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† Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity
and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the
effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2].
† Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once
expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorp-
orating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to
elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models
to have small parameterization requirements and yet generate phenotypic plasticity under changing environmen-
tal conditions need to capture the carbon–nitrogen interactions during crop growth.
† Conclusions The performance of the improved models depends little on the type of the experimental facilities
used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and
other climatic variables on crop productivity.
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nitrogen.

INTRODUCTION

World agriculture faces daunting challenges to meet growing
demands for food, energy and other agricultural products.
Crop production is, however, strongly affected by climate
change. Lobell et al. (2011) showed that climate trends since
1980 were large enough in many countries to offset a signifi-
cant proportion of the potential increases in average crop
yields due to technological advances, CO2 fertilization and
other factors. By 2100, potentially, atmospheric [CO2] will
rise to 1000 mmol mol21, temperature will rise by 2–4 8C or
more, precipitation will become more variable, and episodes
of extreme weather will become more frequent and intense
and last longer (IPCC, 2007). It is important to assess
whether there will be sufficient food and energy production
under future climate conditions. Such an assessment can also
assist in developing adaptation strategies that improve the re-
silience of crop systems to stresses induced by climate change.

Numerous studies have assessed the impact of climate change
on productivity of major crops. Whilst simple regression ana-
lysis can detect a non-linear response of crop yields to warm
climate (Schlenker and Roberts, 2009; Lobell et al., 2011),
process-based crop simulation models (hereafter ‘crop
models’) combined with climate scenario models are considered
necessary to assess the impact of climate change on crop produc-
tion (Porter et al., 1995; Hulme et al., 1999; White et al., 2004;
Challinor et al., 2009; Semenov and Halford, 2009; Soussana
et al., 2010). Early assessments at the global level (e.g.
Rosenzweig and Parry, 1994) often used simple crop models

based on empirical experimental data to define impacts of
elevated [CO2] and other factors on crop processes. More mech-
anistic ecophysiological models, although not necessarily
defined originally for climate change impact assessment, are in-
creasingly used (e.g. Tubiello and Ewert, 2002).

Research on mechanistic crop models, according to Tardieu
(2010), has a history of approx. 50 years since the earliest
models such as developed by de Wit (1959). These models
predict crop productivities based on quantitative functional
relationships for underlying processes (photosynthesis, respir-
ation, transpiration, assimilate partitioning, etc.) and their re-
sponse to environmental variables. Thus, they are believed to
be suitable for projecting the impact of future climate scen-
arios on crop productivity at various (field, regional, national,
global) scales (Challinor et al., 2009).

Although crop models have continuously been refined
(Weiss, 2003; Priesack and Gayler, 2009), knowledge gaps
limit the ability of current crop models to reflect responses
to global change factors (White et al., 2004). Many reports
emphasize the need to review critically and improve crop
models for assessments of climate change impacts (e.g.
Lawlor and Mitchell, 1991; Tubiello et al., 2007a; Ziska and
Bunce, 2007; Challinor et al., 2009; Soussana et al., 2010).
Rötter et al. (2011) indicated that many of the current
models used for estimating potential impacts of climate
change do not incorporate the latest knowledge about how
crops respond to changing climates and management practices.
Yet, reports dedicated towards how to improve crop models for
climate impact assessment are rare.
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The objective of this paper is to outline how models for
assessing the impact of elevated [CO2] can be improved. The
current status in using crop models for assessing the impact
of elevated [CO2] is briefly reviewed. I then analyse whether
there are differences in quantitative functional relationships
for a number of traits between plants grown under the elevated
CO2 and those grown under ambient conditions. Key issues for
modelling crop responses to elevated [CO2] will be discussed.

PERFORMANCE OF EXISTING CROP MODELS

Models for climate change impact assessment need to capture
responses of crop growth to all major environmental variables.
Much research has focused on crop responses to elevated at-
mospheric [CO2] (Long et al., 2004), using various experimen-
tal facilities [such as growth chamber, temperature-gradient
tunnel, open-top chamber and free-air CO2 enrichment
(FACE) technology]. As a result, the impact of elevated
[CO2] has been a constant focus in modelling. One of the
first studies that assessed climate impacts on crop production
was conducted by Rosenzweig and Parry (1994). The physio-
logical effects of [CO2] on crop growth were considered to be
mediated through increased rates of net photosynthesis and
reduced stomatal openings as reported from early experimental
results in enclosure chambers. The ratio of photosynthetic rates
at 555 mmol mol21 to that at 330 mmol mol21 CO2 for
soybean (Glycine max), wheat (Triticum aestivum), rice
(Oryza sativa) and maize (Zea mays) were 1.21, 1.17, 1.17
and 1.06, respectively. Stomatal resistance was assumed to
increase from 34.4 to 49.7 s m21 in C3 crops and from 55.8
to 87.4 s m21 in C4 crops with [CO2] increase from 330 to
555 mmol mol21. More recently, Tubiello and Fischer (2007)
even used the ultra-simple model AEZ to simulate crop re-
sponse to elevated [CO2], i.e. as a multiplier of the harvest
yield obtained under current [CO2]. The multiplier was
derived from experiments under controlled conditions, which
indicated a 25 % increase in yield of C3 crops (such as
wheat, rice and soybean), and a 10 % increase in the yield of
C4 crops (such as maize and sugarcane) for a doubling of
the current atmospheric [CO2]. Empirical approaches to
include impacts of elevated [CO2] have also been used in
other crop models, e.g. CERES (Tubiello et al., 1999).

