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Abstract
Patients with systemic lupus erythematosus have a significantly increased risk of cardiovascular
events due to atherosclerosis. Traditional cardiac risk factors cannot fully explain this increased
risk. Recent evidence strongly suggests that atherosclerotic plaque is largely driven by
inflammation and an active immunological response, in contrast to the long-held belief that plaque
is a passive accumulation of lipids in the arterial wall. Current approaches to the prevention of
atherosclerosis in systemic lupus erythematosus involve targeting modifiable cardiac risk factors.
Future preventive strategies may include therapies that counteract the immunologic responses that
lead to plaque formation.
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Premature atherosclerosis is a major comorbid condition in systemic lupus erythematosus
(SLE). While typical features of SLE, such as nephritis and vasculitis, have been the
traditional focus of treatment, the identification of comorbid conditions such as
atherosclerosis has become more important as the treatments for SLE improve and patients
live longer.

The increased risk of cardiovascular disease in SLE was first recognized in 1976 by Urowitz
et al. who described a bimodal pattern of mortality in their Toronto SLE cohort [1]. Of the
11 deaths in their cohort, six occurred within 1 year of diagnosis, and were attributed to
active SLE disease. Five patients died at a mean of 8.6 years, and all five experienced a
recent myocardial infarction (MI), with four out of five deaths attributed to fatal MI [1]. This
bimodal pattern of mortality due to cardiovascular disease has been confirmed in subsequent
studies.

The overall prevalence of clinical coronary heart disease in SLE patients has ranged from 6
to 10% in various cohorts [2–4]. This risk is increased compared with the general
population; for example, in a Swedish lupus population described in 1989, the risk of
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coronary artery disease in SLE patients was increased ninefold compared with the age-
matched general population [5]. In the Toronto cohort, there was a fivefold increased risk of
MI among SLE patients compared with the general population. Furthermore, the MIs
occurred at an average age of 49 years in SLE patients compared with 65–74 years in the
general population. Manzi et al. also found that women with SLE in the 35–44-year age
group were over 50-times more likely to have a MI than women of a similar age in the
Framingham Offspring Study [2].

The incidence of subclinical atherosclerosis is also increased in SLE. In a cross-sectional
study, Roman et al. compared 197 lupus patients and 197 matched controls using carotid
ultrasound, and found that plaque was present in 37% of SLE patients compared with 15%
of controls (p < 0.001) [6]. In a short-term longitudinal follow-up study of the SLE patients
in this cohort, atherosclerosis developed or progressed at an average rate of 10% per year.
Further studies have reflected similar prevalences of subclinical atherosclerosis in SLE [7].
Manzi and colleagues found subclinical carotid atherosclerosis in 40% of their cohort [8].
Asanuma et al. also found an increased prevalence of subclinical atherosclerosis when
electron beam computerized tomography was used as the screening instrument, with
coronary calcification present in 31% of SLE patients compared with 9% of controls [9].
When endothelial dysfunction, another marker of subclinical atherosclerosis, was used as a
marker of atherosclerosis, 55% of SLE patients had impaired flow-mediated dilation,
compared with 26.3% of control subjects [10].

What accounts for the increased risk of atherosclerosis seen in patients with SLE?
Traditional cardiac risk factors defined by the Framingham studies, such as older age, high
blood pressure and high cholesterol levels [11], do appear to play a role; however, these
factors alone do not adequately explain the increased incidence of cardiovascular disease
seen in patients with SLE, including increased risk for MI (increased relative risk: 10.1) and
stroke (increased relative risk: 7.9) [12]. Thus, the etiology of the increased risk of
atherosclerosis in SLE is likely multifactorial, resulting from a complex interplay between
traditional cardiac risk factors and SLE-driven inflammation. To develop a fuller
understanding of atherosclerosis in SLE, and to develop strategies for the prevention and
treatment of cardiovascular complications, it is important to first have a complete
understanding of the role that both traditional and nontraditional risk factors play in the
pathogenesis of atherosclerosis in SLE.

Traditional risk factors & the pathogenesis of atherosclerosis in SLE
Although they do not fully explain the increase in atherosclerosis seen in SLE patients, both
traditional cardiovascular risk factors defined by the Framingham Heart Studies [13] and
SLE-specific risk factors have been identified in patients. Assessment of cardiovascular risk
factors in the Hopkins Lupus Cohort reported in 1992, demonstrated that 53% of patients
with SLE had at least three traditional risk factors [4]; however, in a risk assessment for
coronary heart disease-related events using the Framingham risk assessment model, the
mean 10-year risk of a cardiac event did not differ between 250 patients with SLE and 250
controls [14]. However, this study did reveal a higher prevalence of nontraditional cardiac
risk factors in patients with SLE, including premature menopause, sedentary lifestyle and
increased waist-to-hip ratio [14]. Further evidence of the contribution of nontraditional, or
SLE-specific, cardiac risk factors was demonstrated in a Canadian cohort, which revealed
that the relative risk of overall coronary artery disease in patients with SLE was at least
sevenfold greater compared with predictions based on traditional Framingham risk factors
[12]. Nevertheless, although they cannot fully account for the increased risk, traditional
cardiac risk factors do contribute to increased atherosclerosis and cardiovascular events in
SLE. In a London cohort, traditional cardiac risk factors did predict a higher risk of coronary
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disease in SLE patients under the age of 40 years [15]. In addition, most SLE cohort studies
have identified at least one traditional cardiac risk factor as a significant predictor of cardiac
events or subclinical atherosclerosis using multivariate modeling. Table 1 summarizes the
various risk factors contributing to the development of accelerated atherosclerosis in patients
with SLE.

