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Abstract
The local statistical properties of photographic images, when represented in a multi-scale basis,
have been described using Gaussian scale mixtures. Here, we use this local description as a
substrate for constructing a global field of Gaussian scale mixtures (FoGSMs). Specifically, we
model multi-scale subbands as a product of an exponentiated homogeneous Gaussian Markov
random field (hGMRF) and a second independent hGMRF. We show that parameter estimation
for this model is feasible, and that samples drawn from a FoGSM model have marginal and joint
statistics similar to subband coeffcients of photographic images. We develop an algorithm for
removing additive white Gaussian noise based on the FoGSM model, and demonstrate denoising
performance comparable with state-of-the-art methods.
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I. Introduction
MANY successful methods in image processing and computer vision rely on statistical
models for images, and it is of continuing interest to develop improved models, both in
terms of their ability to precisely capture image structures, and their practicality for use in
applications. A common method of constructing such statistical models is to first identify
statistical properties of photographic images, and then develop probabilistic models that
capture these properties. The first step in this process is to choose a representation (typically,
a linear basis) in which the statistical properties are more simply described. Early research in
image statistics was based primarily on pixel and Fourier representations. But over the past
two decades, numerous studies have demonstrated that linear image decompositions based
on multi-scale multi-orientation localized basis functions (loosely referred to as “wavelets”)
are particularly effective in revealing statistical regularities of photographic images. For
instance, wavelet coefficients of photographic images generally have highly kurtotic non-
Gaussian marginal distributions [1], [2], [3], and the amplitudes of nearby coefficients are
strongly correlated [4], [5], [6].

A variety of parametric models have been proposed to capture these regularities, including
the generalized Laplacian [7], [8], [9], [10], the Bessel K [11], the multi-variate Student's t-
distribution [12], the α-stable family [13] and the Cauchy distribution [14]. All of these non-
Gaussian statistical models can be unified under the flexible semi-parametric density family
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known as Gaussian scale mixtures (GSMs) [15], [16]. By definition, a GSM density is an
infinite mixture of zero-mean Gaussian variables with covariances related by multiplicative
scaling. GSMs can emulate many of the non-Gaussian statistical behaviors observed in local
groups of wavelet coefficients of photographic images. In addition, the underlying Gaussian
structure leads to relatively simple parameter learning and inference procedures. For these
reasons, local image models based on GSMs have been highly successful when applied to
image denoising [17], [18].

Despite this success, it has proven difficult to extend the local GSM description to a
consistent global probability model. One can partition the coefficient space into non-
overlapping clusters, and describe each of these using an independent GSM. But such a
model will ignore important statistical dependencies between coefficients in adjacent blocks.
The inhomogeneities that arise from treating coefficients near block boundaries differently
from those in the center can, in turn, lead to noticeable artifacts such as blocking or aliasing
in applications. This problem may be somewhat ameliorated by using overlapping (e.g.,
convolutional) blocks [17], [18]. But then treating these blocks as independent samples is
not consistent with any global model. Another option is to retain non-overlapping coefficient
clusters, but to capture the dependencies between these clusters by linking the hidden
scaling variables in a tree-structured Markov model (e.g., [19], [20]). Although these models
are able to capture some global statistical dependencies, they still produce artifacts due to
the inhomogeneous treatment of spatially proximal coefficients that are assigned to different
branches of the tree.

A natural means of extending the local GSM description to a homogeneous global
description is through the use of Markov random fields (MRFs). A MRF is a global model
uniquely determined by a local statistical description. A number of authors have developed
MRF-based image models in the pixel domain (e.g., [21], [22], [23], [24], [25], also see [26]
for an overview). In particular, the recently developed field of experts model [27] has been
used to achieve impressive performance in denoising. However, these MRF-based models
usually involve learning and inference procedures based on statistical sampling, which are
generally computationally costly or unstable.

In this paper, we take a different approach to embedding a local GSM description within a
global consistent MRF, by modeling multi-scale subbands as fields of Gaussian scale
mixtures (FoGSMs). Specifically, a FoGSM is formed by an element-wise product of two
mutually independent MRFs: a homogeneous Gaussian MRF (hGMRF), and a positive-
valued MRF obtained by exponentiating a second hGMRF. The former captures second-
order dependencies, while the latter characterizes the variability and dependencies of local
variance. Individual coefficients in the FoGSM model marginally follow a GSM
distribution, while the global MRF structure generates dependencies beyond local
neighborhoods. We develop a parameter estimation procedure, exploiting the computational
advantages of the underlying hGMRFs, and demonstrate that samples from FoGSMs share
important statistical properties of photographic images. As an example application, we
develop a Bayesian denoising methodology using FoGSM as a prior model for clean images.
We show that the resulting denoising method achieves performance comparable to state-of-
the-art methods. Preliminary results of this work have been presented in [28].

II. Background
A. Photographic image statistics

Photographic images exhibit distinct statistical regularities that are especially apparent when
they are represented using a multi-scale basis (loosely referred to as a “wavelet”
decomposition). To be more specific, the wavelet coefficients of photographic images tend
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to have highly kurtotic non-Gaussian marginal distributions [1], [2], [3]. More importantly,
even when they are second-order decorrelated, there are higher-order statical dependencies
between coefficients at nearby locations, orientations and scales [5], [6], [16]. Shown in Fig.
1 are empirical joint and conditional histograms for five pairs of subband coefficients of the
“boat” image, corresponding to basis functions with spatial separations of Δ = {1, 4, 32}
samples, two orthogonal orientations and two adjacent scales. For adjacent coefficients, we
observe an approximately elliptical joint distribution. This behavior was originally reported
for Hilbert-transform pairs of basis functions [30], and later generalized to pairs at different
positions, orientations and scales [5], [6]. The “bow-tie” shaped conditional distribution
indicates that the variance of one coefficient depends on the value of the other. This is a
highly non-Gaussian behavior, since the conditional variances of a jointly Gaussian density
are always constant, independent of the value of the conditioning variable. For coefficients
that are distant, the dependency becomes weaker and the corresponding joint and conditional
histograms become more separable, as would be expected for two independent random
variables. Finally, although the examples shown here were generated using a particular
multi-scale oriented image representation, these statistical properties are fairly robust to the
specific choice of decomposition as long as the basis functions are localized and band-pass.

