form metrics, we take two steps – identifying dimensions
of neighborhood forms that are theoretically sound and choosing metrics that were
developed, modified and tested by previous studies. First, we rely on theory of good urban
form to identify dimensions of neighborhood forms: permeability, the connectiveness of
places, which prescribes a street network system through which travelers can move with
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ease; vitality and accessibility, the vibrancy and convenience of places, which are ensured
by having an agglomeration of accessible and high density places; and variety, the mix of an
appropriate set of land uses, which generates greater opportunities for social interaction
(Lynch 1960; Lynch 1981; Jacobs 1984; Kostof et al. 1992; Calthorpe 1993).

Second, based on previous studies, we adopt a set of 27 metrics to characterize the above
identified dimensions of neighborhood form for each neighborhood: street network design,
development density, and distribution of mixed land uses including residential, and nature
and recreational uses (Cervero and Radisch 1996; Galster et al. 2001; Song and Knaap 2004;
Song and Knaap 2007; Miles and Song 2009; Galster et al, 2000). After computing these
variables for neighborhoods with different sizes, we interpret and evaluate these metrics to
examine their ability of illustrating neighborhood form. Figure 1 presents examples of
neighborhoods that present these concepts. It is necessary to note there are limitations
associated with the set of selected metrics. We choose the metrics that can be relatively
easily quantified, such as street connectivity to quantify permeability. However, there are
other qualitative measures, such as layout of alleys, availability of bike connections and
sidewalks, presence of fences or other means of preventing access, which can better describe
the attributes of a street network system enabling travelers of moving with ease. For another
example, we simplify the measurement of neighborhood form dimensions such as “vitality”
by a metric of development density. However, Lynch used the term of vitality to include
human use of places, which cannot be easily determined with quantitative measures. Future
qualitative studies need to be carried out to identify ways to describe different
neighborhoods from fine-grained and first-hand observation of human use of place.

2.3.1. Permeability Measures—The concept of permeability is captured partly by the
level of connectivity of street networks. Better permeability, indicated by more connective
streets, more intersections but less street cul-de-sacs (illustrated in top left, Figure 1), could
enhance the easiness of traveling, thus increasing probability of using alternative travel
modes such as biking, walking, or taking the transit (Benfield et al. 1999). The TIGER
dataset is used to calculate measures for four sets of neighborhood buffers. To begin with
the analysis, we include a large set of measures on street length, street density by type,
intersection types, and connectivity indices. In our next step, the purpose is to select the
most relevant metrics from this list.

• Road Length ( totkm) - Absolute total length of roads within each buffer;

• Road Density by Road Types (a10pct, a20pct, a30pct, and a40pct) – The proportion
of primary roads with limited access (a10pct), primary roads without limited access
(a20pct), secondary roads (a30pct), and local roads with lower speed limits and
possibly sidewalks (a40pct), respectively, in each buffer. (For more on road types,
please see http://www.census.gov/geo/www/tiger/appendxe.asc.);

• Intersection Density (intd) – 3-way & 4-way intersection density per buffer;

• Intersection Proportion (intp) – Proportion of 3-way & 4-way intersections per
buffer;

• Cul-de-sac Density (culd) – Number of cul-de-sacs per buffer;

• Connectivity Beta Index (beta) – Number of links (connections between nodes)
divided by number of nodes in each neighborhood buffer;

• Connectivity Gamma Index (gamm) – Number of observed links divided by
maximum possible number of links in each buffer (where maximum possible
number of links in a network equals to 3*(Number of nodes-2);
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• Connectivity Alpha Index (alph) – Ratio measure of observed to maximum possible
route alternatives (circuitry) between nodes in each buffer. The maximum possible
number of circuits is the greatest possible number of links, 3*(Number of nodes-2),
minus the number of links in a minimally connected network, (Number of nodes −
1);

• Connectivity Cyclomatic Index (cycl) - Number of route alternatives (circuits)
between nodes in each buffer, which is calculated by (Number of links - Number of
nodes + 1).

2.3.2. Vitality and Accessibility Measures—Vitality and accessibility, richness and
convenience of places, are symbolized by development density. Higher density
developments that have good access to other activities (illustrated in bottom left, Figure 1)
facilitate social interactions, reduce commuting costs, and protect farmland resources
(American Planning Association 1998). This study includes the following two sets of
measures: the first set measures urban development density and includes area of
development with different densities; and the second set measures land patch size and
density.

• Development Area (ca_c2 and ca_c3) – Area of two land classes in each buffer,
respectively: Class 2, the low and medium density development and Class 3, the
high density development;

• Land Patch Size and Density – Attributes of land uses can be represented using
spatially explicit patch-based indices such as size and patch density. Patches are
defined as homogenous regions for a specific landscape property of interest, such
as “industrial land” or “high-density residential zone.” We include the following
three measures of land patch size and density: the mean land patch size (armn), the
root mean squared error (deviation from the mean) in patch size (arsd), and land
patch density (pd) which equals the number of patches in the landscape or class
divided by total buffer area - are employed (McGarigal et al. 2002).

2.3.3. Variety Measures—Variety of neighborhood form is quantified by extent of land
use mixture. Greater variety with appropriately mixed land uses (illustrated in middle left,
Figure 1) puts different urban activities closer to each other, thereby facilitating walking and
biking, lowering vehicle miles traveled (VMT), and improving air quality (American
Planning Association 1998). In addition, preserving an appropriate amount of nature and
recreational facilities in neighborhoods can help increase physical activity and thus has good
implications for public health. This analysis includes three set of measures of variety:
number of land use types, amount of natural and recreational land uses, and land use
configuration (McGarigal et al. 2002).