SLE-specific risk factors
Disease activity & duration

The association between SLE disease activity and atherosclerosis has been poorly
understood to date. Manzi et al. found an inverse relationship between SLE activity and
plaque size, and noted that longer disease duration was independently associated with
carotid plaque [8]. Von Feldt et al. found disease duration was significantly associated with
coronary calcium scores in a cross-sectional cohort [16]. Similarly, Roman et al. found, in
multivariate analysis, that longer disease duration and higher Systemic Lupus International
Collaborative Clinics damage index were independent predictors of carotid plaque in both a
cross-sectional [6] and a longitudinal study [7].

Renal disease
The prevalence of cardiovascular morbidity and mortality is higher in patients in the general
population with chronic kidney disease, and is even more strongly associated with end-stage
renal disease [17]. Renal disease also appears to be a risk factor for atherosclerosis in
patients with SLE. Factors that may contribute to this increased risk include hypertension
[18] and dyslipidemia [19], both of which are frequently seen in patients with proteinuria.
Patients with proteinuria also have an increased risk of thrombosis [20,21]. Both proteinuria
[22,23] and elevated serum creatinine [24,25] have been associated with early
atherosclerosis in patients with SLE, and a history of nephritis has been associated with
subclinical atherosclerosis in some [16,24,26], but not all studies [6,27].

Glucocorticoid therapy
Glucocorticoid usage has been associated with atherosclerosis in SLE patients [27]. Both
longer duration of corticosteroid treatment [8,28] and a higher accumulated corticosteroid
dose [8,24,29] have been associated with a higher incidence of atherosclerosis in various
cohorts of patients with SLE, and may also impact traditional cardiac risk factors such as
hypertension, obesity and diabetes. In addition, prednisone doses >10 mg/day have been
shown to independently predict hypercholesterolemia in SLE [4]. However, conflicting data
exists regarding the overall risk of glucocorticoid therapy; Roman et al. found that former or
current use of prednisone and average dose of prednisone was significantly less in patients
with carotid plaque, leading to the assumption that the anti-inflammatory effects of
glucocorticoids may be atheroprotective [6].

Novel biomarkers/‘nontraditional’ cardiac risk factors
There are several novel biomarkers that have been implicated in the pathogenesis of
atherosclerosis in SLE. Before discussing these novel biomarkers, however, it may be
helpful to understand the relationship between inflammation and the development of
atherosclerotic plaques in SLE.

Inflammation & the pathogenesis of atherosclerosis
For many years, atherosclerosis was regarded as a passive accumulation of lipids in the
vessel wall. Recently, however, it has been realized that inflammation plays a role not only
in the development of the atherosclerotic lesion, but also in the acute rupture of plaques that
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occurs during acute myocardial ischemic events [30,31]. As in the pathogenesis of SLE
itself, the interplay of multiple inflammatory mediators, including leukocytes, cytokines,
chemokines, adhesion molecules, complement and antibodies, results in the formation of
atherosclerotic plaques [32]. To understand the role of inflammation in the development of
atherosclerosis in SLE, it is important to first understand the development of the
atherosclerotic plaque.

Recruitment of inflammatory cells to the arterial wall
Atherosclerotic lesions begin with the recruitment of inflammatory cells such as monocytes
and T cells to the endothelial wall. First, the vascular endothelial cells are stimulated to
express leukocyte adhesion molecules, including E-selectin, vascular cell adhesion
molecule-1 (VCAM-1) and inter-cellular adhesion molecule-1 (ICAM-1) [32]. These cell-
surface proteins are upregulated during periods of inflammation, and can be induced by
proinflammatory cytokines such as TNF-α and IL-1 [32]. VCAM-1 is also induced when
endothelial cells are exposed to other inflammatory signals, such as the lipopolysaccharides
of Gram-negative bacteria, lysophosphatidylcholine, and oxidized phospholipids such as
oxidized low-density lipoprotein (OxLDL) [33,34]. High-density lipoproteins (HDL) inhibit
the expression of adhesion molecules (Figure 1) [35,36].

The importance of these adhesion molecules in the development of atherosclerosis is
highlighted by the fact that atherosclerosis-prone apoE-deficient mice who are also deficient
in E-selectin develop fewer plaque lesions [37]. Also, soluble levels of VCAM-1 can be
detected in the systemic circulation, and elevated levels of this adhesion molecule have been
found in humans with coronary artery disease [38,39]. However, in one cross-sectional
carotid ultrasound study of SLE patients neither levels of soluble VCAM nor ICAM were
significantly associated with carotid plaque [6].

After leukocytes adhere to the cell surface, they migrate through the endothelium and into
the intima [32]. This transmigration is influenced by several factors; first, several
chemotactic proteins such as monocyte chemotactic protein-1 (MCP-1) are produced by the
endothelial and smooth cell layers [40]. The expression of MCP-1 in smooth muscle cells
and endothelial cells can be upregulated by cytokines such as TNF-α and IL-1 and by
OxLDL (Figure 1) [40,41]. Conversely, normal HDL inhibits the expression of MCP-1 [42].
The importance of MCP-1 in the development of the atherosclerotic plaque is emphasized
by the fact that elevated circulating levels of MCP-1 are positively related to increased
carotid artery intima-media thickness (IMT) in humans [43]. Also, in low density lipoprotein
receptor (LDLR)-/- mice, knockout of MCP-1 reduces atherosclerosis induced by high fat
diets [44].