B. Gaussian scale mixtures
A Gaussian scale mixture (GSM) vector is defined as the product of a zero-mean Gaussian
vector and an independent positive scalar variable. Specifically, a d-dimensional GSM
vector x can be constructed as , where u is a d-dimensional zero mean Gaussian
vector, and  is independent of x. The density of x is determined by the covariance
matrix, Σ, of the Gaussian vector, and the density of z:

(1)

As a family of probability densities, GSM includes many common kurtotic distributions,
including all those mentioned in the introduction [15]. For instance, if z follows an inverse
gamma distribution, the resulting GSM density reduces to a multivariate Student's t-
distribution [15], [31].

C. Homogeneous Gauss-Markov random fields
A Markov random field (MRF) is a global joint distribution on a mesh of nodes that is
uniquely determined by the local density of each node conditioned on the nodes in a
surrounding neighborhood. In particular, the MRF is the maximal entropy density consistent
with the local probabilistic constraints [26]. A Gaussian MRF (GMRF) is one in which all
the local conditional (and hence, joint) densities are Gaussian. In this case, the inverse
covariance matrix (also known as the precision matrix) of the full set of nodes contains a
zero entry for all pairs of nodes that are not within each other's conditioning neighborhoods.
The sparse form of the precision matrix means that it usually provides a more convenient
parameterization of a GMRF than the full covariance matrix. A homogeneous GMRF
(hGMRF) is a GMRF with local density parameters invariant to absolute spatial location. In
particular, when the hGMRF is defined over a two-dimensional lattice with circular
boundary handling1, its precision matrix is block circulant (see Appendix A for details),
determined by the generating kernel  that captures nonzero dependencies within each
neighborhood. Given the relatively small set of parameters, the block circulant structure, and

1Circular boundary handling is assumed in the definition of hGMRF. As the dimensionality of the random field increases, the
boundary handling is less influential in the computation.
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the resulting close relationship with the discrete Fourier transform (see Appendix A),
hGMRFs are significantly more computationally tractable than general MRFs in terms of
parameter estimation, sampling, and inference. Learning and sampling with hGMRFs are
described in Appendix B and C, respectively, and a more detailed description of GMRFs
and hGMRFs may be found in reference [32].

III. Fields of Gaussian scale mixtures
The GSM model has been used successfully to describe the statistics of local clusters of
multiscale image coefficients, which can include spatial neighbors as well as coefficients in
adjacent scale and orientation subbands [e.g., 19]. But, as mentioned in the introduction,
extending local GSM model to a global model of images without introducing either
statistical inconsistencies, or inhomogeneities in the global model structure is difficult. Here,
we resolve this dilemma by describing each subband as a homogeneous Field of Gaussian
Scale Mixtures (FoGSM).

We define a FoGSM as the element-wise product of two mutually independent MRFs, u and
:

(2)

where the square root is applied to each component of z. Here, u is a zero-mean Gaussian
MRF, and z is a positive-valued MRF of scaling variables. To eliminate the scaling
ambiguity between u and z, we assume that each component of u has unit variance. The
FoGSM model inherits from the GSM model the construction as a product of an
independent Gaussian variable and another positive random variable, and as such, all one-
dimensional marginal densities of a FoGSM are GSMs. But unlike the local GSM model, in
which a single z variable is multiplied by every component of a multivariate Gaussian
variable u, the Gaussian components in FoGSM each have their own z variable. This
collection of z variables form a second MRF, which can capture higher-order statistical
dependencies.

To further reduce the number of free parameters in the model, we use homogeneous
FoGSMs to model each subband in a multiscale decomposition. Specifically, we assume u
to be a zero-mean homogeneous Gaussian MRF (hGMRF), with circular boundary handling:

(3)

where  is the generating kernel, and  is a block circulant precision matrix formed
from that kernel. Furthermore, we assume that z is derived by applying a point-wise
exponential “link” function to a second hGMRF. Alternatively, we can define log z (where
the log operator is applied element-wise) as a zero-mean hGMRF with precision matrix

:

(4)

The inter-dependencies between components of z may be explicitly incorporated through the
precision matrix . This log-normal random field is a natural extension of the
univariate log-normal density used previously for the scalar multiplier in a local GSM model
[33].
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The density of x conditioned on z, may be easily written by substituting the element-wise
quotient  for the vector u in Eq. (6) and re-normalizing:

(5)

where  in the second line denotes a square diagonal matrix generated from vector .
The resulting conditional density on x is a zero-mean inhomogeneous GMRF, as its

precision matrix  no longer has a block circulant structure.

A. Learning and sampling FoGSMs
A FoGSM density on subband coefficients x is determined by the generating kernels of the
two constituent hGMRFs,  and . When fitting FoGSM to data, it is also desirable to
have an estimate of the field z. Thus, we formulate the learning of FoGSM as simultaneous

estimation of parameters  and  and variables , from a training set of subbands

, as

(6)

Optimization of this objective function corresponds to a combination of maximum
likelihood estimation of the model parameters ( , ) and maximum a posteriori

estimation of the hidden variables  from training data .

We optimize equation (6) using a coordinate ascent scheme, which alternates between

maximizing each of ,  and  while holding the remaining two fixed:

(7)

Running the three steps in (7) iteratively guarantees convergence to a local maximum of the
objective function in (6). Each step may be further simplified.

The objective function in step (i) of Eq. (7) is more conveniently expressed in terms of the
element-wise inverse square root of variable z. We define , from which z can be
recovered using . The conditional density of x given s may then be written:

(8)

and the density of s may be easily obtained by suitable transformation of the density of z:
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(9)

Using these new definitions, step (i) in Eq. (7) may be rewritten as

(10)

This objective function may be optimized with conjugate gradient descent [34]. Much of the
computation involves multiplying vectors by the precision matrix. Because the precision
matrix is block-circulant, these operations are convolutions and may be efficiently
implemented using the fast Fourier transform. Empirically, we also found that the conjugate
gradient iteration converges quickly: After roughly 300 steps of iteration for a 512 × 512
pixel image, the successive relative changes in the objective function are less than 10−13.

