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Abstract

Background—Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation,
neurodevelopmental disorder of cholesterol metabolism caused by mutations in 7-
dehydrocholesterol reductase (DHCR?). Corpus callosum (CC) malformations and developmental
delay are common manifestations of this disorder, but the relationship between the two has not
been evaluated. We tested the hypothesis that shorter callosal length and smaller area correlates
with higher serum 7-dehydrocholesterol (7DHC) and increased severity of neurodevelopmental
delay in a large cohort of SLOS patients.

Methods—Thirty-six individuals with SLOS (18M/18F) between 0.20 and 12.5 years (mean =
3.9, SD = 3.6) and 36 typically developing controls (18M/18F) between 0.12 and 12.8 years (mean
=4.0, SD = 3.6) were each imaged one time on a 1.5T MR scanner. One mid-sagittal image per
study was selected for manual measurement of CC cross-sectional area and length. Gross motor,
fine motor, and language developmental quotients, anatomical severity score, and serum sterol
levels were assessed with imaging measurements.

Results—Shorter CC length and smaller area correlated with lower developmental quotient in
gross motor and language domains. Furthermore, length and area negatively correlated with a
serum 7DHC, 8DHC, sterol ratio, and anatomical severity score, and positively correlated with
total cholesterol. The degree of developmental delay ranged from mild to severe, involving all
domains.

Conclusions—For individuals with SLOS, smaller callosal area and length are associated with
higher serum 7DHC, anatomic severity, and motor and language delay. These findings suggest the
relationship between callosal development, biochemistry, and neurodevelopment may lead to
finding predictors of outcome in SLOS.
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INTRODUCTION

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple malformation,
neurodevelopmental disorder caused by mutations in the gene encoding 7-
dehydrocholesterolreductase (DHCRY?) resulting in impaired cholesterol synthesis[1-4].
Decreased DHCRY7 activity results in increased blood and tissue levels of 7-
dehydrocholesterol (7DHC) and its isomer 8-dehydrocholesterol (8DHC). In the majority of
cases, cholesterol levels are low. SLOS is a rare disorder, and the incidence has been
estimated to be on the order of 1 in 20,000 to 60,000 live births[5-8]. There are few
published studies describing neuroimaging findings in SLOS[9-10]. Dysgenesis of midline
structures, including the corpus callosum (CC), is the most common imaging finding.

The SLOS clinical phenotype is highly associated with characteristic dysmorphic features,
autistic behavior and intellectual disability[4,11-13]. While the biochemical disturbances are
potentially amendable to therapeutic intervention, no established therapies have been
developed. Thus, identification of biomarkers of disease severity would be of value when
testing therapeutic interventions, and may provide guidance when prognosticating
neurodevelopmental outcome. Although developmental delay and callosal malformations
are reported with great frequency in SLOS, their relationship has not been studied. The aims
of this study are to examine whether mid-sagittal CC length and cross-sectional area, are
associated with developmental delay and sterol levels in a large cohort of individuals with
SLOS, and we hypothesize that shorter CC length and smaller area are associated with
higher 7DHC levels and severity of developmental delay.

MATERIALS & METHODS
Study Population

This study was approved by the Institutional Review Boards of both the Eunice Kennedy
Shriver National Institute of Child Health and Human Development in Bethesda, Maryland
and the Hugo Moser Research Institute at the Kennedy Krieger Institute in Baltimore,
Maryland. Written informed consent was obtained from parents or legal guardians and
documented in the medical record. This study included 36 individuals with SLOS between
ages 0.20 to 12.5 years, and 36 typically developing control subjects between ages 0.12 to
12.8 years. The ethnicity of SLOS patients included Caucasian (92.5%), Hispanic (5%), and
Asian (2.5%). The diagnosis of SLOS was made by biochemical or molecular analysis, and
confirmed by an expert evaluator (FDP) at the NIH Clinical Center. Hearing impairment
was reported in two subjects with SLOS. There were no subjects with epilepsy, implanted
neurosurgical devices, deafness, blindness or clinically significant visual impairment, or
ventilator dependence. Inclusion criteria for control subjects were the absence of neurologic
disease based on review of medical records including epilepsy, intellectual disability,
developmental delay or autism, brain mass or vascular malformation, or neurometabolic
abnormality; and the absence of structural or qualitative abnormalities on MRI of the brain
as reported by a Johns Hopkins Hospital neuroradiologist.