OxLDLs & the development of foam cells
Next, low-density lipoproteins (LDLs) are transported into artery walls, where they become
trapped and bound in the extracellular matrix of the subendothelial space [45]. These
trapped LDLs are then seeded with reactive oxygen species produced by nearby artery wall
cells, resulting in the formation of proinflammatory OxLDL [45]. When endothelial cells are
exposed to these proinflammatory OxLDL, they release cytokines such as MCP-1, M-CSF
and GRO, resulting in monocyte binding, chemotaxis and differentiation into macrophages
[46]. The OxLDLs are phagocytized by infiltrating monocytes/macrophages, which then
become the foam cells around which atherosclerotic lesions are built (Figure 1) [47].
Elevated levels of circulating OxLDL are strongly associated with documented coronary
artery disease in the general population [48]. Anti-OxLDL antibodies have been described in
up to 80% of SLE patients with antiphospholipid antibody syndrome [49,50]. Some studies
have demonstrated that anti-OxLDL are more common in SLE patients with a history of
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cardiovascular disease than in SLE controls or normal subjects [29]. In two other studies,
however, anti-OxLDL and arterial disease were not associated [51,52]. Titers of anti-
OxLDL have also been correlated with disease activity in SLE [53].

Next, monocytes and T cells infiltrate the margin of the plaque formed by foam cells [47],
and smooth muscle cells from the media of the artery are stimulated to grow [54]. These
muscle cells encroach on the lumen of the vessel and ultimately lead to fibrosis, which
renders the plaques brittle. The occlusion that results in MI can occur when one of these
plaques ruptures or when platelets aggregate in the narrowed area of the artery [54].

Normal HDL clears OxLDL from the endothelium
There are many mechanisms designed to clear OxLDL from the subendothelial space, such
as macrophage engulfment using scavenger receptors [55–57], and enhanced reverse
cholesterol transport mediated by HDL [58,59]. In addition, both HDL and its major
apolipoprotein constituent, apoA-1, have been shown to both prevent and reverse LDL
oxidation (Figure 1) [60–63].

Role of cytokines in atherosclerosis
T cells, primarily of the Th1 subtype, are also abundant in atherosclerotic lesions, and may
play a role in the formation of plaque through the cascade of cytokines that is initiated by
their activation [64]. Vascular endothelial and smooth muscle cells are important targets for
inflammatory cytokines and these cells can produce additional cytokines when stimulated
[30]. At least two stimuli for Th1 differentiation are present in the atherosclerotic plaque.
IL-12 is expressed by macrophages, smooth muscle cells and endothelial cells, and is an
important stimulus for Th1 differentiation [65]. Elevated levels of IL-12 have been found in
atherosclerotic plaques [65], and the inhibition of IL-12 using a vaccination technique that
fully blocks the action of IL-12 has been shown to decrease atherosclerosis in mice [66].
IL-12 production is upregulated in monocytes exposed to OxLDL [65].

IFN-γ has also been detected in human plaques [32]. It is a powerful growth inhibitor for
smooth muscle cells, endothelial cells and collagen production, and thus promotes plaque
instability [67]. In addition, IFN-γ induces the expression of secretory phospholipase A2,
leading to the production of inflammatory lipid mediators such as lysophosphatidylcholine,
platelet-activating factor and eicosanoids [68]. IFN-γ also improves the efficiency of
antigen presentation, and leads to increased synthesis of TNF-α and IL-1 [69]. All of these
actions contribute to the formation of the atherosclerotic plaque, and indeed, in
atherosclerosis-prone apoE-knockout mice also lacking IFN-γ, atherosclerosis is decreased
by nearly 60% [70,71]. The administration of IFN-γ also accelerates atherosclerosis in
apoE-knockout mice. Increased levels of both IFN-γ and IL-12 have been found in humans
with both unstable and stable angina compared with controls [72].

As noted, TNF-α and IL-1 are also present in human atherosclerotic lesions. Like IFN-γ,
they also affect smooth muscle proliferation. TNF-α and IL-1 induce local inflammation in
blood vessels by stimulating the activation of macrophages [73], inducing the secretion of
matrix metalloproteinases [74] and promoting the secretion of cell surface adhesion
molecules [32]. TNF-α can also upregulate the expression of cell surface adhesion proteins;
normal functioning HDL can inhibit this upregulation [75]. TNF-α and IL-1 can also inhibit
lipoprotein lipase, an enzyme important in the metabolism of triglycerides and very LDL
[76,77]. In addition, TNF-α and IL-1 enhance production of M-CSF, GM-CSF and G-CSF
by smooth muscle cells, endothelial cells and monocytes. These mediators activate
monocytes and stimulate their transformation into macrophages and foam cells [78].
Inhibition of TNF-α decreased the progression of atherosclerosis in apoE-knockout mice
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[79]. Elevated levels of TNF-α may also play a role in the increased risk of atherosclerosis
in the general population [80]. TNF-α has been linked to vascular injury in both acute and
chronic inflammatory conditions. TNF-α has been identified in human endothelial and
smooth muscle cells in all stages of atherosclerosis, from early intima thickening to
established occlusive atherosclerosis [81,82].