• Land Type Richness (pr) – Number of different types of land classes present within
each neighborhood buffer;

• Recreation (ca_c4) – Area of developed recreational land use in each buffer;

• Nature (ca_c5) – Area of undeveloped natural land in each buffer;

• Rural Area (ca_c6) – Area of agricultural land in each buffer;

• Parks (parks) – Number of parks in each buffer;

• Simpson's Diversity Index (sidi) – Diversity measure of distribution of different
type of land classes.

• Contagion Index (contag) – Interspersion measure of type of land patches.

Song et al. Page 6

Landsc Urban Plan. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• Perimeter-area fractal dimension (pafr) – Measures perimeter and shape
complexity.

• Mean Shape Index (shmn) – The simplest and perhaps most straightforward
measure of overall shape complexity.

• Mean Fractal Dimension Index (frmn) –A measure of perimeter and shape
complexity.

To compute the above measures of spatial patterns using nation-wide data, this analysis uses
a combination of national-level datasets including the NLCD, TIGER, and aerial photos. For
each neighborhood at four different buffer scales, these 27 metrics of neighborhood form are
computed. Many of these metrics are landscape metrics since we are using land cover
dataset. Derived in the late 1980s, landscape metrics can be computed from the digital
analysis of thematic-categorical land cover maps with spatial heterogeneity (Wu et al. 2000;
Clark et al. 2009; Schwarz 2010). Ground in the work of O’Neill et al. (1988), abundant set
of landscape metrics for a given spatial scale and resolution have been created and tested for
their validity (Riitters et al. 1995; McGarigal et al. 2002). FRAGSTATS, the public domain
statistical package, is used to compute the set of quantitative landscape metrics (McGarigal
et al. 2002). While landscape metrics are useful summarizing information based on land
cover data, we also supplement the analysis with ancillary TIGER data on linear street
networks to improve the measurement of spatial patterns.

In summary, guided by urban form theory, 27 metrics are identified and computed to
measure neighborhood form. Table 2 provides further information on the definitions and
measurements of these 27 metrics. It is important to note that since we are relying on
publicly available datasets at the national level to establish neighborhood form metrics, the
trade-off is to leave out measures of on-the-ground urban planning considerations which
require localized and qualitative datasets on, for examples, availability of sidewalks, setback
of buildings and so on.

2.4 Factor analysis
The main purpose of this analysis is to select a smaller set of metrics that span the above
mentioned dimensions but are not redundant. Our first step is to conduct factor analysis on
the 27 variables to derive a range of factors so that the 27 metrics are grouped by factors.
Within each factor, correlations among metrics are large while across factors, correlations
are small. The number of factors is chosen based on three considerations: the eigenvalues
associated with each factor, the plot of eigenvalues versus component number, and the
cumulative proportion of variance explained by an additional factor. The purpose of this first
step is to derive and interpret factors so that we can understand which dimensions the
selected metrics belong to in the next step.

Our second step is to choose a reduced set of metrics. Riitters et al. (1995) and Schwarz
(2010) suggested and applied an approach to use factor analysis to select a reduced set of
metrics. The general purpose of factor analysis is to describe the covariance structure among
many variables in terms of a few underlying quantities which are called ‘factors’. From each
factor, one single metric with the highest loading on each factor is retained as the most
representative metric. Although selecting one single metric from each factor is a
simplification, the approach provides a method avoiding the need to calculate all 27 metrics
for all neighborhoods. It is necessary to note that other criteria such as normality, relative
coefficients of variation, and ease of computation can also be used for choosing the reduced
set of metrics.
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Finally, we employ cluster analysis to group 20,467 neighborhoods into types of
neighborhoods, using the original set of 27 metrics and the reduced set of metrics
respectively. By doing so, we are able to evaluate whether the reduced set of metrics
produces consistent results. Cluster analysis can be used to identify a set of homogeneous
and non-overlapping neighborhood types (Song and Knapp 2007; Nelson et al. 2006;
Schwarz 2010). By comparing results from cluster analysis between using the large and the
reduced set of metrics, we are able to investigate whether the reduced set of metrics suffices
in describing different neighborhood types. Using SAS FASTCLUS, we use the hierarchical
clustering (i.e., the Ward procedure) and rely on the “elbow-criterion” which focuses on the
percentage of variance explained as a function of the number of clusters. Thus the optimal
number of clusters is the number after which the marginal gain of adding one more cluster
drops sharply (Schwardz 2010). This method results in homogeneity within clusters and
heterogeneity between clusters (Nelson et al. 2006). Z-core transformations of the raw
values of metrics are used to generate clusters, thus, variables with different scales are
adjusted with appropriate weighting (Aldenderfer and Blashfield 1984). For the 1-km
buffers, for example, the best solution is the seven-cluster solution when using both the large
and the reduced set of metrics. In next section, we will compare the level of consistency
with regard to the number of neighborhoods assigned to each neighborhood type when two
different sets of metrics are used to conduct cluster analyses.

3. Results
Summary statistics for the above 27 metrics computed at four different neighborhood scales
are provided in Table 3. For almost two thirds of the metrics, standard deviation decreases
when buffer size increases. This indicates that the 1 km buffer captures more variation
across neighborhoods, while much of the variation flats out at larger buffer scales.