Steps (ii) and (iii) in (7) correspond to estimating model parameters  and  given data

. Specifically, step (ii) may be simplified to

(11)

where the last line corresponds to a maximum likelihood estimate of the generating kernel

 of a zero-mean hGMRF given N independent samples .

Similarly, step (iii) may be simplified as

(12)

which is the maximum likelihood estimate of parameter  in a hGMRF on log z given

independent samples . Again, both steps allow efficient computation based on the
properties of block circulant matrices. The details of parameter estimation for hGMRFs are
provided in Appendix B.

Sampling from FoGSM is simple and efficient. By definition, a sample of FoGSM is formed
by element-wise multiplication of two independent samples of u and . The former is
obtained by sampling from hGMRF u, and the latter is obtained by element-wise
exponentiation of the square root of a sample of hGMRF log z. Sampling from each two-
dimensional hGMRF is implemented by linearly transform a sample of white Gaussian
noise, which is again efficient due to the computational advantages of block circulant
matrices. We provide basic descriptions of these operations in Appendix C and more
information can be found in [32].
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IV. Modeling multi-scale image subbands with FoGSMs
In this section, we investigate empirically how well a FoGSM is able to account for the
statistical properties of subband coefficients of photographic images. We fit an independent
FoGSM model to each subband of a photographic image, and examine the properties of the
u and log z fields, as well as samples from the learned FoGSM model.

A. Experimental setup
Our data sets are multi-scale subbands of a given orientation and scale from five standard
test images of size 512 × 512 pixels (“Lena”, “Barbara”, “boats”, “hill”, and “baboon”). For
image representation, we employed an over-complete tight frame representation known as
the steerable pyramid [29] as the front-end linear decomposition. The basis functions of this
linear decomposition are spatially localized, oriented and span roughly one octave in
bandwidth. They are polar separable in the Fourier domain and are related by translation,
dilation and rotation. We fit the FoGSM model to subbands corresponding to the first scale
and third orientation in an 8-orientation decomposition (the peak orientation angle of this
band is at π/4 radians, relative to the horizontal axis).

The neighborhood size of the two component hGMRFs of the FoGSM model
(corresponding to variables u and log z) were chosen by maximizing the cross-validated
likelihood. We cut each subband into equal-sized rectangular halves, fitted the FoGSM
model of a given neighborhood size to one half of the subband, and then computed the
likelihood on the data from the other half of the subband using Eq. (6). The best
performance was observed for 5 × 5 neighborhoods, for both hGMRFs. Once the
neighborhood size was determined, the generating kernels were optimized using the
algorithm described in the previous section. The vector z, which represents the local signal
variance, was initialized by computing the local variances estimated within each overlapping
5 × 5 spatial window.

B. Decomposition and parameters
Shown in the top row of Fig. 2 are the results of decomposing a subband from the “boats”
image according to the fitted FoGSM model. Specifically, the subband (left panel) is
decomposed into the product of the u field (middle panel) and the  field (right panel, in
logarithm) using the training algorithm described in Section III-A. Visually, we can see that
the changing spatial variances are captured by the estimated log z, and residual
homogeneous structures are captured by the estimated u. The second row in Fig. 2 are the
marginal histograms of each field in the log domain, plotted against a Gaussian density of
the same variance. Note that the marginal distribution of u is well approximated by a
Gaussian, as assumed in the FoGSM model. The marginal distribution of log z, while
unimodal, exhibits noticeable deviations from Gaussianity. In particular, it is clearly
asymmetric, and this property seems to be consistent across a variety of di erent subbands
and images.

Shown in the bottom row of Fig. 2 are the estimated 5 × 5 generating kernels  and .
The former reflects the orientation anisotropy of hGMRF u, which is matched to the
orientation tuning of the subband. On the other hand,  shows only weak orientation
preference. We could interpret this to indicate that the MRF for log z is close to isotropic.
However, visual inspection of the log z field suggests that the MRF frequently exhibits
strongly oriented content, but that this content is inhomogeneous (i.e., the orientation is di
erent in different image regions) and thus cannot be captured by a homogeneous GMRF.
Furthermore, one can see that the estimated u and log z are not independent, as assumed by
the FoGSM model, but have aligned structures (typically arising from image contours).
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C. Statistics of FoGSM samples
The statistical dependencies captured by the FoGSM model can be further illustrated by
examining marginal and joint statistics of samples from the fitted model. Note that this is
achieved by fitting the global FoGSM statistical model to a subband, and then drawing
samples from this model, not by explicitly adjusting parameters to fit the marginal or joint
histograms (as was done in [16]).

We begin by comparing the marginal distributions of the samples and the original subband.
Figure 3 shows empirical histograms in the log domain of a particular subband from four
different photographic images (dashed line), and those of the synthesized samples of
FoGSM models learned from each corresponding subband (solid line). For comparison, a
Gaussian with matching standard deviation is also displayed (thin dashed line). Note that the
synthesized samples have conspicuous non-Gaussian marginal characteristics, exemplified
by the high peak and heavy tails, similar to the image subbands. On the other hand, the
synthesized coefficients are typically less kurtotic than the real subbands. The shape of these
marginal densities is dictated by the z field, which is a hGMRF transformed with a point-
wise exponential link function. An alternative choice of link function could be used to create
distributions closer to the observed wavelet subbands.

In addition to the marginal statistics, the FoGSM model also has joint behaviors that are
similar to those observed in multi-scale coefficients of photographic images. Shown in Fig.
4 are the joint and conditional histograms of synthesized samples from the FoGSM model
estimated from the same subband used to generate the histograms in Fig. 1. Note that
histograms of the synthesized samples have a dependence on spatial proximity similar to
those of the image data shown in Fig. 1. This behavior arises directly from the structure of
the FoGSM model. The random field z is smooth, and thus nearby components have nearly
identical marginal variance, resulting in an elliptically contoured joint density, and strong
dependency between coefficients. This dependency is propagated from neighborhood to
neighborhood in the FoGSM model, but weakens with distance. On the other hand, note that
the dependencies between coefficients representing different orientations or scales are not
properly modeled, because we have used an independent FoGSM to model each subband.
This is evident when comparing the fourth and the fifth columns of Figs. 4 and 1.