Tubiello et al. (2007a) reported that some models used in
impact assessment have not been evaluated against FACE
data. Where this has been carried out, Tubiello and Ewert
(2002) found that five widely used crop models reproduced
well the effects of elevated [CO2] on wheat in the Maricopa
FACE experiment of Kimball et al. (1995). However, this
statement was challenged by Long et al. (2005, 2006) and
Ainsworth et al. (2008a), who re-analysed modelled CO2 en-
hancement ratio compared with experimental response ratio
(Fig. 1). They concluded that current crop models over-
estimated the CO2 fertilization effect both under well-watered
conditions and under drought-stress conditions. CO2 enhance-
ment ratios from similar experimental set-ups were also over-
predicted by other models, e.g. APSIM (Asseng et al., 2004)
and SPASS (Biernath et al., 2011).

The observed CO2 enhancement ratio on yield and other
plant traits is generally lower in FACE than in enclosed cham-
bers (e.g. de Graaff et al., 2006; Ainsworth et al., 2008a). In

my opinion, this may be explained by the difference in the
scale of experiments (typically plots of .300 m2 in FACE
vs. ,4 m2 in enclosure studies). Because of reduced chance
of mutual shading, leaves in enclosures tend to receive
higher light; under high-light conditions photosynthesis is
more likely limited by Rubisco capacity than by electron trans-
port. Rubsico-limited photosynthetic rates are stimulated more
by elevated [CO2] than electron transport-limited rates
(Kirschbaum, 2011). The increased photosynthetic rates can
result in higher leaf area that will further lead to more light
interception and biomass production. However, there have
also been doubts about whether the lower enhancement
values in FACE reflect a flaw of the FACE technology. For
example, in the experiment of Kimball et al. (1995) control
plots lacked the blowers that were installed in the elevated
[CO2] plots. Such a difference may have resulted in a relatively
lower measured response to elevated [CO2] than if both treat-
ments were similarly equipped (Kimball, 2013). Furthermore,
Holtum and Winter (2003) and Bunce (2012) showed that fre-
quent fluctuations in [CO2], as commonly occurred in FACE,
may diminish the response of leaf photosynthesis to elevated
[CO2]. One can predict from the convex nature of the photo-
synthetic [CO2] response curve that fluctuations in [CO2] can
lead the FACE systems to an underestimation of steady-state
photosynthetic rates at projected future [CO2] concentrations.
If fluctuations are highly irregular and variable, steady-state

1·0

1·1

1·2

1·3

1·4

1·5

G
ra

in
 y

ie
ld

 r
at

io

Well watered

Water stressed

FI G. 1. Observed stimulation of grain yields of well-watered and water-stressed
wheat crops grown under ambient CO2 (370 mmol mol21) and elevated CO2

(550 mmol mol21) for the free-air CO2 enrichment (FACE) experiment conducted
in Maricopa, Arizona, USA (see Kimball et al., 1995). The stimulation ratio was
expressed as the average ratio of grain yield under elevated CO2 to the yield
under ambient CO2 for the two growing seasons 1992–1993 and 1993–1994.
The modelled stimulation ratio from five crop models (Demeter, LINTUL,
AFRC, mC-wheat, Sirius) previously evaluated by Tubiello and Ewert (2002)
and that from model GECROS evaluated by Yin and Struik (2010) were also
given. The observed stimulation effects was not over-predicted by GECROS.
Other models tended to over-estimate the effects, largely leading Long et al.
(2006), Ainsworth et al. (2008a) and Leakey et al. (2009) to conclude that
model parameterization based on chamber experiments is inappropriate to
project crop response to elevated CO2 under field conditions. Reproduced from

Yin and Struik (2010) with permission.
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photosynthesis may not be achieved and the impact becomes
complicated to predict quantitatively. Ainsworth and Long
(2004), however, argued that [CO2] fluctuations seem an un-
likely explanation of the lower stimulation in the FACE experi-
ments. First, there was no evidence for the difference in
photosynthetic electron transport rate between constant and
fluctuating elevated [CO2] in wheat for oscillations of a half-
cycle of 30 s or less, which would include most of the fluctua-
tions observed in the FACE systems (Hendrey et al., 1997).
Second, fluctuations in [CO2] are also observed in open-top
chambers, albeit to a lesser extent.