In addition to TNF-α and IL-1, the proinflammatory cytokine pathway also involves the
expression of IL-6 [32]. Circulating IL-6 is another cytokine that is a strong independent
marker of increased mortality in unstable coronary artery disease [83]. IL-6 stimulates
hepatocytes to produce C-reactive protein (CRP) and other markers of inflammation [84].
CRP is not only a marker of acute phase reaction, but may also have a direct effect on
leukocyte recruitment and apoptosis in vessel walls [85,86]. IL-6 is also required for short-
term regulation of paraoxonase, an antioxidant enzyme present in HDL [87]. LDL-derived
phospholipids such as oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
induce the expression of IL-6, which in turn downregulates paraoxonase mRNA levels [83].
Patients with unstable coronary syndromes have elevated levels of both IL-6 and CRP
[88,89]. In addition, IL-6 has been described as an independent predictor of endothelial
dysfunction in rheumatoid arthritis patients [90].

By contrast, TGF-β likely plays a protective role against atherosclerotic plaque formation, as
discussed in several publications [39,70–76]. Thus, the balance of proinflammatory and anti-
inflammatory cytokines and their interactions with inflammatory cells and lipid components
contributes to the formation and maintenance of the atherosclerotic plaque.

Antiphospholipid antibodies
In animal studies, the role of antiphospholipid antibodies in the development of
atherosclerosis has been inconsistent. Some have reported an association between
antiphospholipid antibodies and accelerated atherosclerosis [91,92], while others have
suggested that antiphospholipid antibodies actually play a protective role in the pathogenesis
of atherosclerosis [93,94]. Patients with primary antiphospholipid syndrome have been
shown to have thicker carotid artery intima-media at the carotid bifurcation and internal
carotid artery compared with controls, especially those over 40 years of age [95]. In healthy
men, elevated antiphospholipid antibodies have been correlated with an increased risk of
future MI [96,97], and in renal transplant patients, the presence of antiphospholipid
antibodies has been associated with a relative risk for an atherosclerotic event of 2.82
compared with those without antiphospholipid antibodies [98]. By contrast, although
approximately half of patients with SLE possess antiphospholipid antibodies [91], reports of
an association between antiphospholipid antibodies and atherosclerosis in cohorts of patients
with SLE have been inconsistent. In a study of a diverse cohort of patients with SLE,
antiphospholipid antibodies were found to be an independent predictor of cardiovascular,
cerebrovascular or peripheral vascular events [99]. In the Hopkins Lupus cohort, 10% of
patients with SLE developed MI, and patients with a positive lupus anticoagulant were more
likely to develop an MI compared with controls; however, this association was not
consistent with presence of anticardiolipin antibodies or evidence of subclinical
atherosclerosis [100]. Similarly, in another study, while a positive association between
coronary calcification scores and antiphospholipid antibodies was reported in univariate
analysis, this association was no longer significant after adjustment for age and sex [9].
Finally, a significant association between antiphospholipid antibodies and atherosclerosis
was not found in three large cohorts of patients with SLE [6,8,27]. The inconsistent results
of these studies have raised questions about the exact nature of the effect of antiphospholipid
antibodies on the risk of atherosclerotic events. One study that sought to confirm in vitro
evidence of a role for antiphospholipid-mediated endothelium perturbation in
antiphospholipid syndrome-associated vasculopathy reported that patients with
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antiphospholipid antibody syndrome did not differ in plasma levels of circulating endothelial
cells and flow-mediated vasodilation, suggesting that antiphospholipid antibodies alone are
not able to support a full-blown endothelial perturbation in vivo [101]. These findings
suggest a ‘two-hit hypotheses’ in which antiphospholipid antibodies may increase the risk of
thrombotic events by inducing a threshold endothelial perturbation; however, other
thrombophilic conditions are necessary to trigger clot formation. Further studies are needed
to identify the contribution of antiphospholipid antibodies to the development of
atherosclerosis in patients with SLE.

Innate immunity in atherosclerosis
In addition to the role the adaptive immune response plays in the pathogenesis of
atherosclerosis, there is accumulating evidence that innate immunity also plays a role in the
formation of plaques. In contrast to adaptive immunity, the components of innate immunity
are essentially present at birth, and allow for immediate host defenses until adaptive
responses mature. The receptors of innate immunity are known as pattern recognition
receptors; these receptors bind to preserved motifs on various pathogens that are termed
pathogen-associated molecular patterns. Toll-like receptors are one type of pattern
recognition receptors that respond to various pathogen-associated molecular patterns by
activating their intracellular signaling pathway, leading to the upregulation of immune
responsive genes [102]. The ligands for Toll-like receptors can include microbial ligands,
which may explain some of the connections that have been postulated to exist between
infectious organisms such as Chlamydia pneumoniae and the development of atherosclerosis
[103].

Endogenous ligands can also trigger TLR signaling in a manner similar to microbial ligands.
For example, minimally OxLDL interacts with TLR4 and with the scavenger receptors
CD14 and CD36 [104]. When OxLDL binds to the CD14 receptor on macrophages, there is
an inhibition of phagocytosis of apoptotic cells, and enhanced expression of the scavenger
receptor CD36, which leads to increased uptake of OxLDL. Both of these effects are thought
to be proinflammatory and proatherogenic [104].