Image Acquisition and Analysis

Images of SLOS subjects were acquired on a 1.5 T GE scanner at the NIH Clinical Center,
and control images were obtained on a 1.5 T Siemens scanner at the Johns Hopkins
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Hospital. The MRI examinations for SLOS subjects included sagittal T1-weighted spin echo
images (TR 400 ms, TE 90 ms, 240 mm x 240 mm FOV, 8 mm slice thickness, 4 mm
interslice gap). Controls were scanned with a sagittal T1-weighted 3D volumetric
interpolated breath-hold exam (VIBE) sequence (TR 9.9 ms, TE 4.6 ms, 190 mm x 190 mm
FOV, 1 mm slice thickness, 0 mm interslice gap). One mid-sagittal slice per study was
selected by a single observer radiologist for measurement of CC area and length. Blinded
evaluators (1 radiologist, 1 pediatric neurologist) performed manual CC delineation of each
image using DTI Studio and ROIEditor (www.mristudio.org, Johns Hopkins University,
Baltimore, MD, USA) to derive the cross-sectional area and anterior-posterior length
measurements for each scan (Figure 1)[14].

Developmental and Biochemical Measures

RESULTS

Clinical data from electronic and paper medical records, parent interview, and physical
exam were used to determine the SLOS anatomical severity score, sterol levels, and
developmental delay. A 93-item questionnaire based on widely-accepted and published age-
ranges for developmental milestone acquisition was modified and applied by a single
interviewer (neurodevelopmental pediatrician) to determine developmental quotient (DQ) at
the time of scan[15-16]. Supplementary developmental data was provided through medical
records and clinical exam. Developmental quotient for gross motor (GMDQ), language
(LDQ), and fine motor/adaptive skills (FMADQ) domains were calculated as DQ =
(developmental age/chronologic age) x 100. The SLOS anatomical severity scale score is a
clinical severity score based on organ system dysmorphology[5,17]. Serum 7-
dehydrocholesterol (7DHC) (mg/dL), 8-dehydrocholesterol (8DHC) (mg/dL), and total
cholesterol (mg/dL) levels were drawn at the time of scan and analyzed by gas
chromatography/mass spectrometry (GCMS) at the Clinical Mass Spectrometry Laboratory
at Kennedy Krieger Institute. Initial 7DHC and total cholesterol levels at time of diagnosis
were available for analysis, but initial 8DHC levels were not available. The sterol ratio was
calculated with the following formula: (7DHC + 8DHC) / (7DHC + 8DHC + Total
Cholesterol). Statistical analysis was performed using Pearson's correlation (r), Student's T-
test (unpaired, two-tailed) and Cohen's Kappa (x). Significance was determined at the p <
0.05 and the x > 0.80 level.

Thirty-six individuals with SLOS (18 males, 18 females) between 0.20 and 12.5 years (mean
=3.9, SD = 3.6) and 36 typically developing control subjects (18 males, 18 females)
between 0.12 and 12.8 years (mean = 4.0, SD = 3.6) received one MRI scan. There was no
significant difference in age or gender between groups. There was no significant difference
in CC cross sectional area (Figure 1a) for the SLOS group (mean = 437.2 mm2, SD = 208.9)
compared to controls (mean = 498.6 mm?2, SD = 149.0) (p= 0.16). Corpus callosum length
(Figure 1b) was significantly different between SLOS (mean = 51.2 mm, SD = 10.0) and
control groups (mean = 61.5 mm, SD = 8.3) (p < 0.01). Observers performing callosal
measurements demonstrated good inter-rater reliability (x = 0.82). Demographic and
comparison of CC measures is provided in Table 1. For the SLOS group, mean language DQ
was 36.9 £22.7; gross motor DQ 40.9 £28.6; and fine motor/adaptive skills DQ 42.1 £29.3,
indicating a spectrum of developmental delay in the mild to severe range.