Long et al. (2004, 2005, 2006) and Ainsworth et al. (2008a)
therefore expressed concern that there may be some quantita-
tive differences in how crops respond to elevated [CO2] in
FACE and chamber experiments. They suggested that con-
trolled chamber environments were not the best experimental
facilities to parameterize crop models for estimating CO2 re-
sponse ratio of crop yield, as FACE has revealed factors in
field conditions that were not identified by chamber experi-
ments (e.g. increased herbivory). The need for larger-scale
FACE experiments to determine how inter- and intraspecific
variations in crop yield are affected by [CO2] in combination
with other aspects of climate change was collectively proposed
by a large group of scientists (Ainsworth et al., 2008b). I will
examine this controversial issue later.

There have been debates (e.g. Tubiello et al., 2007b) on the
statement of Long et al. (2005, 2006) and Ainsworth et al.
(2008a) about quantitative differences in crop response to ele-
vated [CO2] between FACE and chamber experiments. Ziska
and Bunce (2007) analysed a large set of compiled data and
found little evidence that relative increases of crop yield in re-
sponse to future [CO2] obtained using a number of enclosure
methodologies are quantitatively different from those with
FACE results for rice, wheat and soybean. They suggested
that instead of focusing on methodological disparities per se,
improved projection of the impact of future climate could be
achieved by better characterization of other biotic/abiotic un-
certainties associated with projected changes in [CO2] and in-
corporation of these uncertainties into crop models. For
example, they highlighted the result of Matsui et al. (1997)
that at air temperatures above 30 8C, the percentage of filled
rice spikelets under elevated [CO2] was lower than that
under ambient [CO2], a trend that is opposite to the positive
interaction between [CO2] and temperature on leaf photosyn-
thetic rates (Long, 1991). Such a response of spikelet fertility
could be explained, at least in part, by the reduction in tran-
spirational cooling, higher panicle temperature and thus
increased pollen sterility under elevated [CO2] conditions.

Obviously, the arguments of Ziska and Bunce (2007) were
proposed from different perspectives from those of Long
et al. (2005, 2006) and Ainsworth et al. (2008a). According
to Long et al. (2006) and Ainsworth et al. (2008a), most exist-
ing crop models are unable to accurately predict the impact of
elevated [CO2] on crop growth and yield, especially consider-
ing the interaction of [CO2] with other climatic factors, unless
substantial calibrations of model parameter values are made.
One possibility is that major crop models were developed
mainly from ambient [CO2] conditions; when used to assess
the impact of climate change, only some parameters were
modified from elevated-[CO2] experiments (Soussana et al.,

2010). This raises a question whether elevated [CO2] alters
quantitative functional relationships for plant growth used in
crop models.

DOES ELEVATED [CO2] CHANGE FUNCTIONAL
RELATIONSHIPS OF PLANT GROWTH?

This question will be discussed by analysing several physio-
logical processes or traits.

Leaf photosynthesis

Crop models quantify processes related to crop carbon (C)
or biomass accumulation in order to predict final seed yield.
Many crop models use a simple approach relating daily
biomass increase as a function of daily intercepted solar radi-
ation multiplied by radiation use efficiency (RUE) (e.g.
Asseng et al., 2004; Ko et al., 2010; also see review of
White et al., 2011). Other models quantify specifically crop
photosynthesis and respiration. To calculate photosynthesis,
often either an empirical light response equation (e.g.
Matthews et al., 1997; Tubiello et al., 1999) or a mechanistic
biochemical model (Grant, 2001; Rodriguez et al., 2001) is
first used to estimate leaf photosynthesis rate, which is then
scaled up to the canopy level.

It has been shown theoretically (van Oijen et al., 2004) and ex-
perimentally (e.g. van Oijen et al., 1999; Sakai et al., 2006) that
RUE varies with [CO2] concentration. Any RUE-based crop
models need to adjust RUE empirically to varying [CO2] (e.g.
Asseng et al., 2004; Ko et al., 2010). In the crop models
where leaf photosynthesis is modelled using an empirical light-
response equation, an underlying parameter – photosynthetic
rate under saturated light (Pmax) – was modified to depend on
the [CO2] concentration (Matthews et al., 1997; Tubiello et al.
1999), whereas the other underlying parameter – initial light-
use efficiency (1) – was assumed to vary (Matthews et al.,
1997) or not to vary (Tubiello et al., 1999) with the [CO2] con-
centration. Experimental measurements (e.g. Ehleringer and
Björkman, 1977) have long shown that under the ambient O2

conditions, 1 does vary with [CO2] in C3 plants. Even the
parameters Vcmax (maximum carboxylation rate of Rubsico),
Jmax (maximum electron transport rate under saturated lights)
and TPU (potential rate of triose phosphate utilization) of a
biochemical leaf-photosynthesis model proposed by Farquhar
et al. (1980) and extended by Sharkey (1985) were found to
decrease with increasing growth [CO2] concentrations in
cotton (Gossypium hirsutum) plants (Harley et al., 1992). All
these indicate that elevated [CO2] will result in changes in par-
ameter values or functional relationships of these traits used in
crop models.