Finally, Fig. 5 shows samples of u, log z, and x drawn according to a FoGSM model whose
parameters were fit to the subband shown in Fig. 2. The u field resembles that of the
subband, but the z field is seen to lack the extended structures seen in the data. Thus, the
FoGSM model fails to fully capture the inhomogeneous long-range interactions that arise in
images around contours or extended features.

V. Application to image denoising
As a probability model for photographic images, FoGSM may be used as a prior for
Bayesian estimation of an image given an observation corrupted by additive white Gaussian
noise of known variance. In addition to its practical relevance, image denoising is a simple
yet powerful test for the effectiveness of an image model, providing a clear quantitative test
of how well the model can differentiate photographic image content from noise.

A. Algorithm
We follow a conventional methodology, decomposing the noise-corrupted image into
wavelet subbands, computing an estimate of the coefficients of each subband using the
FoGSM model as a prior, and then generating the denoised image by applying the inverse
wavelet transform to the denoised subbands. Since the wavelet transform is linear, we may
write y = x+w for a wavelet subband of the noisy image, where x is the clean wavelet
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subband and w is the noise that is added to the subband. Note that in an over-complete
representation such as steerable pyramid, white Gaussian noise in the image domain is
transformed into correlated Gaussian noise, whose covariance can be computed from the
basis functions of the transform.

A standard approach to denoising is to formulate it as a Bayesian inference problem,
selecting an estimate based on the posterior density p(x|y), which is proportional to the
product of the likelihood function p(y|x) and the image prior p(x). Two solutions are
common. The maximum a posterior (MAP) estimate is the mode of the posterior density,

, whereas the Bayesian least square (BLS) estimate, which
minimizes the expected square error between the restored image and the original image, is
the mean of the posterior density . Both of these solutions involve
computationally expensive (high-dimensional) integration when used with FoGSM model.
Specifically, MAP requires a high-dimensional integral over z, while BLS requires high-
dimensional integrals over both x and z.

Although it is possible to obtain approximations to these solutions using Markov chain
Monte-Carlo sampling [26] or variational approximations [35], we instead develop a
deterministic algorithm that takes advantage of the hGMRF structure of the FoGSM model.
Specifically, we compute

(13)

and then take  as the denoised subband. This strategy, known as a “partial optimal
solution” [36], greatly reduces the computational complexity of the problem. The solution to
the optimization problem in Eq. (13) is found by coordinate ascent. Starting with initial
values for x and z, the algorithm proceeds by alternating between the following steps:

1) Optimization of x: Given the current estimate of z, the optimization of x in (13)
can be expanded using Bayes' rule:

where the first term is simplified because y and z are independent when
conditioned on x, and the last two terms are dropped because they do not depend
on x. Given the Gaussian structure of the first two terms, the maximum is linear
in y (equivalent to a Wiener filter). Specifically, we must minimize a quadratic
expression:

where the noise covariance  is a block-circulant matrix determined by a
generating kernel Cw that represents the convolution by which the subband is
obtained from the image pixels. Note that although  may be sparse (zero
beyond the support of the filters), the inverse of  can still be dense. It is
therefore computationally advantageous to work with  rather than its

inverse. For this reason, we introduce , and find the optimal t by
solving
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or, expanding the first line, and dropping the term independent of t:

Note that this the objective function is quadratic in t, guaranteeing a global
optimal solution. We compute the optimum using conjugate gradient descent,

and then recover the optimal x through the relationship .

2) Optimization of z: Given the current estimate of x, the optimization of z in (13)
can be written as

The last term may be dropped because it is independent of z, and the first term is
dropped since y is independent of z when conditioned on x. Thus, the problem is
reduced to argmaxz log p(x, z), which may be computed as in step (i) of the
learning procedure of Sec. III-A.

3) Acceleration: The alternating optimization of x and z is guaranteed to converge
to a local optimum of the objective function in Eq. (13), but the convergence
speed can be very slow. To accelerate convergence, we include a heuristic
“inertial” step after every two steps of the optimization loop. Specifically, the
algorithm takes a step in the direction established by the optimal values of the
previous two iterations, with the step size optimized according to:

Intuitively, such a jump ensures that the optimization does not oscillate back and
forth within a narrow valley of the objective function. In practice, as shown in
the following experiments, it achieves a substantial reduction in the overall
running time of the algorithm.

4) Parameter estimation (optional): The denoising algorithm described thus far
assumes the model parameters  and  are known. These model parameters
can be learned as a generic statistical model for wavelet coefficients from a large
set of noise-free photographic images using the algorithm provided in Section
III-A. The advantage of a generic image model approach is that the training can
be performed offline, which may greatly reduce the overall running time.
Alternatively, these parameters can be adaptively learned by including a
parameter estimation step in the loop of the denoising algorithm

(14)
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as in Section III-A. The FoGSM model parameters ( , ) are estimated from

hGMRFs  and , as in steps (ii) and (iii) of Eq. (7). Adaptively
learning the parameters allows the model to better account for the local structure
of the image in question, thus potentially leading to better performance. We
compare the relative performance of these two training schemes in the following
experiments.

B. Experimental setup
We evaluated the FoGSM denoising method on a set of standard grayscale test images [17].
All images are of size 256 × 256 or 512 × 512 pixels and in 8-bit TIFF format. Noisy images
were generated by adding simulated white Gaussian noise. We evaluate the denoising
performance by visual inspection, as well as the conventional objective performance known
as peak-signal-to-noise-ratio (PSNR), defined as 20 log10(255/σe), with σe the standard
deviation (computed by averaging over spatial position) of the difference between the
restored image and the original image.

Each noise-corrupted image was first decomposed into a steerable pyramid with multiple
scales (5 levels for a 512×512 image and 4 levels for a 256 × 256 image) and 8 orientations.
These values were chosen empirically as a trade-off between denoising performance and
computational load. The resulting representation is approximately 11 times over-complete,
relative to the original image size. The Markov neighborhoods for hGMRFs u and log z
were both chosen to cover 5 × 5 blocks of coefficients, since this was found to be optimal
for representation of clean images. We verified that this specific choice was also roughly
optimal for the best denoising performances across different images and noise levels. The
model parameters were obtained by training the FoGSM model adaptively for each subband
as described in Section V-A, with initial parameter values chosen to represent a smooth and
isotropic GMRF. The initial values of x and z are computed from subband denoised with the
local GSM model [17].