Activation of TLR-7 and -9, resulting in the upregulation of IFN-α, has also recently been
shown to play a major role in lupus disease activity [105]. This pathway may also have
implications in atherogenesis, as IFN-α plays a crucial role in premature vascular damage in
SLE by altering the balance between endothelial cell apoptosis and vascular repair [106].
High IFN-α levels have been associated with endothelial dysfunction in patients with SLE
[107].

Novel biomarkers of atherosclerosis in SLE
Antibodies against apoA-I

As noted, apoA-I is the major apolipoprotein component of HDL. Reduced levels of apoA-I
have been found in rheumatoid arthritis patients [108], and in SLE patients with IgG
anticardiolipin antibodies [109]. In the general population, antibodies to apoA-I have been
found in up to 21% of patients with acute coronary syndromes who have no other features of
autoimmune disease [110]. Antibodies to apoA-I have also been described in SLE. In one
study, antibodies to apoA-I were found in 32.5% of patients with SLE and 22.9% of patients
with primary antiphospholipid syndrome [111], and have been associated with increased
disease activity [112]. It is unclear, however, how the presence of these antibodies affects
the function of apoA-I in either SLE or acute coronary syndrome patients.
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Homocysteine
Homocysteine is another predictor of atherosclerosis in the general population [113].
Homocysteine is a metabolite in methionine production, and may play a direct role in the
pathogenesis of SLE through its toxic effects on the endothelium [114]. Homocysteine is
also prothrombotic [115] and decreases the availability of nitric oxide [116]. High levels
stimulate monocytes to secrete MCP-1 and IL-8 [117]. The thiolactone metabolite of
homocysteine combines with LDL to enhance foam cell formation in vessel walls [118]. The
molecule releases free oxygen radicals that can damage tissue [119], and has several
prothrombotic actions on platelets and endothelial cells [120]. Hyperhomocysteinemia can
result from genetic and/or dietary factors. As previously noted, population studies have
identified an association between high homocysteine levels and atherosclerosis in the
general population [118]. Petri has prospectively demonstrated that elevated homocysteine
levels may also be a risk factor for the later development of coronary artery disease in SLE
patients [28]. In several studies, elevated levels of homocysteine have also correlated with
atherosclerosis in SLE [14,16,28,29,121]. In other recent studies of SLE, however,
homocysteine has not correlated with evidence of plaque on carotid ultrasound [6,9,23].

Adipocytokines
White adipose tissue, traditionally viewed as a simple energy storage site, has more recently
been recognized as an endocrine organ that secretes adipokines such as leptin and
adiponectin. These adipokines are responsible for regulating energy homeostasis and
metabolism. Leptin is an anorectic peptide that functions as a hypothalamic modulator of
food intake, bodyweight and fat stores [122]. Obese patients develop resistance to leptin
similar to insulin resistance in Type 2 diabetes [123], and high circulating leptin levels are
seen in overweight individuals [124]. Hyperleptinemia in the general population also
associates with hypertension [125], metabolic syndrome [124] and atherosclerosis [124]. In
addition, leptin has been linked to increased oxidative stress. Elevated leptin induces
oxidative stress in endothelial cells [126] and cardiomyocytes [127]. Serum levels of leptin
are correlated with OxLDL in postmenopausal women and decreased leptin after weight loss
is predictive of reduced OxLDL levels [128]. Several small cohort studies have
demonstrated elevated leptin levels in adult [129–131] and pediatric [132] SLE patients.
Conversely, adiponectin is the most abundant adipocytokine in human plasma, and levels
are inversely correlated with adipose tissue mass [133]. Adiponectin levels are reduced in
Type 2 diabetes and cardiovascular disease [134].

In our cohort, leptin levels were examined in 244 SLE subjects. Mean leptin levels were
significantly higher in the 40 patients with plaque than in those without plaque, and also
weakly correlated with carotid IMT [135]. In another cohort, adiponectin levels were
significantly and independently associated with carotid plaque in SLE [136]. However,
Chung et al. found no significant relationship between leptin or adiponectin levels and
coronary calcification measured by electron beam computerized tomography in 109 SLE
patients and 78 control subjects [137].

Proinflammatory HDL
Although quantities of HDL partially determine atherosclerotic risk (low levels are
associated with increased risk), HDL function is equally significant [73]. For example,
during the acute phase response HDLs can be converted from their usual anti-inflammatory
state to proinflammatory, and can actually cause increased oxidation of LDL [138]. This
acute phase response can also become chronic, and may be a mechanism for HDL
dysfunction in SLE [139]. Indeed, our group has found that HDL function is abnormal in
many women with SLE; 45% of women with SLE, compared with 20% of rheumatoid
arthritis patients and 4% of controls, had proinflammatory HDL (piHDL) that was not only
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unable to prevent oxidation of LDL but caused increased levels of oxidation [140]. In this
study, four out of four SLE patients with a history of documented atherosclerosis had
piHDL, further suggesting that HDL plays an important role in the pathogenesis of
atherosclerosis. Subsequent studies have indicated that 85% of SLE women with plaque
have piHDL, indicating that piHDL may be a biomarker of risk for atherosclerosis in SLE
[27].

Potential for future intervention: existing therapies
Currently, no randomized clinical trials for the prevention of atherosclerosis in SLE exist to
guide clinicians; therefore, the best recommendations for therapy are based on prevention
guidelines for the general population. Some experts have advocated that SLE, like diabetes,
should be considered a coronary heart disease equivalent, and targets for blood pressure and
lipid levels should be adjusted accordingly [141]. Special attention should be paid to all
modifiable risk factors; in addition, control of inflammation and disease activity may also be
desirable from a cardiac risk modification standpoint.