For individuals with SLOS, shorter CC length correlated with lower developmental quotient
in gross motor (r = 0.46; p < 0.01) and language (r = 0.37; p = 0.03), but not with fine motor/
adaptive skills (r = 0.18; p = 0.32) (Table 2). Smaller cross-sectional area correlated with
gross motor (r = 0.50; p < 0.01) and language (r = 0.37; p = 0.03) developmental quotient,
but not with fine motor/adaptive skills (r = 0.17; p = 0.33). Furthermore, CC length and area
did not reach statistical significance for an association with the anatomical severity scale
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score, but did show a trend toward significance. Callosal length (r = —0.52; p < 0.01) and
area (r = —0.65; p < 0.01) demonstrated a negative correlation with 7DHC level (Figure 2).
Similarly, callosal length (r = -0.52; p < 0.01) and area (r = —0.56; p < 0.01) demonstrated a
negative correlation with 8DHC level. Callosal length (r = 0.43; p = 0.01) and area (r = 0.51;
p < 0.01) positively correlated with serum total cholesterol level. The sterol ratio was
negatively correlated with callosal length (r = —0.45; p = 0.01) and area (r = -0.59; p <
0.01). To examine the question of whether CC measurements are an indication of the
baseline status or current state of disease severity, we compared 7DHC at time of diagnosis
and 7DHC at time of MRI scan. The results showed corpus callosum measures to be
correlated with initial cholesterol and 7DHC levels. A summary of results is provided in
Table 2.

DISCUSSION

For individuals with SLOS, mid-sagittal CC length and area are associated with severity of
language and gross motor delay, anatomical severity score, and sterol levels. The degree of
developmental disability for our cohort was in the moderate to severe range for each
domain. These results support our hypothesis that corpus callosum length and area are
associated with developmental delay and biochemistry in individuals with SLOS.

The CC is a midline brain structure comprised of axonal tracts involved in the transfer of
information between cortical and subcortical neurons and contralateral brain hemispheric
and spinal cord regions. During maturation, axons lengthen and the CC increases in total
volume[18]. While studies have mapped anatomic and functional specificity within
segments of the CC, our understanding of the role of CC malformation in neurologic
outcome is limited[19-20]. One study reports an association between smaller mid-sagittal
callosal area and lower intelligence quotient (1Q) in healthy children and adolescents[21]. A
few studies have shown neurodevelopmental disorders such as autism and intellectual
disability are associated with smaller CC volume[22-26]. Hypotheses suggest impaired
neural connectivity and synchronization as causative[27-28]. Furthermore, congenital
midline brain malformation syndromes such as Aicardi syndrome, septo-optic dysplasia
syndromes, holoprosencephaly, Joubert syndrome, and Chiari malformations are often
accompanied by neurodevelopmental disability[29].

Agenesis of the corpus callosum (ACC) can be the result of numerous etiologic factors
including gene mutations, infection, metabolic disturbances, and trauma during callosal
development[30-32]. While many ACC syndromes are associated with developmental
delay, most humans with agenesis or dysgenesis of the CC do not manifest developmental
delay. A 10-year longitudinal study of neonates born with ACC reported normal intelligence
in 73% of individuals, and borderline intelligence in 27%[33]. However, corpus callosum
malformations are increasingly recognized in patients with cognitive and behavioral
impairment. Individuals with ACC and normal 1Q demonstrate executive function deficits
manifested as lower flexibility, inhibition, and inference for contingencies[34-35]. In light
of the evidence that populations with neurodevelopmental disability and typically
developing children both express the spectrum of CC dysmorphology, further study
examining cognitive skills that depend on callosal connectivity are needed.

A potential limitation of this study is that controls were scanned using a different sequence
and parameters. The thicker image slices used on the SLOS patients may cause an over-
estimation of length and area, because partial volume effects cause them to appear longer
and have a larger cross sectional area. The inability to re-orient the thick slices may also lead
to over-estimation. Prospective attention to orientation of the images at the time of
acquisition would have minimized this effect. However, the errors bias against our findings,
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thus we do not believe the results were compromised. Furthermore, we are uncertain if the
CC measurements reflect the current state of disease or a dynamic state. We attempted to
analyze disease state by studying initial sterol levels and sterol level at time of scan. The
results showed correlation for callosal measurements for both initial sterol level and level at
time of scan, suggesting disease severity and/or sterol levels remain relatively constant over
time, or callosal measures reflect both baseline and current state of the disease. Further
studies involving longitudinal imaging data are required to address these important
questions.

