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Abstract

In infectious disease surveillance, public health data such as environmental, hospital, or census
data have been extensively explored to create robust models of disease dynamics. However, this
information is also subject to its own biases, including latency, high cost, contributor biases, and
imprecise resolution. Simultaneously, new technologies, including Internet and mobile phone
based tools, now enable information to be garnered directly from individuals at the point of care.
Here, we consider how these crowdsourced data offer the opportunity to fill gapsin and augment
current epidemiological models. Challenges and methods for overcoming limitations of the data
are also reviewed. As more new information sources become mature, incorporating these novel
datainto epidemiological frameworks will enable us to learn more about infectious disease
dynamics.
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Global patterns of disease burden are constantly shifting. Recent studies of the emergence of
novel infectious diseases have indicated numerous drivers, including the shift of populations
to urban centers, increased mobhility, and evolving human—animal interactions[1, 2].
Understanding disease dynamics in populations provides the best opportunity for
understanding, controlling, and predicting disease spread. Spatiotemporal models based on
public health surveillance data have been extensively explored for this purpose, elucidating
patterns and processes by which infectious diseases diffuse across regions. These models
traditionally rely on official or government sources, such as environmental, hospital, or
census data [3, 4]. Although these data sets are robust and validated and attempt to report on
entire populations and their collection is facilitated by intermediaries, they suffer from
inherent limits resulting from latency, high cost, contributor biases, and imprecise
demographic and geographic resolution [5, 6]. Additionally, studies have indicated areas of
deficiency in traditional health systems, including timeliness and financial barriersto care
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Simultaneously, new technologies, including Internet tools such as social media or mobile
devices, al coupled with global positioning systems, enable a new form of infectious disease
information to be garnered directly from citizens. These crowdsourced data evade
potentially constraining infrastructure costs and regulations, can be generated in real time,
and can be used tofill in gapsin health information due to barriers in health-seeking
behaviors through traditional systems[8-10]. Furthermore, these tools can now be deployed
at scales that enable information to be garnered at a population level.

Generally, crowdsourcing is the process of obtaining services, ideas, or other information
viaalarge group from the public, rather than a specific set of people (such as government
institutions or hospitals). From crisis management to bioinformatics and ecology,
information from individualsis providing disparate views and solutions, supplementing
existing systemsin normal or interrupted use [11-14]. In infectious disease surveillance,
crowdsourcing offers the opportunity for collection of symptom and related information
right from the point of care [15].

Although considered “gold standards,”, the prerequisite acquisition, aggregation, and
validation stepsin traditional clinical data sets naturally incur limitations. For example, the
United States Centers for Disease Control and Prevention’s (CDC) influenza-likeillness
(IL1) surveillance system has been the primary metric for measuring national influenza
activity. Y et because of differencesin laboratory practices and patient populations seen by
different providers, comparison of the CDC data between regions and across seasons is not
straightforward [16]. Furthermore, temporal trends in the CDC data can be driven by
multiple factors that are difficult to disentangle (Fig. 1); during holiday weeks, there could
be a higher percentage of ILI| visits based on increased disease activity and/or changesin
health-seeking behavior, since there are fewer patient visitsto sentinel sites overall at these
times[17].

On an international scale, the World Health Organization (WHO) field reports of infectious
disease outbreaks come from technical institutions and organizations that have the capacity
to contribute to international outbreak alert and response. The WHO' s network provides
some access to information from affected regions but is limited to organizationally obtained
information and their reach [18]. Additionally, the data collection process can be affected by
unequal selection whereby larger outbreaks are more likely to be detected, so that estimates
of transmissibility may be biased upward [19]. Filling some of these gaps, news media have
proven useful, in aggregate, for providing early information of epidemiological value for
population-level disease surveillance and have decreased time to outbreak detection
substantially [20]. More than 60% of all initial outbreak reports come from unofficial
informal sources, such as news media[21]. However, Internet-based newsis also subject to
distinct limitations based on credibility, detection speed, reach to isolated populations, and
geographic coverage of areas where media are restricted or limited. Figure 2 demonstrates
the differences in these data sources, illustrating HealthMap [22] disease alerts by continent
from 2006 to 2009, in contrast to WHO disease reports for the same time period. These
pervasive limitations of current data sources hinder our understanding of disease dynamics.
For instance, seasonality of infection risk in malariais poorly understood [23], and
domestically, we have weak understanding of temporal and spatial variation in influenza
incidence as described above.

Crowdsourcing offers a real-time picture of disease by harnessing information as individuals
are diagnosed or even before [8, 24]. These temporal advantages are especially vital since
increased ease of mobility decreases the time for infectious diseases to spread globally to the
scales of hours or minutes, much quicker than even the serial interval of many diseases [25].
Additionally, these tools can spatially augment information in places that current
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surveillance sites do not cover [9, 26]. Another benefit of working directly with the publicis
that it augments engagement and enables individual s to become more aware of and involved
in their own health, as anecdotal evidence has shown [10]. Thus, this approach can provide
an avenue for targeted health education and rapidly measuring responses to public health
interventions. Finally, through crowdsourcing infectious disease information, we can learn
about aspects of disease dynamics that are not accessible through traditional data, such as
contact patterns and aspects of the social environment [27, 28].

Simultaneously, crowdsourced data present their own challenges. There are issues of
validation, which current studies are addressing by bringing reported data together with
diagnostic or other clinical measures, such as emergency room crowding [29]. Additionally,
low specificity, 1— Afalse alarm), can result from confounding factors such as media events
[9, 30] or demographic biases [31, 32]. Although more work is needed, some studies have
uncovered demographic or temporal factors shaping use of the tools [30-32].

Every data source includes biases and challenges that must be robustly understood before
the data can be used to study disease dynamics. Further studies of crowdsourced data should
continue to focus on addressing issues of population representativeness, reporting bias, and
validation in order to demonstrate how the data can be used as a complement to existing
epidemiological sources. As crowdsourcing data types and sources become more ubiquitous,
we expect these data to serve as a vital component of global disease surveillance efforts.
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Fig. 1.

a Average percentage of visitsto CDC sentinel sitesfor IL1 by week. b Average number of
patients seen at sentinel sites by week. Data are for seasons 2000—2011, pandemic seasons
and those with 53 weeks excluded. Holiday weeks (shaded areas. 4648, Thanksgiving and
51-1, New Y ears) show both an increase in %I L1 visits and a decreased amount of patient
visits
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Fig. 2.
Disease events by continent via news reports 2006—2009, compared with WHO disease
reports for the same time period
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