C. Results
Denoising results for six test images, at seven different noise levels, are reported in Table I.
The standard deviations of PSNR values for each image and noise level, computed by
repeating the each denoising experiment 10 times with different samples of noise, are
consistently lower than 0.1dB. In addition to the results for our FoGSM algorithm, we also
provide denoising results of the BLS-GSM method [17]. This algorithm computes the Bayes
least squares estimate (i.e., conditional mean) of individual coefficients based on a local
GSM model. The comparison with FoGSM allows us to assess the gain in performance that
is obtained by building a global model. We employed the implementation described in [17],
which assumes a neighborhood consisting of 3 × 3 spatial neighbors plus a “parent”
coefficient in the next coarsest scale2. Finally, we provide results of the current state-of-the-
art denoising method, BM3D [37]. The PSNR values for these methods were directly taken
from corresponding publications. Note that the FoGSM algorithm achieves consistent
improvements in PSNR over the local GSM based algorithm (average improvement is
0.52dB), clearly demonstrating the advantage of a globally consistent statistical model. On
the other hand, the performance of the FoGSM method is comparable (sometimes better,
sometimes worse) to that of BM3D, which is not based on any explicit statistical model. In
general, BM3D relies on the image containing repeating patterns (specifically, many blocks
of pixels that are similar). Thus it performs best on images with large regions of the same

2A MAP based denoising algorithm based on the local GSM model was developed in [38]. However, its performance was
significantly worse than the BLS method published in [17].
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texture (e.g., “Barbara”), or long contours of similar orientation (e.g., “House”), and
performs less well on images with diverse content (e.g., “boats”, or “Lena”).

In Fig. 6 we plot the PSNR performance of four recent denoising methods relative to that of
FoGSM. The performance of FoGSM is consistently better than those of the kSVD method
[39], the BLS-GSM method [17], and the fields of experts (FoE) [27], and (on average)
comparable to those of BM3D [37], which currently represents the state-of-the-art.

Next, we examine and compare the denoising results visually. Shown in Fig. 7 and Fig. 9 are
the results of denoising the “Barbara” image and the “boats” image with noise level σ = 50,
corresponding to a peak-signal-to-noise-ratio (PSNR) of 14.15 dB. We have chosen a
relatively high level of noise, in order to provide a clear visualization of the capabilities and
limitations of the model. To better examine the details of the denoising results, we show in
Fig. 8 and 10 cropped regions of each of the corresponding images in Fig. 7 and 9,
respectively. For these examples, the FoGSM denoising achieves substantial improvements
(+0.95 and +0.68 dB) and is seen to exhibit higher contrast and continuation of oriented
features. However, FoGSM also introduces some noticeable artifacts in low contrast regions,
which are likely due to failures of the FoGSM model to capture all statistical properties of
photographic image wavelet coefficients. For example, coefficient amplitudes are known to
be correlated across scale (see Fig. 4, right panel). If represented properly, this correlation
should allow the denoising algorithm to recognize isolated large coefficients as noise, since
(unlike photographic images) they will not have corresponding large-amplitude coefficients
in adjacent bands. But the current model treats each subband independently, thus allowing
these isolated coefficients to remain as unsuppressed artifacts. In addition, these artifacts
may also be aggravated by the use of a MAP-like estimator. A local MAP-GSM estimator
produces similar unsuppressed coefficients, when compared to the smoother behavior of the
local BLS-GSM estimates.

The denoising performance obtained with FoGSM is attained with a substantial
computational cost. As a rough indication, our unoptimized Matlab code, running on an Intel
workstation with 2.6 Ghz dual Opteron 64-bit processor and 16 Gb RAM memory, takes on
average of 97.3 mins (results averaging over 9 trials, with a range of [71.8,124.4] mins) to
denoise a 512 × 512 image at noise level σ = 50, and takes on average of 35.3 mins (result
averaging over 4 images, with a range of [28.4, 47.9] mins), to denoise a 256×256 image at
the same noise level. It is likely these values could be improved by incorporating additional
acceleration heuristics.

D. Algorithm variations
In order to understand the contribution of various aspects of the FoGSM-based denoising
method, we examined their relative effect on the denoising performance. Shown in Table II
are the changes in PSNR and running time when various features of the method are
modified. All results are for noise level σ = 50 and averaged over three 512 × 512 images
(“boats”, “Lena”, “Barbara”). The first two columns correspond to modifications of the
front-end representation. The first (ortho wvlt) corresponds to using an approximately
orthogonal wavelet decomposition based on quadrature mirror filters [40]. The separable
QMF pyramid splits the image frequency domain into horizontal, vertical and mixed
diagonal subbands. Using this representation results in a substantial reduction in
performance, which we believe is partly due to the mixed orientations in the diagonal band,
and partly due to the lack of over-completeness which generally improves denoising [41],
[42].

The second column (4 orns) shows the result of using steerable pyramid decomposition with
only four orientations (instead of eight). Decreasing the number of orientations leads to a
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significant drop in performance, accompanied by a substantial reduction in running time. On
the other hand, increasing the number of orientations (not shown) leads to small
improvements in PSNR, at the expense of considerable computation cost.

In the next three columns, we examine the effects in the FoGSM model structure. We first
compared the effect of different choices of MRF neighborhood size (3 × 3 and 7 × 7). As
shown, changing neighborhood size has relatively little effect on the overall running time,
but the PSNR values were lower for both neighborhood sizes, justifying our choice of the 5
× 5 neighborhood (at least for this image and noise level). In the fifth column (gen param),
we compared the result of off-line training of the ( , ) parameters of the FoGSM model
on a set of noise-free images (not including the three test images). This leads to a significant
reduction in the computational cost of denoising an image, since the parameter learning step
no longer needs to be included in the denoising process. However, this is accompanied by a
significant loss in denoising performance (an average PSNR reduction of approximately
0.4dB), since the generically learned model parameters are less adapted to the idiosyncrasies
of the specific image/subband being denoised. The last column (no accel) shows that the
accelerating heuristics introduced in previous section significantly improve the running time
of the denoising procedure, while having a negligible effect on PSNR.