Harley et al. (1992), however, also showed that photosyn-
thetic parameters Vcmax, Jmax and TPU correlate linearly
with leaf nitrogen (N) content, and the relationships between
these parameters and leaf N varied little with growth [CO2]
in cotton (Fig. 2). Similar linear relationships between Vcmax

or Jmax and leaf N across contrasting [CO2] were widely
reported, for example in ryegrass (Lolium perenne) (Nijs
et al., 1995) and in rice (Nakano et al., 1997), or across
diverse species (Ellsworth et al., 2004). A small deviation of
the Vcmax–leaf N relationship under elevated [CO2] from that
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under the ambient [CO2] (Fig. 2) could be explained by ele-
vated [CO2]-induced decrease in the investment of leaf N in
Rubisco (Sage et al., 1989; Leakey et al., 2009); however,
the significance of the deviation was only marginal (Harley
et al., 1992). This indicates that the aforementioned changes
in these parameters with [CO2] were predominantly due to ele-
vated [CO2]-induced decrease in leaf N. An eventual decline in
leaf N after plants grow for some period of time under elevated
[CO2] is commonly observed (e.g. Wong, 1990; Conroy and
Hocking, 1993; Luo et al., 1998; Dijkstra et al., 1999; van
Oijen et al., 1999; Kim et al., 2003; Sakai et al., 2006; Zhu
et al., 2009). The linear relationships between Vcmax (or
Jmax, TPU) and leaf N assume that leaf photosynthetic N is

linearly related to total N, which may generally be the case
(e.g. Hikosaka and Terashima, 1995). Macro-scale photosyn-
thesis parameters (e.g. RUE, Pmax, 1), however, even being
related to leaf N, are still affected by [CO2]. Moreover, their
relationship with N is often non-linear. For example, Sakai
et al. (2006) showed the quadratic relationship between RUE
and N in rice, with higher RUE under elevated than ambient
[CO2] conditions. Similarly, a hyperbolic relationship
between Pmax and N was shown by Hirose et al. (1997) for
Abutilon theophrasti, with higher Pmax under elevated [CO2]
conditions.

This also exemplifies an often asked question in crop model-
ling – how deep, but not deeper, should one go to obtain stable
values of a set of parameters in order to model a process in re-
sponse to environmental variables? A common view of crop
modellers is that parameterization of the biochemical model
for different crops is difficult and time consuming (Tubiello
and Ewert, 2002; Biernath et al., 2011). Given the availability
of a wealth of information for the key enzyme constants (see
review of Yin and Struik, 2009), which are believed to be con-
servative among C3 or C4 species, the task of parameterization
can focus on a few key parameters, estimated from readily avail-
able data (e.g. Medlyn et al., 2002) or measurements (e.g. Yin
et al., 2009). Yin and Struik (2009) showed that an empirical
leaf-photosynthesis model, as used by Matthews et al. (1997),
incorrectly predicts the interaction of temperature and elevated
[CO2] on parameters Pmax or 1. This problem can be overcome
by expressing Pmax and 1 based on formulae of the Farquhar
et al. (1980) biochemical model, as done by Mitchell et al.
(1995) and van Oijen et al. (2004).

Leaf photosynthesis rate and stomatal conductance (gs) are
closely coupled (Wong et al., 1979), and gs has a profound
effect on energy balance and leaf temperature, and hence on
water use. An additional advantage of using the biochemical
model is that once the model is coupled with an equation for
gs, the coupled model reliably predicts the response of gs to en-
vironmental variables, including [CO2] (Ball et al., 1987;
Leuning, 1995; Yin and Struik, 2009), and performs better
than an empirical multiplicative gs model (Li et al., 2012).
A similar argument may apply to modelling mesophyll con-
ductance in response to [CO2] and light levels (Yin et al.,
2009).

Leaf respiration

Besides photosynthesis, respiration has been examined ex-
tensively to determine whether it is altered by elevated
[CO2]. Review reports based on meta-analysis of multiple
experiments reveal an overall effect of CO2 on leaf respiration.
Such analyses made by Poorter et al. (1992; based on pub-
lished results for 47 species) and by Wang and Curtis (2002;
33 species) revealed that leaf respiration per unit leaf area
(Ra) was slightly increased for plants grown at high [CO2],
whereas a small decrease was found when respiration was
expressed on leaf weight basis (Rw, also known as ‘specific res-
piration rate’). Moreover, Wang and Curtis (2002) showed that
the longer were plants exposed to elevated [CO2], the smaller
was the increase in Ra and the greater was the reduction in Rw

by elevated [CO2]. Most studies used for the meta-analysis did
not measure leaf N content. Wullschleger et al. (1992) showed
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FI G. 2. Estimates of photosynthetic parameters Vcmax, Jmax and TPU plotted
as a function of leaf N in cotton plants. Squares, estimates obtained from re-
cently fully expanded leaves; circles, from leaves up to 18 d after full expan-
sion. For Vcmax, independent linear regressions were obtained for leaves of
plants grown in 35 (open symbols) and 65 Pa CO2 (filled symbols); regressions
for Jmax and TPU data are based on combined 35 and 65 Pa data (reproduced

