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Oxidative stress: Predictive marker for  
coronary artery disease
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Free radicals appear to be important modulators of atherovascular 
disease in all stages of development. They physiologically serve as 

signal transducers in cell communication and homeostasis including 
vascular gene expression and vascular cell interactions (1). When the 
finely regulated signalling pathways of these molecules become unin-
hibited, it may lead to the initiation and progression of atherosclerotic 
disease. New facts about the function of free radicals are emerging 
continuously.

Oxygen free radicals
reactive oxygen species 
Some of the most important free radicals in biological systems are deriva-
tives of oxygen (reactive oxygen species [ROS]) such as superoxide anion 
radical, hydroxyl radical, hydrogen peroxide, and triplet or singlet O2 (2). 
ROS molecules are characterized by one or more unpaired electrons, are 
unstable and highly reactive, and rapidly interact with surrounding mol-
ecules, altering their structure and functions. 

ROS are produced in low amounts during cellular metabolism 
under normal conditions: by proton leakage during oxidative phos-
phorylation in mitochondria; by various enzymes such as NADH/
NADPH oxidase in endothelial cells, vascular smooth muscle cells 

and neutrophils (3), or xanthine oxidase in endothelium; cytochrome 
P450; lipoxygenase/cyclooxygenase pathways; and the auto-oxidation 
of various substances, particularly catecholamines (4). ROS partici-
pate in various physiological functions. They regulate gene expression 
and post-translational modifications of proteins, serving as signalling 
molecules in homeostasis, mitosis, apoptosis and cell differentiation 
(5). Potentially toxic concentrations of ROS are enclosed in the 
phagosomes of phagocytes, where ROS are used as defense against 
exogenous microorganisms (6). 

Normally, these processes are largely nonpathogenic to the host organ-
ism because low levels of ROS are maintained by enzymatic (glutathione 
peroxidase, catalase, superoxide dismutase) or nonenzymatic (glutathione, 
thioredoxin) functions of endogenous antioxidants. Some exogenous 
compounds (vitamins A, C and E) also act as antioxidants. Cellular struc-
tures damaged by ROS are being continuously repaired or replaced. 

Oxidative stress
The fine balance between ROS and antioxidants is disturbed when 
excessive amounts of free radicals are produced or antioxidant capacity 
is decreased. This disturbance is known as oxidative stress and it plays 
an important role in cardiac pathophysiology (Figure 1). 
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The role of oxidative stress in cardiovascular disease processes, such as 
atherogenesis, ischemic-reperfusion injury and cardiac remodelling, has been 
increasingly recognized in the past few decades. Currently, an increasing 
number of studies suggest that levels of oxidative stress markers in body fluids 

correlate with atherosclerotic disease activity. This finding may lead to novel 
clinical approaches in patients with coronary artery disease. Assessment of 
oxidative stress markers could modify risk stratification and treatment of 
patients with suspected coronary artery disease or myocardial infarction. 
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figure 1) Scheme of free radicals effect on cells. LDL Low-density lipoprotein; MMPS Matrix metalloproteinases; mt Mitochondrial 
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Under conditions of oxidative stress, ROS attack biomolecules 
that are in close proximity. Mitochondrial and nuclear DNA damage, 
protein cross-linking and lipid peroxidation occurs, resulting in muta-
tions, protein denaturation and loss of enzyme and membrane pump 
function. Damage to sarcolemmal and intracellular membranes impairs 
ATP-dependent Na+ and Ca2+ reuptake mechanisms. ROS decrease 
the activity of the sarcoplasmic reticulum membrane Ca2+ pump, 
which plays a crucial role in cardiac Ca2+ handling. Tumour necrosis 
factor-alpha (TNF-α) and interleukin (IL)-6 production triggered by 
ROS contribute to intracellular Ca2+ dysregulation and increase in its 
concentration. Cytosolic Ca2+ overload leads to myofibrillar hypercon-
tracture, cytoskeletal damage and cell disruption via activation of Ca2+-
dependent proteases and phospholipases. Mitochondrial Ca2+ overload 
causes inefficient ATP synthesis and utilization, leading to necrosis (7). 