All pair-wise correlation coefficients among the 27 metrics are computed and the results for
the 1 km buffer are shown in Table 4. Almost half of the coefficients are statistically
significant (> ± 0.27, p = 0.01). For brevity, the results for the other buffer sizes are not
shown here but are available upon request from the authors.

The extent of having significant correlation coefficients suggests that it is necessary and
desirable to have a reduced set of metrics to minimize computation efforts. In what follows,
we first present and interpret the results from the factor analysis for all four different
neighborhood scales. To interpret each factor, we investigate the common characteristics of
metrics. Inevitably, the process of interpreting features of all factors descriptively involves
subjective judgment. Following previous studies (for example, Schwartz 2010), in addition
to identifying the main highest loadings for each factor, metrics with high factor loadings are
also identified in order to interpret the factors since these metrics with larger values are more
important ones contributing to the factor. Metrics with negative loadings are negatively
correlated with other metrics in the same factor. It is necessary to note that these identified
metrics are used for the purpose of interpreting factors only. In the second step, we retain the
set of metrics with the highest loading on each factor following suggestions by Riitters et al.
(1995) and Schwarz (2010).

When neighborhoods are defined by 1 km buffers, the first nine factors explain 81% of the
variation in the 27 metrics (Table 5). Only nine factors are retained because their associated
eigenvalues are greater than one. The communality value for each measure (shown by the
last column of Table 5) is the squared multiple correlation for predicting that measure from
the nine factors; lower communality values indicate a higher level of the unexplained
variance in the correlation matrix (Riitters et al. 1995). The loadings of each metric on each
of the nine factors after orthogonal Varimax rotation are also shown in Table 5. By
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examining the factor pattern presented in Table 5, we interpret the nine factors as follows.
The first factor is termed as land diversity, because it is highly correlated with measures of
land patch size diversity (arsd and pd) and land patch type diversity (sidi and cntg). The
second factor is street density, which is the most highly correlated with street length (totkm)
and intersection density (intd). The third factor, factual connectivity, measures street link-to-
node ratio (beta) and proportions of cul-de-sacs (culd) to intersections (intp). The fourth
factor is correlated only with the prevalence of secondary roads (a30pct). The fifth factor
measures land patch shape complexity (shmn and frmn). The sixth factor is highly correlated
with observed-to-maximum possible (links or routes) connectivity measures (alph and
gamm) thus leading to its name probable connectivity. The seventh factor is conveniently
labeled as accessible primary roads (a20pct). The eighth factor can be labeled as number of
parks (parks). Finally, the ninth factor is termed as inaccessible primary roads (a10pct).
From the above interpreted factors, we retain nine metrics with the highest loading on each
factor to encompass neighborhood form dimensions: permeability is represented by
connectivity and densities of different type of streets (beta, gamm, a10pct, a20pct, a30pct,
and totkm), vitality and accessibility of places is represented by differentiation in land patch
size (arsd), and variety is represented by land patch shape and specific land use type (shmn
and parks).

When neighborhoods are defined by 3 km buffers, the first seven factors explain 79% of
variation in the 27 metrics (Table 6). These seven factors are retained because their
associated eigenvalues are greater than one. The first factor is termed as land diversity
because it is highly correlated with measures of land patch size diversity (arsd and pd) and
land patch type diversity (sidi and cntg). The second factor is termed as connectivity since it
is associated with measures on street network connectivity (beta, gamm, alph, and intp). The
third factor measures land patch shape complexity (shmn and frmn). The fourth is named
inaccessible primary roads (a10pct). The fifth factor, street density, is most highly correlated
with street length (totkm) and intersection density (intd). The sixth factor is labeled as
number of parks (parks). Finally, the seventh factor is correlated only with the amount of
secondary roads (a30pct). From the above interpreted factors, we retain seven metrics with
the highest loading on each factor: permeability is represented by connectivity and densities
of different type of streets (beta, a10pct, a30pct, and totkm), vitality and accessibility of
places is represented by differentiation in land patch size (arsd), and variety is represented
by land patch shape and specific land use type (shmn and parks).

When neighborhoods are defined by 5 km buffers, the first six factors explain 78% of the
variation in the 27 metrics (Table 7). These six factors are retained because their associated
eigenvalues are greater than one. The first factor is labeled as street density since it is most
correlated with street nodes density (culd and intd) and street length (totkm). The second
factor is termed as connectivity since it is associated with measures on street network
connectivity (beta, gamm, alph, and intp). The third factor measures land patch shape
complexity (shmn and frmn). The fourth is termed as local roads (a40pct). The fifth factor,
land patch size diversity, is highly correlated with the measures of patch sizes (arsd and
armn). The last factor correlates to secondary roads (a30pct). From the above interpreted
factors, we retain six metrics: permeability is represented by connectivity and densities of
different type of streets (beta, culd, a30pct and a40pct), vitality and accessibility of places is
represented by differentiation in land patch size (arsd), and variety is represented by land
patch shape (shmn).

Finally, when neighborhoods are defined by 8 km buffers, the first six retained factors
explain 80% of variation in the 27 metrics (Table 8). The first five dimensions are identical
to the ones identified by the factor analysis at the 5 km buffer level. The last dimension is
termed as inaccessible primary roads (a10pct). From the above interpreted factors, we retain
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six metrics: permeability is represented by connectivity and densities of different type of
streets (beta, culd, a10pct and a40pct), vitality and accessibility of places is represented by
differentiation in land patch size (arsd), and variety is represented by land patch shape
(shmn).