VI. Related Models
The local GSM model that underlies the FoGSM is closely related to other local hidden
variable models for images [5], [16], [8], [31], [44], [43]. However, the use of MRFs in the
FoGSM allow it to extend to images of arbitrary size in a statistically consistent way, while
the local scale mixture models are essentially confined to describing small image patches.
The underlying MRF structure of the hidden variables in the FoGSM model also
differentiates it from mixture models with tree-structured hidden variables [19], [20]. These
models have the advantage of explicitly capturing cross-band dependencies, but they suffer
from spatial inhomogeneities introduced by the tree partitioning.

As a global MRF-based image model, the basic architecture of FoGSM differs from existing
non-Gaussian MRF image models [21], [23], [24], [27] in that it is not defined by
specification of clique potentials, but through non-linear composition of two hGMRFs. On
the other hand, FoGSM has some resemblance to the compound Gauss-Markov random
fields model for images [22], which is formed by modulating a homogeneous GMRF with a
binary line process that indicates the existence of an edge between two spatial locations [21].
A modified version, proposed in [36], treats the hidden variables as independent. This
simplifies computation, but may lead to a loss in performance in applications.

VII. Discussion
We have introduced fields of Gaussian scale mixtures as a flexible and efficient tool for
modeling the statistics of wavelet coefficients of photographic images. We developed a
feasible parameter estimation method, and showed that samples synthesized from the fitted
FoGSM model are able to capture structures in the marginal and joint wavelet statistics of
photographic images. And we have applied the FoGSM to image denoising, and
demonstrated performance comparable to current state-of-the-art denoising methods.

We envision, and are currently working on, a number of improvements. First, the model
should benefit from the introduction of more general Markov neighborhoods, including
wavelet coefficients from subbands at other scales and orientations [6], [17], since the
current model is clearly not capturing these dependencies. A natural means of achieving this
is to allow different subbands to share the same hidden scaling field, although this may
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substantially complicate the learning and inference algorithms. A possible remedy is to
capture these cross-scale dependencies with a coarse-to-fine conditional model. Second, the
logarithmic link function used to derive the multiplier field from a hGMRF was chosen
somewhat arbitrarily, and we believe that substitution of another non-linear transformation
(e.g., a power law, as in [19]) could lead to a more accurate description of marginal and joint
image statistics. Finally, there exist residual inhomogeneous structures in both the u and log
z fields (see Fig. 2) that can likely be captured by explicitly incorporating local orientation
[45] or phase [46] into the model. Finding tractable models and algorithms for handling such
angular variables is challenging, but we believe their inclusion will result in substantial
improvements in modeling and in denoising performance.
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Appendix A: Circulant And Block Circulant Matrix
Given a d-dimensional vector (known as a generating kernel)

a d × d circulant matrix is constructed as

The rows of  are circularly shifted copies of qT, and multiplication of  with a d-
dimensional vector u is equivalent to convolving vectors q and u, with circular (Dirichlet)
boundary handling. The basis functions of the d-sample discrete Fourier transform (DFT)
form a complete set of eigenvectors for any circulant matrix, regardless of the choice of
generating kernel q. Thus, an alternative means of multiplying by the matrix (q) (generally
known as the convolution theorem) is

where F is a matrix containing the DFT basis, F† is the complex-conjugated transpose (used
to compute the forward DFT), and  is a diagonal matrix containing the d-point DFT of
q. Since the DFT may be implemented with O(d log d) operations, this expression often
provides an e cient implementation of convolution with q.

Representation of two-dimensional convolutions (e.g., for images) requires a second-order
circulant (also called block circulant) matrix, which can be constructed by recursively
applying the circulant structure. Analogous to the circulant matrix, the two-dimensional
DFT of the shifted symmetric reflection of  are the eigenvalues of , and the
corresponding two-dimensional DFT basis vectors are the eigenvectors. And again, the
convolution theorem provides an efficient means of implementing matrix multiplication by
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the circulant matrix. For a full account of the properties and computations of circulant and
block circulant matrices, readers are referred to [47].

Appendix B: Parameter Learning for 2D hGMRF
A zero-mean 2D hGMRF u of dimension N × M is completely determined by the generating
kernel  of its block circulant precision matrix. The density of u can be expressed as:

where we have abused notation a bit by using u to represent the vectorized MRF. Assuming
a rectangular Markov neighborhood of size N′ × M′, where M′ ⪡ M and N′ ⪡ N,
estimation of  corresponds to the determination of the central N′ × M′ entries (all others
must be zero).

Given a set of independent samples of u, , the generating kernel  can be estimated
by maximizing the log likelihood:

Using the eigen-decomposition property of block-circulant matrix, and neglecting the
constant term, we can write a modified likelihood function as:

where , the DFT of u. The optimal  is then obtained by maximizing  subject to
the constraint that the solution must be a symmetric and positive definite matrix. It can be
shown that  is a convex function, and the constraints form a convex set in the feasible
space of . Thus, solving for the optimal  is a convex optimization problem and there are
a variety of iterative solutions that are guaranteed to converge to the global optimum [48].

Appendix C: Sampling 2D hGMRF
A sample of a zero-mean 2D hGMRF u of dimension N × M with precision  can be
obtained from a sample of white Gaussian noise w of the same dimension, by computing

(15)

That is, compute the DFT of the noise, divide (element-wise) by the square root of the DFT
of the desired generating kernel, , and then invert the DFT. A similar algorithm has been
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used for texture synthesis [49] as well as for Monte Carlo sampling for image restoration
[50].

It is easy to verify that the resulting MRF has the desired covariance structure:

where we have used the Hermitian property of matrix F and the fact that E(wwT) = I.

Biographies

Siwei Lyu is an assistant professor in Computer Science at University at Albany, State
University of New York. He obtained his B.S. degree in Information Science and M.S.
degree in Computer Science, both from Peking University, China, in 1997 and 2000,
respectively. From 2000 to 2001, he was an assistant researcher at Microsoft Research Asia.
He obtained Ph.D. degree in computer science from Dartmouth College. From 2005 to 2008
he was a post-doctoral research associate at New York University. His research interests
include image processing and forensics, machine learning and computer vision.