from Harley et al., 1992) with permission.
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that leaf Rw differed among plants grown in three [CO2] treat-
ments, and the relationship of Rw values, despite a large scatter
within each [CO2] treatment, with leaf N concentration was
shared by plants grown under three [CO2] values (Fig. 3).
This means that leaf respiration, if expressed on leaf N basis,
will be affected little by [CO2]. Ryan (1991) showed a
similar linear relationship between Rw and N concentration
for a wide variety of species and plant tissues. This relation-
ship can explain the above-mentioned results of meta-analysis
of Poorter et al. (1992) and Wang and Curtis (2002), as ele-
vated [CO2] leads to a reduced leaf N concentration (Wong,
1990; Conroy and Hocking, 1993) and an increased leaf
mass/area ratio (Lawlor and Mitchell, 1991; Poorter et al.,
2009). Cannell and Thornley (2000) noted that maintenance
respiration is generically related to total N content, rather
than to biomass, because maintenance costs increase with
tissue protein content and overall metabolic activity (Barnes
and Hole, 1978). When maintenance is related to crop N
content (which indirectly represents active protein content),
there is little need for empirical correction of the maintenance
coefficients for different growing organs or developmental
stages (Cannell and Thornley, 2000), whereas such a correc-
tion is essential when maintenance respiration is related to
biomass (Penning de Vries et al., 1989; Matthews et al., 1997).

Canopy leaf area index

Not only can leaf photosynthesis or respiration be affected
by elevated [CO2] but so too can canopy-scale traits such as
leaf area index (LAI). As LAI determines the proportion of in-
coming radiation that is intercepted by a canopy, an accurate
quantification of LAI is important for modelling crop response
to elevated [CO2] (Ewert, 2004).

LAI varies significantly with [CO2] (e.g. Dijkstra et al.,
1999; Kim et al., 2003; Sakai et al., 2006) and, generally, ele-
vated [CO2] results in slightly higher LAI (see the review of
Ainsworth and Long, 2004). Most models assume that this
effect on LAI is indirect, via increased photosynthesis and
leaf mass, which means a higher LAI under elevated [CO2].
But for the same measurement times, the increased LAI
under elevated [CO2] was not always observed, and LAI
could sometimes be even lower (Miglietta et al., 1998;
Dijkstra et al., 1999; Kim et al., 2003; Sakai et al., 2006).
Leaves usually become thicker under elevated [CO2]
(Thomas and Harvey, 1983), which limits an increase of
LAI. These results suggest that LAI is not determined only
by C supply. Experimental data have shown that LAI is in
fact highly related to the amount of leaf N in the canopy
(Yin et al., 2003). Sakai et al. (2006) showed that the ratio
of LAI under elevated to ambient [CO2] increases linearly
with the ratio of canopy leaf N under elevated to ambient
[CO2]. By plotting LAI against canopy leaf-N using the data
of Kim et al. (2003) for rice, linear and logarithmic relations
can be obtained for the early tillering phase and for the
phase from panicle initiation to maturity, respectively
(Fig. 4). Data points that did not follow either linear or loga-
rithmic trends were those measured in the intermediate
phase. These relationships coincide with the theoretical ana-
lysis of Yin et al. (2003) using a generic equation for LAI
in relation to canopy leaf N. Note that in neither phase did ele-
vated [CO2] alter the relationships (Fig. 4). Limited data points
for wheat (e.g. Dijkstra et al., 1999; van Oijen et al., 1999)
showed a similar pattern for the relationship. These suggest
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that the functional relationship for the canopy-size LAI, once
being related to canopy-N status, is not altered by a change
in [CO2]. The LAI–N relationship also generates a robust
method for predicting leaf senescence in the canopy (Yin
et al., 2000).

Crop sink size

Leaf photosynthesis, respiration and LAI are traits related to
the source of net photosynthetic assimilates for crop produc-
tion. Often crop yields can be limited by sink size, and some
crop models simulate a number of ‘sink’-related traits, such
as the number of grains per unit area, in addition to the traits
of ‘source’ activity. Crop sink size responds to elevated
[CO2] (Lawlor and Mitchell, 1991; Mitchell et al., 1993).

It has been frequently observed that grain number increases
with N accumulation in crops (see review of Makino, 2011).
Horie et al. (1997) found a close relationship between the
number of spikelets per m2 in rice and the amount of N accu-
mulated through to the early reproductive stage (i.e. the critical
period for forming spikelets), using data collected across loca-
tions of widely varied climate and edaphic conditions
(Fig. 5A). Analysing data from FACE experiments (e.g. Kim
et al., 2001), Kobayashi et al. (2006) found a similar relation-
ship for the fertile spikelets per m2 and N accumulation
through to the panicle initiation stage, which held across
[CO2] and N supply rate (Fig. 5A). The difference in the
two relationships could be due to the genetic difference in
average grain weight between cultivars used: 22.6 mg for
‘Koshihihari’ (Horie et al., 1997) vs. 24.7 mg for
‘Akitakomachi’ (Kim et al., 2001). If the spikelet number is
multiplied by average grain weight to fully represent the sink
size, the difference in the relationships of Horie et al. (1997)
and of Kobayashi et al. (2006) virtually disappears
(Fig. 5B). The plots in Fig. 5 support that the empirical rela-
tionship for sink size, once being related to crop N status,
was unaltered by elevated [CO2]. Limited data points from
van Oijen et al. (1999) suggested that the conclusion also
holds for wheat.