Smoking cessation
Smoking is a well-established modifiable risk factor for coronary carotid atherosclerosis
[142,143], and smoking cessation is recommended for patients with SLE [144].

Statins
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting step in
cholesterol biosynthesis [145], and are now used widely to reduce cardiovascular morbidity
[146–148]. Statins have a variety of direct anti-inflammatory and immunomodulatory
effects. For example, statins have been demonstrated to decrease the secretion of
proinflammatory cytokines and chemokines such as IL-6, IL-8, TNF-α and MCP-1 [149–
151], and have been found in several in vitro and in vivo studies to both diminish secretion
of proatherogenic Th1 subtype cytokines such as IFN-γ, IL-2 and IL-12 [150,152], and
increase secretion of antiatherogenic Th2 cytokines such as IL-4 and IL-10 [153–155].
These findings, however, have not been consistently demonstrated in all studies [150,156].
Statins have also been shown to directly inhibit IFN-γ-induced MHC class II expression in
both macrophages [157] and endothelial cells [158], thus acting as a repressor of MHC-II-
mediated T-cell activation. Statins also downregulate molecules involved in adhesion (e.g.,
ICAM-1, VCAM-1 and selectins) [159,160] and costimulation (e.g., CD40L) [161].

There is an abundance of data to support the use of statins in primary and secondary
prevention of atherosclerosis in the general population [146,162,163]. Several studies have
also examined the efficacy of statins in prevention of atherosclerosis in rheumatic diseases.
In one study using a rat model of adjuvant-induced arthritis, fluvastatin reversed aortic
endothelial dysfunction, although it did not affect the severity of arthritis or serum
cholesterol concentrations [164]. The statins also decreased reactive oxygen species
production in the aorta [164]. Another study examined the effect of statins in a mouse model
of SLE and atherosclerosis, the gld.apoE-/- mouse [165]. Although simvastatin therapy did
not alter cholesterol levels, it did decrease the atherosclerotic lesion area in both gld.apoE-/-

and apoE-/- mice. In addition, simvastatin reduced lymphadenopathy, renal disease and
proinflammatory cytokine production in the double-knockout mouse [165]. Although further
studies are necessary, these findings raise the possibility that statins may be beneficial not
only in reducing the increased atherosclerosis of rheumatic disease, but also the disease-
related inflammation.

There are also some data to support the use of statins in patients with SLE. In a trial of 64
women with SLE, atorvastatin 20 mg daily for 8 weeks improved endothelium-dependent
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vasodilation, even after accounting for the presence of traditional cardiac risk factors [166].
In a 2-year randomized-controlled trial of atorvastatin in 200 women with SLE, however,
statins did not significantly prevent progression of coronary calcium, IMT or disease activity
[167]. Similarly, in a trial of 33 post-renal transplant lupus patients, those randomized to
fluvastatin therapy had a 73% reduction in cardiac events, although this difference did not
quite reach statistical significance (p = 0.06) [168]. Many trials that have demonstrated a
preventive effect of statins in the general population have larger sample sizes and a longer
follow-up duration [169], so it is possible that increased sample sizes and study lengths
might have resulted in positive studies. Further investigations are needed to clarify the
potential role of statins in the prevention of atherosclerosis in rheumatic disease populations.
Until further studies are conducted to determine the safety and efficacy of statin therapy in a
broader population of patients with SLE, statin therapy should be limited to published
guidelines such as the National Cholesterol Education Panel [170].

Hypertension
Similar to the recommendations for management of dyslipidemia, patients with SLE should
be treated to the target blood pressure levels recommended for those with other high-risk
comorbid conditions such as diabetes (i.e., systolic blood pressure <130 mmHg; diastolic
blood pressure <80 mmHg) [171], with a minimally acceptable blood pressure of 140/90
mmHg. Angiotensin-converting enzyme inhibitors are generally the drug of choice in
patients with renal disease [172]; however, difficulty in recruitment to prevention trials has
thus far prevented investigators from prospectively establishing the most atheroprotective
medication regimen in patients with SLE [173].

Antimalarial therapy
Hydroxychloroquine is thought to be cardioprotective [174], and in fact, Selzer et al. noted
that non-use of hydroxychloroquine was associated with higher aortic stiffness in SLE
patients measured by ultrasound [175]. Roman et al. also found that patients with carotid
artery plaque used less hydroxychloroquine [6]. In addition, antimalarials have been shown
to lower total cholesterol in patients receiving steroids, and may minimize steroid induced
hypercholesterolemia [176]. Patients with SLE taking an antimalarial agent have also been
shown to have lower fasting blood glucose conentrations – a risk factor for premature
atherosclerosis – compared with controls [177], and one study demonstrated that
hydroxychloroquine prolongs the half-life of the active insulin-receptor complex via
inhibition of the insulin-receptor dissociation, thus augmenting insulin-stimulated responses
[178]. In addition, beneficial effects of hydroxychloroquine on thrombosis formation have
also been described. Hydroxychloroquine has been shown in animal studies to reduce
thrombosis induced by antiphospholipid antibody exposure [179] and to reverse platelet
aggregation [180]. Multiple retrospective cohort studies have shown a reduced incidence of
thrombotic events [181–184] and improved overall survival in patients with SLE treated
with antimalarial agents [183,185]. The recent understanding that one mechanism of action
of hydroxychloroquine is the antagonism of TLR-7 and -9 signaling is also intriguing, given
the postulated roles of IFN-α in endothelial dysfunction and abnormal vascular repair [186].
Prospective studies demonstrating a cardioprotective effect of hydroxychloroquine in
patients with SLE are needed.