Eero P. Simoncelli received the B.S. degree, summa cum laude, in Physics in 1984 from
Harvard University. He studied applied mathematics at Cambridge University for a year and
a half, and then received the M.S. degree in 1988 and the Ph.D. degree in 1993, both in
Electrical Engineering from the Massachusetts Institute of Technology. He was an Assistant
Professor in the Computer and Information Science department at the University of
Pennsylvania from 1993 until 1996. He moved to New York University in September of
1996, where he is currently an Associate Professor in Neural Science and Mathematics. In
August 2000, he became an Associate Investigator of the Howard Hughes Medical Institute,
under their new program in Computational Biology. His research interests span a wide range

Lyu and Simoncelli Page 16

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



of topics in the representation and analysis of visual images, in both machine and biological
systems.

References
[1]. Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEE Transactions on

Communication. 1981; 31(4):532–540.

[2]. Field DJ. Relations between the statistics of natural images and the response properties of cortical
cells. Journal of Optical Society of America. 1987; 4(12):2379–2394.

[3]. Mallat SG. A theory for multiresolution signal decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 1989; 11:674–697.

[4]. Shapiro J. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Sig Proc.
Dec; 1993 41(12):3445–3462.

[5]. Simoncelli, EP. Proc 31st Asilomar Conf on Signals, Systems and Computers. Vol. vol. 1. IEEE
Computer Society; Pacific Grove, CA: Nov 2–5. 1997 Statistical models for images:
Compression, restoration and synthesis; p. 673-678.

[6]. Buccigrossi RW, Simoncelli EP. Image compression via joint statistical characterization in the
wavelet domain. IEEE Trans Image Proc. Dec; 1999 8(12):1688–1701.

[7]. Simoncelli, EP.; Adelson, EH. Proc 3rd IEEE Int'l Conf on Image Proc. Vol. vol. I. IEEE Sig Proc
Society; Lausanne: Sep 16–19. 1996 Noise removal via Bayesian wavelet coring; p. 379-382.

[8]. Hyvärinen, A.; Hoyer, PO.; Inki, M. the First IEEE Int'l. Workshop on Bio. Motivated Comp. Vis.
London, UK: 2000. Topographic ICA as a model of natural image statistics.

[9]. Huang, J.; Mumford, D. Statistics of natural images and models. IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR); 1999.

[10]. Gehler, P.; Welling, M. Products of “edge-perts”. In: Weiss, Y.; Schölkopf, B.; Platt, J., editors.
Advances in Neural Information Processing Systems (NIPS). MIT Press; Cambridge, MA: 2006.
p. 419-426.

[11]. Srivastava A, Liu X, Grenander U. Universal analytical forms for modeling image probability.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002; 28(9):217–232.

[12]. Teh Y, Welling M, Osindero S. Energy-based models for sparse overcomplete representations.
Journal of Machine Learning Research. 2003; 4:1235–1260. [Online]. Available:
citeseer.ist.psu.edu/teh03energybased.html.

[13]. Parra, L.; Spence, C.; Sajda, P. Advances in Neural Information Processing Systems 13. MIT
Press; Cambridge, MA: 2000. Higher-order statistical properties arising from the non-stationarity
of natural signals.

[14]. Sendur L, Selesnick IW. Bivariate shrinkage functions for wavelet-based denoising exploiting
interscale dependency. IEEE Trans. on Signal Processing. 2002; 50(11):2744–2756.

[15]. Andrews DF, Mallows CL. Scale mixtures of normal distributions. Journal of the Royal
Statistical Society, Series B. 1974; 36(1):99–102.

[16]. Wainwright, MJ.; Simoncelli, EP. Scale mixtures of Gaussians and the statistics of natural
images. In: Solla, SA.; Leen, TK.; Müller, K-R., editors. Adv. Neural Information Processing
Systems (NIPS*99). Vol. vol. 12. MIT Press; Cambridge, MA: May. 2000 p. 855-861.

[17]. Portilla J, Strela V, Wainwright MJ, Simoncelli EP. Image denoising using a scale mixture of
Gaussians in the wavelet domain. IEEE Trans Image Processing. Nov; 2003 12(11):1338–1351.

[18]. Guerrero-Colon J, Mancera L, Portilla J. Image restoration using space-variant Gaussian scale
mixtures in overcomplete pyramids. IEEE Transactions on Image Processing. Jan; 2008 17(1):
27–41. [PubMed: 18229802]

[19]. Wainwright MJ, Simoncelli EP, Willsky AS. Random cascades on wavelet trees and their use in
modeling and analyzing natural imagery. Applied and Computational Harmonic Analysis. Jul;
2001 11(1):89–123.

[20]. Romberg J, Choi H, Baraniuk R. Bayesian tree-structured image modeling using wavelet-domain
hidden Markov models. IEEE Trans. Image Proc. Jul.2001 10(7)

Lyu and Simoncelli Page 17

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript

http://citeseer.ist.psu.edu/teh03energybased.html


[21]. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984; 6:721–741.
[PubMed: 22499653]

[22]. Jeng F, Woods J. Compound Gauss-Markov random fields for image estimation. IEEE
Transaction on Signal Processing. 1991; 39(3):683–697.

[23]. Zhu SC, Wu Y, Mumford D. Filters, random fields and maximum entropy (FRAME): Towards a
unified theory for texture modeling. International Journal of Computer Vision. 1998; 27(2):107–
126.

[24]. Freeman WT, Pasztor EC, Carmichael OT. Learning low-level vision. International Journal of
Computer Vision. Oct; 2000 40(1):25–47.

[25]. Tappen, M.; Liu, C.; Adelson, E.; Freeman, W. Learning Gaussian conditional random fields for
low-level vision. IEEE Conference on Computer Vision and Patten Recognition (CVPR); 2007.
p. 1-8.

[26]. Winkler, P. Image Analysis, Random Fields And Markov Chain Monte Carlo Methods. 2nd ed.
Springer; 2003.