Table 9 summarizes the set of metrics with highest loadings at different neighborhood buffer
sizes. This set of results is also compared to the results from the oblique rotation and the
maximum likelihood method of factoring. The interpretation of all sets of results employing
different factoring methods remains to be consistent.

Validation results from cluster analyses further indicate that the reduced set of metrics is
sufficient in interpreting different types of neighborhood forms. As shown in Table 10, when
neighborhoods are defined by 1 km buffers, the cluster analysis on both sets of metrics – the
original set of 27 metrics and the reduced set of 9 metrics – delineates 20,467 neighborhoods
into seven types of neighborhoods: rural, rural cluster, exurban, greenfield suburban, outer
suburban, inner suburban, and urban core. Furthermore, 94 percent of neighborhoods are
defined to be in the same neighborhood type by two sets of results. This indicates that when
the reduced set of metrics is used to define different neighborhood types, the results are to a
great extent identical to those when a large set of redundant metrics are used. For brevity,
results from cluster analyses for the other buffer sizes are not shown here but are available
upon request from the authors.

4. Discussion and Conclusion
The exploration on neighborhood form and its associated outcomes has attracted a lot of
attention by researchers and practitioners in recent decade. These studies on neighborhood
form have relied either on limited and ill-defined metrics or on multiple but often highly
intercorrelated measures of neighborhood form. There is a need for identifying a smaller set
of metrics encompassing different dimensions of neighborhood form. This set of metrics has
its benefits, including reducing computation work and being useful in statistical analysis on
urban form and its associated outcomes. For example, in studies of physical activity, travel,
and air quality outcomes of neighborhood form, a small set of uncorrelated metrics can be
included as independent variables in regression equations to test their implications.

In this study, we first identify twenty-seven metrics of neighborhood form, grounded in the
theoretical literature, that describe 20,467 neighborhoods using public, nationally available
Geographic Information System (GIS) data. We then use factor analysis to reduce these
metrics to six to nine measures depending on neighborhood sizes. Validation results further
indicate that these factors sufficiently characterize neighborhood environments and they are:
land diversity, street density, connectivity (both factual and probable), land shape
complexity, number of parks, and road types (including accessible primary roads, limited
primary roads, secondary roads, and local roads). These results suggest that a subset of
neighborhood environment factors can be statistically isolated from a larger set of
characteristics, and that the composition of the subset is only partially dependent on
neighborhood size. Overall, the number of significant factors decreases as neighborhood size
increases. Five of the nine factors are significant across three or more different
neighborhood sizes, showing that this method produces relatively stable results as
neighborhood size varies (Table 9). The most consistently significant factors include the
density of limited primary roads and secondary roads, street network connectivity,
neighborhood shape and variation in land patch size. Cul-de-sac density and the density of
local roads are only significant for the larger (5 km and 8 km) neighborhood sizes. Road
length and the number of parks are only significant for small (1 and 3 km) neighborhood
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sizes. Other findings of the study suggest that raw metrics have greater variation and thus
result in a larger set of dimensions when the neighborhoods are defined by smaller buffers.

The metrics of neighborhood form identified in this study contributes to research in several
ways. First, the metrics are quantifiable with clarity in illustrating concepts such as access
and diversity. Second, the reduced metrics encompass different dimensions of urban form.
Third, by minimizing intercorrelation between variables, these metrics are efficient to
describe neighborhood form. Finally, since this sample of 20,467 neighborhoods covers a
variety of representative neighborhood types across the United States (Nelson et al. 2006),
the reduced set of metrics generated in this exercise may persist to other studies using
different neighborhood definitions, such as zip codes, tracts, block groups, or user-defined
boundaries.

Despite the above mentioned advantages, it is necessary to point out that our identification
of metrics is limited by data availability, thus missing a range of both quantitative and
qualitative indicators of neighborhood form such as the availability of public transit, bike
lanes, sidewalks, scale of buildings, placement of buildings on lots, and so on. In addition,
this quantitative approach of examining a national sample of neighborhoods is not feasible
for carrying out visual analysis of neighborhood maps and aerial photos and in-the-field
mapping of qualitative neighborhood characteristics. In comparison to qualitative metrics,
the developed quantitative metrics are relatively abstract and are thus difficult for many
members of the public to understand (Wheeler 2008). Nevertheless, this study generates a
set of quantitative metrics which would be more convenient to researchers to facilitate
studies of neighborhood form and associated outcomes at regional or national level. Future
studies need to be carried out to include qualitative metrics developed in the field of urban
design to achieve multiple research purposes, such as proposing sustainable urban design
principles, based on fine-grained and policy-relevant assessment of neighborhood
characteristics.
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Research Highlights

• We identify a reduced set of metrics to quantify neighborhood form for
neighborhoods with varying sizes.

• Land diversity, street density, connectivity, shape complexity, and proportion of
different road types can be used to quantify neighborhood forms sufficiently.

• A reduced set of neighborhood metrics reduces computation efforts.