BALANCED QUANTIFICATION OF CARBON –
NITROGEN INTERACTIONS TO MODEL

PHOTOSYNTHEIC ACCLIMATION TO
ELEVATED [CO2]

The above analyses indicate that elevated [CO2] changes little
the functional relationships of plant growth if these relation-
ships are expressed as a function of plant N status. This is in
line with the early modelling concept of functional balance
based on C–N interactions (e.g. Brouwer, 1962) and with
early approaches of Thornley (e.g. Thornley, 1998) for grass
modelling, although most of the classical work did not con-
sider the effect of [CO2]. Therefore, it is necessary to couple
above-ground C assimilation with below-ground N uptake in
crop models if the models are able to predict crop yields
under any [CO2] without much calibration needed. This
echoes the suggestion of Stitt and Krapp (1999) that interpret-
ation of experiments in elevated [CO2] requires monitoring the
N status of the plants.

Based mainly on the concepts of the C–N interaction during
crop growth, the crop model GECROS was developed (Yin
and van Laar, 2005; see Supplementary Data). Compared
with most existing crop models, GECROS has a more
complex structure but requires fewer input parameters,
because many of those used in more empirical models can
be considered to be emergent properties of the mechanisms
modelled by GECROS on the interactions of physiological
processes.

Using data from a FACE experiment of Kimball et al.
(1995) for wheat – the same data set that Tubiello et al.
(1999), Tubiello and Ewert (2002), Long et al. (2006) and
Ainsworth et al. (2008a) used to evaluate other models –
Yin and Struik (2010) evaluated GECROS (v2.0) in estimating
the impact of stimulation of yield by elevated [CO2]. The ana-
lysis did not consider the experimental flaw as pointed out by
Kimball (2013). Like most previous models, GECROS
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correctly showed that the ‘CO2-fertilization’ effect was larger
under drought than non-stress conditions (Fig. 1), although
underlying physiological mechanisms simulated differ among
the models. However, whereas earlier crop models tended to
over-estimate yield responses to elevated [CO2], GECROS
did not (Fig. 1) when standard parameters for instantaneous
leaf photosynthesis and other growth processes of wheat
were used. GECROS also simulated well absolute yields and
total biomass across the treatments (Yin and Struik, 2010).

Yin and Struik (2010) attributed the good performance of
GECROS without over-estimation to its ability in capturing
the photosynthetic acclimation to elevated [CO2]. This accli-
mation refers to an observation that initial enhancement of
photosynthesis by elevated [CO2] cannot be sustained over a
longer term (e.g. Xu et al., 1994; Vandermeiren et al., 2002;
Sakai et al., 2006), which has been considered as a general
rule although the extent of acclimation depends on species
(Sage et al., 1989; Bowes, 1993). Photosynthetic acclimation
is probably not due to acclimation of gs to elevated [CO2]
(Leakey et al., 2006) but can be explained by mechanisms at
various biological scales (e.g. Stitt and Krapp, 1999; Long
et al., 2004). Under elevated [CO2] conditions, the enhance-
ment in N uptake may not keep pace with that of C gain
(Kim et al., 2003). As a result, N dilution may occur as a
result of increased C accumulation in plant materials
(Skinner et al., 1999), and N and organic-N concentration of
plants and leaves under elevated [CO2] may eventually be
lower, irrespective of N availability (Wong, 1990; Conroy
and Hocking, 1993; Pleijel and Uddling, 2012). One direct
consequence of this effect is the previously discussed decrease
of N content and photosynthesis at the leaf level, and an indir-
ect consequence is faster senescence and reduced LAI at the
canopy level for later stages, as observed experimentally
(e.g. Miglietta et al., 1998; Kim et al., 2003). This effect of
acclimation at both leaf and canopy levels is most evident
under limited N conditions (e.g. Mitchell et al., 1993; Stitt
and Krapp, 1999). Photosynthetic acclimation could reduce
the positive effect of elevated [CO2] on crop yield by 50 %
(Schapendonk et al., 2000). To simulate this acclimation
effect, a crop model has to appropriately quantify the C and
N interaction. GECROS captures this acclimation at both
leaf and canopy levels. At the leaf level, the photosynthetic ad-
vantage of plants grown under elevated [CO2] will decrease
with developmental stage as a result of a stronger decreasing
leaf N content, compared with those under ambient [CO2].
At the canopy level, there is an additional contributory mech-
anism: C-determined LAI is initially higher and leaves will
soon senesce faster under elevated than ambient [CO2] for a
given canopy N content. As a result, LAI may eventually
become smaller, compared with the canopy at ambient
[CO2] (Yin and Struik, 2010).