Glucocorticoids
As discussed previously, glucocorticoid usage has been associated with atherosclerosis in
SLE patients [27], although it is unclear whether steroid use is atheroprotective or
contributes to added cardiovascular disease risk in SLE patients. In a pediatric lupus cohort,
moderate doses of prednisone (0.15–0.4 mg/kg/day) were associated with decreased carotid
artery IMT, while high- and low-dose prednisone were associated with increased IMT [26],
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suggesting that a narrow therapeutic window for the atheroprotective effects of
glucocorticoid therapy may exist.

Future directions
B-cell-directed therapies

Several studies have suggested a protective role for activated B cells in the formation of
atherosclerotic plaques; for example, both splenectomy [187] and transfer of B-cell-deficient
bone marrow into lethally irradiated atherosclerosis prone mice [188] resulted in an increase
in atherosclerotic lesion development. This raises some concerns that the B-cell-depleting
therapies that are on the horizon as treatments of SLE could have the unintended
consequence of increasing atherosclerosis. However, a recent study by Ait-Oufella et al.
demonstrated that B-cell depletion with an anti-CD20 specific monoclonal antibody
significantly reduced atherosclerosis in both the apoE-/- and the LDLR-/- atherosclerosis-
prone mouse models [189]. This work complements a recent human study that demonstrates
improvement in proatherogenic lipid profiles in SLE patients treated with B-cell-depletion
therapy [190]. Further studies will be required to determine the effects of B-cell-targeted
therapies on the development of atherosclerosis in patients with SLE.

Mimetic peptides in rheumatic diseases
Oxidized lipids represent another potential new target for therapy, not only in the prevention
of atherosclerosis in SLE, but also in the treatment of inflammatory disease manifestations.
There is great interest in the therapeutic potential of specific peptides derived from HDL-
related proteins in the prevention of atherosclerosis. Several peptide fragments from apoA-I,
such as the 4-F peptide, have been selected for their ability to prevent the inflammation
induced by oxidized lipids [191].

Animal models suggest that a synergistic combination of therapies, such as statins and
apoA-I mimetic peptides, may be a successful strategy to reverse oxidized lipids and
possibly atherosclerosis [192,193]. Oral administration of D-4F plus pravastatin regresses
established lesions in apoE-null mice and renders HDL anti-inflammatory in monkeys,
suggesting a combination treatment strategy may be particularly effective in treating human
atherosclerosis [194]. D-4F is currently in clinical trials in humans, and a Phase I trial
recently demonstrated safety and tolerability, as well as an ability to improve the HDL
inflammatory index [195]. It is possible that previously unexpected negative trial results,
such as the Lupus Atherosclerosis Prevention Study (LAPS) trial of statins in SLE, may be
partially explained by the inability of a single agent to reverse oxidized lipids [167]. The
future of therapy in rheumatic diseases may well entail combination therapy, with agents to
inhibit generalized inflammation and disease activity, and other agents to target oxidized
lipids.

Owing to the anti-inflammatory nature of these peptides, it may not be surprising that there
have also been implications that apoA-1 mimetics may be of use in treating other
inflammatory manifestations of disease. A recent study with the L-4F peptide plus
pravastatin in a murine SLE model (apoE-/-Fas-/-C57BL/6) resulted in significant reductions
in proteinuria, glomerulonephritis and osteopenia. Aortic lesion size was increased in treated
mice; however, there was evidence of anti-inflammatory plaque remodeling, with decreases
in macrophage infiltration and proatherogenic chemokines, and increased smooth muscle
content [196]. Future work will determine if these mimetic peptides are useful for
preventing atherosclerosis and/or other complications in patients with SLE.
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Discovery of novel targets for atherosclerosis prevention in SLE
Future studies into the mechanisms behind increased atherosclerosis in SLE may identify
new pathways that can be targeted for therapy. For example, recent work by Denny et al.
described an abnormal phenotype and functionality in endothelial progenitor cells and
myelomonocytic circulating angiogenic cells in SLE subjects, indicative of endothelial
dysfunction [106]. These abnormalities were triggered by IFN-α, and neutralization of
interferon pathways restored a normal endothelial progenitor cells/circulating angiogenic
cells phenotype [106]. At least two monoclonal antibodies against IFN-α are currently
entering clinical trials in SLE patients; if efficacious, future studies should examine their
effectiveness in preventing atherosclerosis.

Our group recently reported that PDGF receptor-β (PDGFRβ) is upregulated in monocytes
from SLE patients with piHDL and carotid artery plaque [197]. Both monocyte chemotaxis
and TNF-α secretion were significantly increased when cells were treated with piHDL in
vitro compared with normal HDL. Notably, piHDL-driven chemotaxis and TNF-α levels
were reduced to levels observed in cells treated with normal HDL with concomitant
treatment using the small-molecule PDGFRβ kinase inhibitor imatinib (Gleevec®, Novartis,
Basel, Switzerland). Cells treated with normal HDL and imatinib did not behave differently
to normal HDL-treated cells alone, suggesting that piHDL dysregulates the PDGFR
signaling axis in monocytes and a therapeutic intervention in this signaling pathway could
neutralize atherogenic cells. Although chronic imatinib treatment for subjects with
atherosclerosis would not be recommended due to multiple side effects, including the
controversial possibility of cardiotoxicity [198–202], mechanistic studies into
atherosclerosis-specific dysregulated signaling pathways driving monocyte and T cells could
lead to novel, safe molecular targets for the treatment of accelerated preclinical
atherosclerosis in autoimmune diseases.