• These neighborhood metrics can facilitate statistical analyses testing
neighborhood form and community outcomes.
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Figure 1.
Conceptualization of neighborhood metrics
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Table 1

Definition of land cover classifications

Land Cover Analysis
Class in This Study

NLCD 2001 Level II Code

1 Water or Perennial Ice 11 Open Water; 12 Perennial Ice/Snow

2 Developed, Low and
Medium Density

22 Developed, Low Intensity; 23 Developed, Medium Intensity

3 Developed, High
Density

24 Developed, High Intensity

4 Developed,
Recreational

21 Developed, Open Space

5 Undeveloped/Natural 31 Barren Land (Rock/Sand/Clay); 32 Unconsolidated Shore; 41
Deciduous Forest; 42 Evergreen Forest; 43 Mixed Forest; 51
Dwarf Scrub; 52 Shrub/Scrub; 71 Grassland/Herbaceous; 72
Sedge/Herbaceous; 73 Lichens; 74 Moss; 90 Woody Wetlands;
91 Palustrine Forested Wetland; 92 Palustrine Scrub/Shrub
Wetland; 93 Estuarine Forested Wetland; 94 Estuarine
Scrub/Shrub Wetland; 95 Emergent Herbaceous Wetlands; 96
Palustrine Emergent Wetland (Persistent); 97 Estuarine
Emergent Wetland; 98 Palustrine Aquatic Bed; 99 Estuarine
Aquatic Bed

6 Agricultural 81 Pasture/Hay; 82 Cultivated Crops
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Table 2

A list of 27 neighborhood environment metrics and the definitions

Variable Definitions and measurements

ca_c2 Area of the low and medium density development in each buffer

ca_c3 Area of the high density development in each buffer

ca_c4 Area of developed recreational land use in each buffer

ca_c5 Area of undeveloped natural land in each buffer

ca_c6 Area of agricultural land in each buffer

totkm Total length of roads in km

a10pct The proportion of primary roads with limited access in the neighborhood

a20pct The proportion of primary roads without limited access in the neighborhood

a30pct The proportion of secondary roads in the neighborhood

a40pct The proportion of and local roads with lower speed limits and possibly sidewalks in the neighborhood

parks Number of parks in each buffer

alph
Ratio measure of observed to maximum possible route alternatives (circuitry) between nodes; alph , where V is the
number of nodes and L is the number of links (connections between nodes)

beta

Ratio measure of links and nodes; beta = , where V is the number of nodes and L is the number of links

gamm
Ratio measure of observed links and maximum possible number of links; gamm , where Lobs is the number of ob
links and the maximum possible number of links in a network = 3(V-2)

cycl Number of route alternatives (circuits) between nodes; cycl = L−V+ 1, where V is the number of nodes and L is the number of
links

culd Number of cul-de-sacs per neighborhood

intd 3-way & 4-way intersection density per neighborhood

intp Proportion of 3-way & 4-way intersections

armn The mean land patch size

arsd
The root mean squared error (deviation from the mean) in patch size, calculated by the square root of the sum of the squared
deviations of patch size from the mean value of patch size computed for all patches in the landscape, divided by the total number
of patches

cntg

A measure of the level of interspersion of land patch types with a range value between 0 and 100; cntg approaches 0 when the
patch types are maximally disaggregated (i.e., every cell is a different patch type) and interspersed (equal proportions of all
pairwise adjacencies), it equals to 100 when all patch types are maximally aggregated; i.e., when the landscape consists of single
patch

frmn Mean Fractal Dimension Index, a measure of perimeter and shape complexity

pafr Perimeter-area Fractal Dimension, also a measure of perimeter and shape complexity

pd Land patch density, calculated by the number of patches in the landscape or class divided by total buffer area

pr Number of different types of land classes present within each neighborhood buffer

shmn
Mean Shape Index, a measure of overall shape complexity; calculated by patch perimeter (given in number of cell surfaces)
divided by the minimum perimeter (given in number of cell surfaces) possible for a maximally compact patch (in a square raster
format) of the corresponding patch area.
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Variable Definitions and measurements

sidi
Simpson’s Diversity Index, a measure of distribution of different type of land classes; Sidi equals 0 when the neighborhood
contains only one land class (i.e., no diversity), and approaches 1 as the number of different land classes (i.e., land type richness,
pr) increases and the proportional distribution of area among land classes is more equitable.
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Table 5

Results of factor analysis and Varimax rotation of the first 9 factors – 1km buffer

Factors 1 2 3 4 5 6 7 8 9

Eigenvalue 7.2950 4.7718 2.2299 1.8699 1.6880 1.5732 1.2033 1.0319 1.0014

Cum. variance 0.2605 0.4309 0.5106 0.5774 0.6377 0.6938 0.7368 0.7737 0.8094

Factor pattern after Varimax rotation Communality

ca_c2k1 0.3339 0.4801 −0.2793 −0.0600 −0.1800 −0.0787 −0.1303 −0.3078 0.2499 0.6364

ca_c3k1 0.0110 0.7827 0.0801 0.0190 −0.0786 −0.0212 −0.0116 0.2194 −0.2144 0.7204

ca_c4k1 0.4114 −0.1006 0.2510 −0.1466 −0.2524 −0.0312 −0.1463 −0.0339 −0.1712 0.3804

ca_c5k1 −0.3192 −0.6898 −0.1849 0.0551 0.1219 0.0382 0.1656 0.0216 −0.0130 0.6593