Apart from the direct toxic effects on surrounding molecules, 
excessive levels of ROS trigger a number of regulatory chain reactions. 
ROS are involved in apoptotic pathway control (eg, TNF-α receptor/
caspase pathway) and activation of the cascade of transcriptional fac-
tors, proinflammatory cytokines (TNF-α, IL-1β, IL-6) and adhesion 
molecule expression (ie, intercellular adhesion molecules, vascular cell 
adhesion molecules, macrophage colony stimulating factor, monocyte 
chemoattractant protein, etc). As a result, massive recruitment of 
inflammatory cells, especially neutrophils, occurs (8). They penetrate 
the endothelium of the vessels in the affected area and highly express 
NADPH-oxidase, an additional important source of free radicals, 
which gives rise to a vicious cycle (9-11). In addition to neutrophils, 
smooth muscle cells, fibroblasts and T lymphocytes generate ROS. 
Leukocyte attraction and activation can also cause white thrombi 
formation in microvessels, increased platelet aggregability, micro-
vascular cell edema and dysfunction, resulting in aggravation of 
ischemia and tissue stunning (12). 

laboratory assessment 
To measure ROS levels in tissue or blood, various techniques can be 
applied (Table 1). Because of the high reactivity and very short half-life 
of ROS, the possibilities are limited, especially in clinical conditions. 
Several methods for the detection of ROS (eg, lucigenin enhanced 
chemiluminescence [13,14], fluorescence microtopography [15,16] or 
electron paramagnetic resonance spectroscopy [17]) have been described. 
Regarding the instability of ROS, detection using these techniques is 
currently only applicable under experimental conditions rather than 
clinical situations. The most frequently used methods detect more stable 
downstream products of free radicals in body fluids, such as oxidized 
DNA, advanced oxidation protein products (AOPPs), lipids, or assess 
altered defense mechanisms (superoxide dismutase levels, oxidized/
reduced glutathione ratio) (18-22). 

OxidaTiVe sTress and  
cOrOnary arTery disease

Oxidative stress as a marker of coronary artery disease activity 
The pathological processes underlying atherovascular disease remain 
incompletely understood; however, there is growing evidence that oxi-
dative stress and inflammation are positively associated with the 
instability of atherosclerotic plaque and the incidence of acute coronary 
syndrome (ACS). ROS-induced initiation of inflammatory cascades 
and low-density lipoprotein (LDL) oxidation leads to the formation of 
macrophage-derived foam cells, differentiation and proliferation of vas-
cular smooth muscle cells, activation of vascular matrix metalloprotein-
ases and impairment of the extracellular matrix (ECM) of the affected 
site. This may culminate in atherosclerotic plaque rupture (23,24). 
Ehara et al (25) demonstrated increased plasma levels of oxidized LDL 
in cases of ACS.

Kaneda et al (26) showed that plasma levels of AOPP were signifi-
cantly higher in patients with coronary artery disease than in those 
without. AOPP levels correlated with severity score of CAD according 
to the the Gensini scoring system. In contrast, Azumi et al (9) 
observed that even when there was no significant difference in angio-
graphic stenosis, the generation of ROS was significantly higher in 
unstable angina pectoris patients compared with stable angina 
patients. 

Another marker of oxidative stress, thioredoxin, correlates with 
atherosclerotic activity. Thioredoxin is a stress-inducible protein that 
contains a redox-active dithiol/disulfide in the active site and provides 
cytoprotection against oxidative stress. Plasma thioredoxin levels are 
significantly increased in patients with unstable angina compared with 
those with stable angina (18). Miwa et al (27) showed that patients 
with coronary spastic angina had a higher serum thioredoxin level 
associated with a lower serum level of antioxidant vitamin E.

These findings suggest that coronary artery disease status may be 
determined by oxidative stress activity rather than the degree of cor-
onary stenosis. 

ischemia-reperfusion injury of myocardium and predictive value of 
oxidative stress in recurrent cardiac events 
Oxidative stress plays a key role in ischemia-reperfusion injury 
(2,5,28,29) and subsequent cardiac repair. Interruption of blood flow 
in the coronary arteries causes ischemia of adjacent tissues, leading to 
cell injury, which may result in cell necrosis and apoptosis. The dur-
ation of ischemia determines the extent of damage to the myocardium 
and related tissues (30). During ischemia, cellular defenses against 
oxidative injury are impaired, with lower activities of antioxidants 
such as superoxide dismutase and glutathione peroxidase. Furthermore, 
greater amounts of ROS are produced, for example, by xanthine 

TAble 1
examples of oxidative stress assessment

Target molecule(s) Measured oxidation product Method

Direct measurement 
of free radicals

Lucigenin enhanced chemiluminescence, fluorescence 
microtopography, electron paramagnetic resonance spectroscopy

Indirect measurement   

Downstream oxidation 
products

Lipids Malonyldialdehyde, isoprostanes ELISA, high-performance liquid chromatography