The low measured stimulation of elevated [CO2] in the
FACE experiments could be due to the aforementioned arte-
facts of the FACE system (Holtum and Winter, 2003; Bunce,
2012; Kimball, 2013). The GECROS-based analysis,
however, suggests that the low stimulation of elevated [CO2]
for wheat in the FACE system was at least partly due to photo-
synthetic acclimation at both leaf and canopy level. Most exist-
ing crop models are unable to simulate the photosynthetic
acclimation to elevated [CO2], therefore tending to

overestimate the stimulation of elevated [CO2], especially
when model parameters for [CO2] response are calibrated
from enclosure studies.

The evaluation of GECROS by Yin and Struik (2010)
demonstrated that a robust crop model requiring minimum
inputs does translate input information at the single-organ
level over a short timescale (e.g. photosynthetic rates on
single leaves in mmol m22 s21) to crop performance in a
continuously changing field environment. Lenz (2007) and
Lenz-Wiedemann et al. (2010) also showed good performance
of GECROS in representing the growth of various crops and
the interplay of water, C and N fluxes under field conditions.
The separate evaluation of the model by Yin and Struik
(2010) and Lenz-Wiedemann et al. (2010) confirms a well-
recognized principle (e.g. Penning de Vries et al., 1989) that
a good model should be able to extrapolate the results from
one to another experiment. Thus, to accurately predict CO2 re-
sponse of crop yield, one should not place emphasis on the
type of experimental facilities to obtain data for parameteriza-
tion, but on how the model is structured and how it is parame-
terized from available data. With a robust crop model, there is
no need to seek for untested hypotheses (e.g. increased herbiv-
ory in FACE fields as compared with growth enclosures) for
the failure to predict the CO2 response ratio of crop yield
using data of controlled enclosure environments. Similarly,
the reliance on a large-scale FACE experimentation, as empha-
sized by Ainsworth et al. (2008b), could be considerably
reduced. This latter assertion is especially true if the FACE fa-
cilities, due to the impact of [CO2] fluctuation (Holtum and
Winter, 2003; Bunce, 2012), cannot exactly mimic the real
[CO2] environment of future climate.

CONCLUDING REMARKS

Both statistical modelling (e.g. Schlenker and Roberts, 2009;
Lobell et al., 2011) and ecophysiological modelling
approaches are currently used to assess the impact of climate
change on crop production. Compared with statistical model-
ling, ecophysiological modelling research should play a
greater role in facilitating the design of genetic and agronomic
strategies of adaptation to climate change (Challinor et al.,
2009; Semenov and Halford, 2009). Algorithms in current eco-
physiological crop models to simulate [CO2] effects are,
however, often empirical. Long et al. (2005, 2006) and
Ainsworth et al. (2008a) indicated that when parameterized
from controlled chamber environments, current crop models
tend to overestimate the observed response of crop yield to ele-
vated [CO2] in the FACE experiments. They further argued
that controlled chamber environments were not the best experi-
mental facilities for estimating CO2 response ratio of crop
yield, as FACE has revealed factors in field conditions that
were not identified by chamber experiments (e.g. increased
herbivory). However, the lower than expected response to ele-
vated [CO2] could actually be explained by: (1) the different
size between enclosure and FACE experiments (see earlier dis-
cussions), (2) the impact of the flaw in FACE technology, e.g.
the ‘blower artefact’ (Kimball, 2013) and more [CO2] fluctu-
ation in FACE experiments (Holtum and Winter, 2003; Bunce,
2012) and (3) the inability of most crop models to accommo-
date photosynthetic acclimation to elevated [CO2]. Although
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further studies are needed to quantify the relative importance
of the three explanations, the present paper discussed how to
improve crop models to deal with the acclimation given that
this acclimation is recognized as a general rule.

My analysis suggests that elevated [CO2] alters quantitative
functional relationships only little if they are expressed as a
function of plant N status (Figs 2–5), suggesting that funda-
mental expressions of plant performance can be captured in
relatively simple models. This viewpoint has been supported
by the success in modelling root–shoot partitioning using
functional balance theory (Brouwer, 1962) and in modelling
stomatal and mesophyll conductance using phenomenological
equations (e.g. Ball et al., 1987; Leuning, 1995; Yin et al.,
2009; Li et al., 2012). The analysis also showed that photosyn-
thetic acclimation to elevated [CO2] can be an emerging prop-
erty of an appropriate quantification of interactions between
C- and N-related processes. Crop models with such functional-
ities for C–N interactions have a sophisticated structure, but
require few empirical input parameters – an important prop-
erty of the models when used to extrapolate both in time and
in space for assessment of climate change impact (Lenz-
Wiedemann et al., 2010). Their performance in projecting
the impact of elevated [CO2] will depend little on the type of ex-
perimental facilities used to obtain data for parameterization.