ca_c6k1 −0.0993 −0.5877 0.3531 0.0279 0.1930 0.0789 −0.0305 0.0126 0.0290 0.5260

totkmk1 0.1272 0.9565 −0.0525 −0.0220 −0.1062 −0.0321 −0.0558 −0.0254 −0.1102 0.9626

a10pctk1 0.0144 0.0492 −0.1110 0.0883 0.0315 −0.0013 −0.0687 −0.0595 −0.9277 0.8926

a20pctk1 −0.0819 −0.1072 0.0280 0.0117 0.0351 0.0217 0.9106 −0.0682 0.0524 0.8574

a30pctk1 0.0546 −0.0471 0.0592 0.9370 −0.0328 −0.0155 −0.1454 0.0468 0.1113 0.9236

a40pctk1 −0.0247 0.0531 −0.0107 −0.8014 0.0036 −0.0088 −0.2629 0.0357 0.4896 0.9560

parksk1 −0.0352 0.0601 −0.0544 0.0298 −0.0291 0.0099 −0.0754 0.8807 0.0859 0.7983

alphk1 −0.1748 −0.0628 0.1121 −0.0014 0.0320 0.9317 −0.0236 −0.0221 0.0098 0.9533

betak1 −0.3632 0.2080 0.7208 0.0774 0.0337 0.0326 −0.0796 −0.0923 0.0769 0.7237

gammk1 −0.0988 −0.0035 0.0229 −0.0073 0.0156 0.9765 0.0374 0.0270 −0.0081 0.9663

cyclk1 −0.0038 0.9213 0.1446 −0.0254 −0.0680 0.0024 0.0083 0.0175 0.0635 0.9174

culdk1 0.3243 0.2596 −0.7162 −0.0498 −0.0521 −0.1580 −0.1590 −0.0482 −0.0274 0.7440

intdk1 0.1060 0.9311 −0.0315 −0.0377 −0.0681 −0.0384 −0.0233 −0.0040 0.0794 0.9183

intpk1 −0.0182 0.5380 0.6903 0.0288 −0.0471 0.1452 0.0212 −0.0381 0.1670 0.8202

armn_lk1 −0.8297 −0.2467 0.0253 −0.0312 0.0100 0.1047 −0.0281 −0.0474 0.0122 0.7651

arsd_lk1 −0.9405 −0.1251 0.0399 −0.0141 −0.1160 0.0962 −0.0116 −0.0153 0.0090 0.9252

cntg_lk1 −0.8719 0.0822 0.1150 −0.0306 −0.1944 0.0555 0.1280 0.1137 −0.0573 0.8545

frmn_lk1 0.1252 −0.2081 0.0328 −0.0174 0.9044 0.0203 0.0328 −0.0018 −0.0266 0.8805

pafr_lk1 0.7629 0.2690 −0.1708 0.0304 0.3304 −0.0692 −0.0147 −0.0102 −0.0100 0.7988

pd_lk1 0.8816 0.1198 −0.1357 0.0247 −0.1840 −0.0729 −0.0173 −0.0081 −0.0399 0.8518

pr_lk1 0.4788 0.0779 0.2324 −0.1055 −0.0876 −0.0966 0.3590 0.3113 −0.2012 0.5837

shmn_lk1 0.0839 −0.1233 0.0036 −0.0206 0.9632 0.0330 0.0019 −0.0226 −0.0088 0.9522

sidi_lk1 0.8794 −0.1111 0.0033 −0.0202 0.2295 −0.0693 −0.0188 −0.0017 0.0251 0.8446
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Table 6

Results of factor analysis and Varimax rotation of the first 7 factors – 3km buffer