Proteins, lipoproteins AOPP, PB-DOPA, ox-LDL ELISA

DNA products 5-OHdC, 8-OHdG, DNA strand-break  
frequency

ELISA, high-performance liquid chromatography variations,  
comet assay

Decreased antioxidant 
capacity

Nonenzymatic Cysteine/cystine ratio RPLC, RPLC-MS

GSH/GSSG ratio, thioredoxin HPLC, ELISA

Enzymatic Superoxide dismutase, catalase ELISA, RIA, spectrophotometry

5-OHdC 5-hydroxy-2’-deoxycytidine; 8-OHdG 8-hydroxy-2′-deoxyguanosine; AOPP Advanced oxidative protein products; GSH Glutathione; GSSG Oxidized GSH; 
MS Mass spectrometry; ox-LDL Oxidized low-density lipoprotein; PB-DOPA Protein-bound 3,4-dihydroxyphenylalanine; RIA Radioimmunoassay; RPLC Reversed-
phase liquid chromatography; 
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dehydrogenase, which is converted to xanthine oxidase, a potent gen-
erator of O2

− and hydrogen peroxide (31). 
Timely blood supply restoration, especially in acute coronary artery 

occlusion, is essential for myocardial salvage. Nevertheless, abrupt 
blood flow restoration (thrombolysis, percutaneous coronary interven-
tion or spontaneous) in ischemic tissue causes a precipitous increase in 
ROS levels, which may result in paradoxical tissue damage rather than 
improvement. ROS- and cytokine-initiated apoptosis after reperfusion 
participate in tissue damage and heart remodelling in the ensuing 
postinfarction period (32).

Oxidative stress contributes to the occurrence of cardiac events 
after reperfusion therapy in ACS. In a study by Feng et al (22), oxida-
tive stress marker-plasma AOPP concentration correlated positively 
with an increased incidence of major cardiac events in patients treated 
with percutaneous coronary intervention for ST-segment elevation 
myocardial infarction during a six-month follow-up. Naruko et al (33) 
showed a correlation between persistently high levels of oxidized LDL 
in patients after myocardial infarction who underwent primary coron-
ary stenting and stent restenosis (>50% diameter stenosis) after a six-
month follow-up.

Results of the study by Nagayoshi et al (34), who studied the 
dynamics of urinary 8-hydroxy-2′-deoxyguanosine related to creatinine 
levels in patients with acute myocardial infarction, support this theory. 
In patients who did not experience subsequent cardiac events, 
8-hydroxy-2′-deoxyguanosine/creatinine levels decreased to normal by 
24 h after reperfusion therapy. However, in the cardiac event group, 
the levels at 24 h remained higher than those in the noncardiac event 
group. Hokamaki et al (18) demonstrated that after treatment (not 
specified) of unstable angina, recurrent angina attacks at rest occurred 
more frequently in patients with high thioredoxin levels than in 
patients with low thioredoxin levels. 

long-term predictive value of oxidative stress
There is a correlation among oxidative stress, ventricular remodelling 
and progressive dilation leading to end-stage heart failure. The remodel-
ling process in postischemic myocardium is the result of multiple 

underlying structural and signalling changes comprising myocardial cell 
contractile dysfunction, necrosis, apoptosis, inflammation, microvascu-
lar dysfunction and ECM changes. Following myocardial infarction, 
ROS-activated matrix metalloproteinases and fibroblast proliferation 
lead to structural and functional rearrangement of the ECM. The migra-
tion of cytokine-attracted neutrophils and macrophages producing 
additional free radicals is facilitated. 

The neuroendocrine system, ROS and inflammatory cytokines are 
important regulators of the remodelling process (11,35). The extent of 
ischemia-reperfusion damage may be more widespread than the area 
primarily affected, with apoptosis, necrosis, interstitial fibrosis and 
remodelling occuring not only at the site of infarction, but also in 
remote areas of the myocardium (8). 

Heart failure under both acute and chronic conditions is associated 
with increased levels of oxidative markers (eg, malonyldialdehyde, 
glutathione peroxidase [36], thioredoxin [37] or superoxide dismutase 
[38]). Mitochondria damaged by ischemia-reperfusion injury are one of 
the sources of persistently elevated ROS levels (39,40). Increased 
renin-angiotension-aldosterone system activity stimulates NADH/
NADPH oxidase, as shown by Griendling et al (41) and Rajagopalan 
et al (42). 

PersPecTiVe: OxidaTiVe sTress –  
a neW PrOgnOsTic MarKer?

In the past two decades, numerous studies have demonstrated the 
importance of oxidative stress in the development of atherosclerosis 
and ischemia-reperfusion injury. Elevated concentrations of a variety 
of oxidative stress markers were linked with a more frequent occur-
rence of cardiac events. These findings could help assess risk stratifica-
tion, diagnosis and prevention of ACS, both in patients with and 
without previous cardiac history. This topic needs to be further 
studied. 

funding: Third Faculty of Medicine, Charles University Prague, 
Research Project UNCE204010.
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