Such a robust crop model is a basis for developing a general
framework that models critical physiological processes and
traits in response to all climatic factors, including extreme
events (Rötter et al., 2011). It is also the basis to further
improve the models based on new physiological understand-
ings. Notably, my viewpoint stresses the need to model C–N
relationships. However, photosynthesis and respiration should
be related to active protein, whereas significant amounts of
plant N can accumulate as nitrate (Cárdenas-Navarro et al.,
1999). [CO2] enrichment was recently found to inhibit shoot
nitrate assimilation into protein compounds, and this inhibition
might alter the partitioning between leaf nitrate and protein
and be responsible for photosynthetic acclimation to elevated
[CO2] (Bloom et al., 2010; Pleijel and Uddling, 2012). This
phenomenon might also be relevant to the differences in the
[CO2] response between controlled-environment chambers
and FACE experiments where crops may have different
access to nitrate relative to ammonium as an N source. Once
the mechanisms for nitrate-assimilation inhibition are eluci-
dated, an approach that models individual pools for inorganic
and organic N may enhance mechanistic prediction of elevated
[CO2] effects on crop productivity.

In this paper I have discussed only generic aspects of crop
responses to elevated [CO2], especially those related to photo-
synthesis and respiration. Other processes also respond to
[CO2]. For example, early flowering was often associated
with a higher canopy temperature induced by elevated [CO2]
(Craufurd and Wheeler, 2009). Direct phenological (Springer
and Ward, 2007) and morphogenetic (Thomas and Harvey,
1983) responses to elevated [CO2] are species-specific and
need to be addressed differentially when developing models
for specific crops. Finally, crop models should be combined
with soil and pest models in order to account for indirect
impacts on crops resulting from climate-induced changes in
soil moisture and nutrient availability and in weed, insect and
disease pressures (Soussana et al., 2010; Hatfield et al., 2011).
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ADDITIONAL NOTES IN RESPONSE TO THE
COMMENTS OF KIMBALL (2013)

Following the online publication of this paper ahead of print,
Kimball (2013) has noted several important points related to
FACE experimentation and model projection of crop responses
to elevated [CO2]. In particular, he points out the flaw (i.e. the
‘blower artefact’) of the FACE experiment reported in Kimball
et al. (1995), conducted in 1992–93 and 1993–94.

It would have been more timely if this particular comment had
been published earlier following publications such as Ainsworth
et al. (2008a), who commented on the over-estimation of yield
response to elevated [CO2] by existing crop models, based on
data from the experiments of Kimball et al. (1995). I thank Dr
Kimball for pointing out this experimental flaw explicitly, and
as a result I have already made some small adjustments to
several parts of this paper. To further respond to his comments,
I put forth additional notes below.

The higher [CO2] response ratio from the 1995–96 and
1996–97 FACE experiments (see Kimball, 2013) cannot be
entirely attributed to the removal of the experimental artefact
that existed in the 1992–93 and 1993–94 experiments.
Besides the possible difference in climates between the
years, actual nitrogen fertilizer application was appreciably
higher in the 1995–96 and 1996–97 experiments (350 kg
ha21) than in the 1992–93 and 1993–94 experiments (260–
276 kg ha21; see Ko et al., 2010). It is well known that
plants generally respond more to elevated [CO2] in high-
than in low-nitrogen environments (e.g. de Graaff et al.,
2006; also shown by the 1995–96 and 1996–97 experiments).

The water stress treatment was not repeated in the 1995–96
and 1996–97 experiments. Although the 1992–93 and 1993–
94 experiments had a technical flaw, the ratio in the relative
[CO2] response between the two water treatments or the
responses to water stress under either [CO2] environment
should still be quite representative of the real values. Such in-
formation would be very useful to test crop models in reflect-
ing underlying biological mechanisms of [CO2] × drought
interactions, e.g. elevated [CO2] reduces the loss due to
higher photorespiration under drought (Long et al., 2004).
Relative to most other models, GECROS still predicts these
ratios well (Fig. 6). Of course, it is necessary to use a wider
range of FACE data to critically parameterize and evaluate
the models, given the wide range of variation in reported
crop responses to elevated [CO2] (Ainsworth et al., 2008a).

Kimball (2013) also discusses genotype-specific responses,
and mentions a few Chinese FACE experiments that have
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reported a high response ratio to elevated [CO2] in hybrid rice
cultivars (see references therein). However, no inbred rice cul-
tivar was used as a control in these FACE experiments. So, this
higher value may simply add to the inconsistency already
known in the literature on crop response to [CO2], and not ne-
cessarily reflect an intrinsically higher response of hybrid rice.
As mentioned in the Concluding Remarks above, my paper
addresses only generic aspects of crop response to CO2.
Crop- (or genotype-) specific responses need to be addressed
differentially for specific crops or genotypes.

Kimball (2013) emphasizes respective advantages of FACE
and non-FACE in climate change research. However, my
current paper never really questions the merits of these experi-
mental facilities and their value in supporting modelling. In
addition, Kimball (2013) stresses the importance of both rela-
tive and absolute responses to elevated [CO2]. This is again not
very different from the discussions in this current paper, where

I also indicate model performance in simulating absolute
values for yield and biomass, although not in the format of a
figure. In addition, models should also be evaluated in terms
of intermediate physiological variables (such as time course
of LAI and canopy transpiration), rather than only end-of-
season yield traits.
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