Factors 1 2 3 4 5 6 7

Eigenvalue 8.5063 5.4600 2.8061 1.8203 1.3510 1.0982 1.0423

Cum. variance 0.3038 0.4988 0.5990 0.6640 0.7123 0.7515 0.7887

Factor pattern after Varimax rotation Communality

ca_c2k3 0.4620 −0.0817 −0.1469 −0.1171 0.5868 −0.2539 0.1003 0.6742

ca_c3k3 0.1481 0.3470 −0.1202 0.1447 0.7627 0.1175 −0.0565 0.7764

ca_c4k3 0.4962 0.1146 −0.3833 0.1181 0.0213 −0.0347 0.2766 0.4984

ca_c5k3 −0.5014 −0.4459 0.0706 0.0417 −0.4789 0.0236 0.0100 0.6870

ca_c6k3 −0.0427 0.1700 0.2117 −0.0712 −0.7148 0.0077 −0.0630 0.5955

totkmk3 0.2898 0.2848 −0.1105 0.0396 0.8877 −0.0162 0.0140 0.9674

a10pctk3 0.0975 −0.0865 0.0574 0.8994 0.0889 −0.0784 0.0850 0.8504

a20pctk3 −0.1656 −0.0317 −0.0090 0.0518 −0.2765 0.5575 0.3010 0.5091

a30pctk3 0.1141 −0.0041 −0.0643 0.1136 −0.0268 −0.0383 −0.9221 0.8825

a40pctk3 −0.0808 0.0445 0.0268 −0.7854 0.0819 −0.1637 0.4739 0.8842

parksk3 −0.1231 0.1336 −0.0383 0.0535 0.2918 0.5667 −0.0816 0.4503

alphk3 −0.1561 0.9169 −0.0399 −0.0099 0.0910 −0.0508 0.0012 0.8776

betak3 −0.0635 0.9525 −0.0531 −0.0397 0.2144 0.0516 0.0016 0.9637

gammk3 −0.1862 0.9365 −0.0424 −0.0149 0.0855 −0.0404 0.0088 0.9228

cyclk3 0.1264 0.4791 −0.0911 −0.0450 0.8113 0.0766 −0.0064 0.9199

culdk3 0.4074 −0.4165 −0.0262 −0.0046 0.6514 −0.2022 0.0045 0.8053

intdk3 0.2308 0.3241 −0.0803 −0.0528 0.8777 0.0118 0.0045 0.9380

intpk3 0.1622 0.8509 −0.0320 −0.0916 0.2683 0.1040 0.0020 0.8425

armn_lk3 −0.6641 −0.0984 −0.1904 0.0557 −0.0866 −0.2984 0.2002 0.6267

arsd_lk3 −0.8967 −0.0394 −0.2332 0.0083 −0.1524 −0.1593 0.1331 0.9086

cntg_lk3 −0.8535 0.0813 −0.1639 −0.0580 −0.1656 0.1207 −0.0258 0.8804

frmn_lk3 0.2196 −0.0803 0.8802 0.0244 −0.2145 0.0035 0.0471 0.8783

pafr_lk3 0.6957 −0.0807 0.3409 0.0915 0.3498 0.0868 −0.1611 0.7709

pd_lk3 0.7893 −0.1902 −0.1159 0.1473 0.3802 −0.1358 −0.0120 0.8574

pr_lk3 0.5476 −0.0406 −0.0911 −0.0002 0.0111 0.4597 −0.0337 0.5224

shmn_lk3 0.1744 −0.0714 0.9286 0.0187 −0.1634 −0.0220 0.0398 0.9268

sidi_lk3 0.8687 −0.0392 0.2190 −0.0098 0.0575 −0.0515 0.0017 0.8103
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Table 7

Results of factor analysis and Varimax rotation of the first 6 factors – 5km buffer

Factors 1 2 3 4 5 6

Eigenvalue 9.5787 5.0714 2.7708 1.8599 1.3575 1.1155

Cum. variance 0.3421 0.5232 0.6222 0.6886 0.7371 0.7769

Factor pattern after Varimax rotation Communality

ca_c2k5 0.8118 0.0474 −0.0030 0.0704 −0.2032 0.1141 0.7205

ca_c3k5 0.6046 0.6067 −0.1872 −0.0966 −0.0365 −0.1206 0.7939

ca_c4k5 0.3992 0.1223 −0.1031 −0.2121 −0.2200 0.4396 0.4716

ca_c5k5 −0.4567 −0.6076 −0.0322 0.0549 0.3680 −0.0991 0.7270

ca_c6k5 −0.6941 −0.0431 0.2595 −0.0311 −0.1814 0.0815 0.5915

totkmk5 0.8017 0.5359 −0.1324 −0.0120 −0.0997 −0.0361 0.9588

a10pctk5 0.1423 −0.0392 −0.0123 −0.8081 −0.0430 0.1458 0.6980

a20pctk5 −0.4222 −0.0921 −0.1125 −0.0643 0.0692 0.3294 0.3168

a30pctk5 0.0714 0.0139 0.0178 −0.2947 −0.1589 −0.8009 0.7592

a40pctk5 0.0327 0.0270 0.0527 0.8582 0.0930 0.3652 0.8832

parksk5 0.0945 0.4547 −0.2024 −0.1508 0.0607 −0.0053 0.2831

alphk5 −0.0178 0.9653 −0.0481 0.0161 −0.0083 0.0015 0.9631

betak5 0.0141 0.9833 −0.0479 0.0136 −0.0329 0.0022 0.9704

gammk5 −0.0291 0.9521 −0.0505 0.0167 0.0019 0.0007 0.9605

cyclk5 0.6150 0.7143 −0.1652 0.0333 −0.0180 −0.0589 0.9206

culdk5 0.8825 −0.1583 −0.0023 0.0540 −0.1779 −0.0410 0.8400

intdk5 0.7557 0.5780 −0.1279 0.0468 −0.0671 −0.0489 0.9305

intpk5 0.0625 0.9348 0.0348 0.0185 −0.1486 0.0331 0.9024

armn_lk5 −0.0149 −0.0922 0.0833 −0.0645 0.8254 0.1552 0.7252

arsd_lk5 −0.2998 −0.1254 −0.2044 0.0582 0.8759 0.0546 0.9210

cntg_lk5 −0.5902 −0.0339 −0.3604 0.1791 0.5984 −0.1419 0.8897

frmn_lk5 −0.0695 −0.1211 0.9351 0.0180 −0.0854 −0.0005 0.9016

pafr_lk5 0.4947 0.0492 0.2332 −0.1166 −0.5737 −0.2498 0.7066

pd_lk5 0.7714 −0.0523 0.0641 −0.2201 −0.4496 0.0172 0.8528

pr_lk5 0.1117 0.0746 −0.0863 −0.0445 −0.6842 0.0248 0.4962

shmn_lk5 −0.0744 −0.0909 0.9453 0.0462 −0.1108 −0.0407 0.9234

sidi_1k5 0.4460 0.0812 0.4118 −0.1176 −0.6204 0.1398 0.7933
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Table 8

Results of factor analysis and Varimax rotation of the first 6 factors – 8km buffer