Expert commentary & five-year view
It is now well recognized that patients with SLE are at an increased risk of cardiovascular
disease. Cardiovascular risk in patients with SLE is multifactorial, comprising both an
increased incidence of many traditional cardiovascular risk factors and the occurrence of
SLE-specific factors, including disease activity and duration, and drug therapy. Management
of both traditional and SLE-specific risk factors is important to effectively prevent and treat
cardiovascular disease in patients with SLE. Although traditional cardiac risk factors cannot
fully account for the increased risk of atherosclerosis in SLE, they do contribute, and at this
time, they provide our best strategy for modifying cardiovascular risk in our patients. Data
from several cohorts suggest that control of traditional risk factors has not been optimized in
the SLE patient population; for example, the new quality indicators for SLE recommend that
SLE subjects be screened annually for cardiac risk factors [203]; however, in a Boston
cohort, only 26% of the patients had four cardiac risk factors assessed annually [204].
Similarly, in the Systemic Lupus International Collaborative Clinics cohort,
hypercholesterolemia was not treated in up to two-thirds of patients [205]. In the future,
long-term, well-controlled trials will provide evidence to support the use of traditional
preventive strategies, as well as increased understanding of the role of current
immunosuppressive and future therapies for combating atherosclerosis in SLE.

Inflammation is associated with the increased development of atherosclerosis in patients
with SLE. It is unclear, however, if targeting disease activity with anti-inflammatory
therapies will be adequate to decrease the incidence of cardiovascular disease in patients
with SLE. Unanswered questions include how existing and developing therapies for SLE
will affect future cardiovascular risk, and whether traditional and novel biomarkers of
cardiovascular risk in SLE patients can be used to monitor response to these therapies.
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Advances in the next 5–10 years may make clear the best strategies for preventing
atherosclerosis in our SLE patient population.
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Key issues

• Individuals with systemic lupus erythematosus (SLE) have a significantly
increased risk for developing cardiovascular disease (CVD) at a younger age.

• Increased incidence of CVD in SLE is due to a combination of traditional
(Framingham) and SLE-specific risk factors.

• The longer a patient has had SLE, the higher the risk of developing CVD; it is
unclear at this time whether long-term and/or high glucocorticoid use (as SLE
therapy) promotes or protects against full CVD.

• Novel biomarkers for accelerated CVD in SLE identified in recent years include
elevated homocysteine and leptin levels, in addition to dysfunctional high-
density lipoprotein.

• Current therapeutic approaches to prevent CVD in SLE include following
recommended national guidelines to target modifiable traditional cardiac risk
factors such as hypertension, dyslipidemia, BMI, diabetes and tobacco use.

• Future novel therapeutic approaches to counteract accelerated CVD specifically
in SLE may include ApoA-I mimetic peptides and B-cell depletion therapy, as
well as delineating dysregulated pathways in immune cells that directly
contribute to atherosclerosis initiation and progression then targeting molecules
in these pathways with small molecule inhibitors.
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Figure 1. Effects of high-density lipoprotein and proinflammatory high-density lipoprotein on
atherosclerosis initiation and progression
(A) Illustration of the interaction between LDL, the entrance of monocytes into the artery
wall, formation of oxidized LDL (OxLDL), and the engulfment of OxLDL by macrophages
to form foam cells. HDL interrupts this atherosclerotic process by reverse cholesterol
transport of oxidized lipids from foam cells, by blocking endothelial cell activation, and by
prevention of oxidation of LDL via antioxidative enzymes in the normal HDL particle such
as paraoxonase.
(B) Proinflammatory, pro-oxidant HDL cannot carry out many of the protective functions of
normal functioning HDL, leading to the formation of OxLDL, the release of chemokines and
cytokines, the engulfment of OxLDL by CD36 receptors on macrophages to form foam cells
and ultimately atherosclerotic plaque.
HDL: High-density lipoprotein; LDL: Low-density lipoprotein; MCP-1: Monocyte
chemotactic protein-1; piHDL: Proinflammatory high-density lipoprotein; ROS: Reactive
oxygen species.
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Table 1
Traditional and nontraditional cardiac risk factors in patients with systemic lupus
erythematosus

Risk factor References showing positive association References showing no
association

Traditional risk factors

Dyslipidemia [8,27] [6,9]

Age [2–4,6,7,9,16,27,206–208]

Hypertension [3,4,10,25,27]

Diabetes mellitus [3,207]

Cigarette smoking [25] [6,9]

Menopausal status [2]

BMI [27], association with increased IMT in children [26] [6,9]

Homocysteine [7,16]

Nontraditional (SLE-specific) risk factors

Renal disease [16,24,26] [27]

SLE disease activity and duration [6–8,16]

Corticosteroid therapy Inverse association: [6] High and low doses with increased IMT, moderate
(0.15–0.4 mg/kg/day) doses with decreased IMT in children [26] and adults
[27]

IMT: Intima-media thickness; SLE: Systemic lupus erythematosus.
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