The genetic and cognitive/behavioral phenotype of SLOS has been described, but the
mechanisms of neurologic injury in this disease remain largely unknown[4,36]. Cholesterol
serves numerous key functions in the developing brain as a co-factor for sonic hedgehog
morphogenic signaling, a key component of membrane lipid raft distribution, activity-
dependent synaptic plasticity, and neurosteroid formation[37-43]. We hypothesize that
multilevel-disturbance of cholesterol-dependent processes during embryologic development
are responsible for impaired midline brain formation and developmental delays in SLOS.
Further study of in-vivo fiber organization and microstructure with diffusion tensor imaging
and tractography represent important tools that will be applied toward increasing our
understanding of the relationships reported in this paper[44—45].

In sum, we demonstrate that corpus callosum measurements are associated with
developmental delay and biochemical measures of disease severity in SLOS. To date, there
are no reliable treatments or markers of neurodevelopmental outcome for this disorder.
These novel findings hold promise for future studies that lead to reliable clinical
prognosticators of neurodevelopment, with the goal of improving the lives of families and
individuals with SLOS.
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Figure 1.

Mid-sagittal T1-weighted MR images used for corpus callosum measurements. (a) Example
of manual tracing of the CC margin on a mid-sagittal image, used for measurement of the
cross-sectional area, (b) Example of CC length measurement performed on a mid-sagittal
image.
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Figure 2.

Sample Correlation Plots between Callosal and Clinical Measures in SLOS (n = 36). (a)
Callosal length is positively correlated with gross motor developmental quotient (DQ) (p <
0.01: r = 0.46), (b) Callosal area is positively correlated with language developmental
quotient (DQ) (p = 0.03; r = 0.37), (c) Callosal length is positively correlated with serum
cholesterol at time of diagnosis (initial) (p < 0.01; r = 0.58), (d) Callosal area is negatively
correlated with 7DHC at time of scan (p < 0.01; r = —0.65). We considered p < 0.05 for
Pearson's correlation (r) to be significant.
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Demographics and Callosal Measurements of SLOS (N = 36) and Control (N = 36) Groups.

Table 1

SLOSMean (SD) Control Mean (SD) p-value  k

Age at scan, years
Gender ratio (M/F)
CC Area, mm?

CC Length, mm

3.9(36) 40(3.6) 094  nfa
(18/18) (18/18) 1.0 n/a
437.2 (208.9) 498.6 (149.0) 016  0.82
51.2 (10.0) 615 (8.3) <001 082
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N = number of MRI scans. CC = corpus callosum. SD = standard deviation. We considered values of p < 0.05. and Cohen's kappa (k) > 0.80 to be

statistically significant.
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Callosal Measures Correlate with Development and Sterols in SLOS (N = 36).

Length (mm) Area (mm?)

r p-value r p-value
GMDQ 0.46 <0.01 0.50 <0.01
LDQ 0.37 0.03 0.37 0.03
FMADQ 0.18 0.32 0.17 0.33
SS -0.28 0.10 -0.32 0.06
7DHC (initial) -0.54  <0.01 -0.53 <0.01
7DHC (atMRI) -052 <001 -0.65 <0.01
8DHC (at MRI)  -0.52 <0.01 -0.56  <0.01
CHL (initial) 058 <001 055 <001
CHL atMRI) 043 001 051 <001
Ratio (at MRI) -0.45 0.01 -0.59 <0.01

Table 2
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Developmental quotients for gross motor (GMDQ), language (LDQ), and fine motor/adaptive skills (FMADQ) domains were calculated as DQ =

(developmental age/chronologic age) x 100. SLOS anatomic severity scale score (SS); 7-dehydrocholesterol. mg/dL (7DHC); 8-

dehydrocholesterol, mg/dL (8DHC); Total cholesterol, mg/dL (CHL); Ratio = (7DHC + 8DHC) / (TDHC + 8DHC + CHL). Initial sterol level was
obtained at time of diagnosis, and sterol level at MRI was obtained at time of scan. We considered p < 0.05 for Pearson's correlation (r) to be

significant.
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