Factors 1 2 3 4 5 6

Eigenvalue 10.7195 4.4039 2.7920 1.9493 1.3889 1.0718

Cum. variance 0.3828 0.5401 0.6398 0.7094 0.7590 0.7973

Factor pattern after Varimax rotation Communality

ca_2k8 0.8676 0.0821 0.0336 0.0661 −0.1071 0.0693 0.7813

ca_c3k8 0.6023 0.6519 −0.2035 −0.0862 0.0014 −0.1049 0.8475

ca_c4k8 0.5259 0.1533 −0.1342 0.0382 −0.1230 0.4324 0.5217

ca_c5k8 −0.4592 −0.6480 −0.0595 0.0188 0.3027 −0.2294 0.7789

ca_c6k8 −0.6432 −0.0666 0.2701 0.0179 −0.2368 0.3035 0.6396

totkmk8 0.7988 0.5511 −0.1322 −0.0165 −0.0441 −0.0687 0.9662

a10pctk8 0.1644 0.0038 −0.0997 −0.6131 −0.0203 0.5242 0.6879

a20pctk8 −0.4056 −0.1631 −0.1264 0.0503 0.1698 0.2031 0.2797

a30pctk8 0.0948 0.0285 0.0744 −0.7191 −0.1864 −0.4340 0.7556

a40pctk8 −0.0209 0.0168 0.0755 0.9465 0.0326 −0.0817 0.9096

parksk8 0.1316 0.5436 −0.2844 −0.0404 0.0387 0.0063 0.3969

alphk8 0.0365 0.9430 −0.0261 0.0014 −0.0632 0.0136 0.9737

betak8 0.0494 0.9837 −0.0249 0.0000 −0.0693 0.0128 0.9750

gammk8 0.0315 0.9310 −0.0276 0.0015 −0.0601 0.0137 0.9732

cyclk8 0.6108 0.7236 −0.1753 −0.0215 0.0104 −0.1181 0.9419

culdk8 0.9160 −0.0804 −0.0186 0.0587 −0.1063 −0.0717 0.8656

intdk8 0.7523 0.5921 −0.1380 0.0020 −0.0202 −0.1078 0.9476

intpk8 0.0627 0.9474 0.0634 0.0158 −0.1345 0.0439 0.9258

armn_lk8 −0.1056 −0.0949 0.0559 0.0817 0.8090 0.1216 0.7656

arsd_lk8 −0.4043 −0.1828 −0.2205 0.1335 0.8462 −0.0645 0.9174

cntg_lk8 −0.7060 −0.1375 −0.3150 0.1159 0.4521 −0.2830 0.9145

frmn_lk8 −0.0128 −0.0998 0.9488 0.0263 −0.0388 0.0031 0.9125

pafr_lk8 0.5896 0.1030 0.2052 −0.2594 −0.3827 −0.1961 0.6525

pd_lk8 0.8602 0.0537 0.0508 −0.1522 −0.2727 0.1464 0.8643

pr_lk8 0.1464 0.1267 −0.0198 0.1228 −0.6790 0.0761 0.5197

shmn_lk8 −0.0227 −0.0609 0.9579 0.0478 −0.0798 −0.0396 0.9321

sidi_lk8 0.5496 0.1931 0.3845 −0.0812 −0.5013 0.2636 0.8145
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Table 9

Summary table of loadings of retained metrics at different neighborhood scales

Metrics Symbol 1 km
buffer

3 km
buffer

5 km
buffer

8 km
buffer

Road Density of Primary Roads With Limited Access a10pct −0.9277 0.8994 - 0.5240

Road Density of Primary Roads Without Limited Access a20pct 0.9106 - - -

Road Density of Secondary Roads a30pct 0.9370 −0.9221 −0.8009 -

Road Density of Local roads a40pct - - 0.8582 0.9463

Land Patch Size (Root Mean Squared Error) arsd −0.9405 −0.8967 0.8759 0.8462

Connectivity Beta Index beta 0.7200 0.9522 0.9832 0.9834

Cul-de-sac Density culd - - 0.8825 0.9160

Connectivity Gamma Index gamm 0.9765 - - -

Parks parks 0.8807 0.5667 - -

Mean Shape Index shmn 0.9632 0.9286 0.9453 0.9579

Road Length totkm 0.9565 0.8877 - -
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Table 10

Validation Results for 1-km buffers

Cluster
Type

Descriptions of types (clusters) of neighborhood form # of neighborhoods
in each cluster

(with 27 metrics)

# of neighborhoods
in each cluster

(with 9 metrics)

# of neighborhoods
in

the intersection of
two

sets of results

1
Rural: Extremely low road density and street
connectivity, large
land patches with almost no variety of land uses

4531 4548 4419

2
Rural cluster: very low road density and street
connectivity, large
land patches with limited variety of land uses

1839 1889 1721

3
Exurban: Very low road density and street connectivity,
large land
patches with limited variety of land uses

2744 2789 2529

4

Greenfield suburban: Low road density and connectivity,
highway
access, moderate size of land patches, limited variety of
land uses

2554 2369 2260

5
Outer suburban: Moderate road density, low street
connectivity,
mid-size land patches, a bit variety of land uses

3732 3840 3630

6
Inner suburban: Moderate road density and connectivity,
small-size
land patches, moderate variety of land uses

2769 2648 2529

7
Urban core: High road density and connectivity, very
small land
patches, a high level of variety of land uses

2298 2214 2101

        Total: 20467 20467 19189 (94% of 20467)
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