[27]. Roth, S.; Black, M. Fields of experts: A framework for learning image priors. IEEE Conference
on Computer Vision and Patten Recognition (CVPR); 2005. p. 860-867.[Online]. Available:
citeseer.ist.psu.edu/729276.html

[28]. Lyu, S.; Simoncelli, EP. Statistical modeling of images with fields of Gaussian scale mixtures.
In: Schölkopf, B.; Platt, J.; Hofmann, T., editors. Adv. Neural Information Processing Systems
19. Vol. vol. 19. MIT Press; Cambridge, MA: May. 2007

[29]. Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ. Shiftable multi-scale transforms. IEEE
Trans Information Theory. Mar; 1992 38(2):587–607. special Issue on Wavelets.

[30]. Wegmann B, Zetzsche C. Statistical dependencies between orientation filter outputs used in
human vision based image code. Visual Communication and Image Processing. 1990; vol.
1360:909–922.

[31]. Welling, M.; Hinton, GE.; Osindero, S. Advances in Neural Information Processing Systems
(NIPS). 2002. Learning sparse topographic representations with products of Student-t
distributions; p. 1359-1366.

[32]. Rue, H.; Held, L. Gaussian Markov Random Fields: Theory And Applications. Chapman and
Hall/CRC; 2005. ser. Monographs on Statistics and Applied Probability

[33]. Portilla, J.; Strela, V.; Wainwright, MJ.; Simoncelli, EP. Adaptive Wiener denoising using a
Gaussian scale mixture model in the wavelet domain. Proc 8th IEEE Int'l Conf on Image Proc;
Oct 7–10 2001; Thessaloniki, Greece: IEEE Computer Society; p. 37-40.

[34]. Press, WH.; Teukolsky, SA.; Vetterling, WT.; Flannery, BP. Numerical Recipes. 2nd ed.
Cambridge: 2002.

[35]. Jordan MI, Ghahramani Z, Jaakkola T, Saul LK. An introduction to variational methods for
graphical models. Machine Learning. 1999; 37(2):183–233. [Online]. Available:
citeseer.ist.psu.edu/jordan98introduction.html.

[36]. Figueiredo M, Leitäo J. Unsupervised image restoration and edge location using compound
Gauss-Markov random fields and MDL principle. IEEE Transactions on Image Processing. 1997;
6(8):1089–1122. [PubMed: 18282999]

[37]. Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3d transform-domain
collaborative filtering. IEEE Transactions on Image Processing. 2007; 16(6):1064–1083.

[38]. Portilla, J.; Simoncelli, EP. Image restoration using Gaussian scale mixtures in the wavelet
domain. Proc 10th IEEE Int'l Conf on Image Proc; Barcelona, Spain: IEEE Computer Society;
Sep. 2003 p. 965-968.

[39]. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing. Dec; 2006 15(12):3736–3745. [PubMed:
17153947]

[40]. Simoncelli, EP.; Adelson, EH. Subband transforms. In: Woods, JW., editor. Subband Image
Coding. Vol. ch. 4. Kluwer Academic Publishers; Norwell, MA: 1990. p. 143-192.

[41]. Coifman, RR.; Donoho, DL. Translation-invariant de-noising. In: Antoniadis, A.; Oppenheim,
G., editors. Wavelets and statistics. Springer-Verlag lecture notes; San Diego: 1995.

Lyu and Simoncelli Page 18

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript

http://citeseer.ist.psu.edu/729276.html
http://citeseer.ist.psu.edu/jordan98introduction.html


[42]. Raphan, M.; Simoncelli, EP. Optimal denoising in redundant bases. Proc 14th IEEE Int'l Conf on
Image Proc; San Antonio, TX: IEEE Computer Society; Sep. 2007

[43]. Karklin Y, Lewicki MS. A hierarchical Bayesian model for learning non-linear statistical
regularities in non-stationary natural signals. Neural Computation. 2005; 17(2):397–423.
[PubMed: 15720773]

[44]. Hyvärinen A, Hurri J, Väyrynen J. Bubbles: A unifying framework for low-level statistical
properties of natural image sequences. Journal of the Optical Society of America A. 2003; 20(7):
1237–1252.

[45]. Hammond, DK.; Simoncelli, EP. Image denoising with an orientation-adaptive Gaussian scale
mixture model. Proc 13th IEEE Int'l Conf on Image Proc; October 8–11 2006; Atlanta, GA:
IEEE Computer Society; p. 1433-1436.

[46]. Wang, Z.; Simoncelli, EP. Adv. Neural Information Processing Systems (NIPS*03). Vol. vol. 16.
Cambridge, MA: 2003. Local phase coherence and the perception of blur.

[47]. Gray RM. Toeplitz and circulant matrices: A review. Foundations and Trends in
Communications and Information Theory. 2006; 2(3):155–239.

[48]. Boyd, S.; Vandenberghe, L. Convex Optimization. Cambridge University Press; 2005.

[49]. Chellappa R, Chatterjee S, Bagdazian R. Texture synthesis and compression using Gaussian-
Markov random field models. IEEE Transactions on Systems, Man, and Cybernetics. Mar; 1985
15(3):298–303.

[50]. Geman D, Yang C. Nonlinear image recovery with half-quadratic regularization. IEEE
Transaction on Image Processing. 1995; 4(7):932–946.

Lyu and Simoncelli Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Fig. 1.
Histograms of pairs of subband coefficients of four photographic images, decomposed using
a Steerable Pyramid decomposition [29]. Top: Contour plots of joint histograms, drawn at
equal intervals of log probability. Bottom: Conditional histograms, computed by
independently normalizing each column of the joint histogram. Image intensities are
proportional to probability, except that each column of pixels is independently rescaled so
that the largest probability value is white.
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Fig. 2.
Top: Decomposition of a subband from image “boat” (left) into a hGMRF u (middle) and
the corresponding multiplier field log z (right). Each image is rescaled individually to fill the
full range of grayscale intensities. Middle: log marginal histograms of x, the estimated u
and the estimated log z. Dotted lines correspond to Gaussian density of the same mean and
variance. Bottom: 5 × 5 central non-zero regions for the hGMRF generating kernels of the
estimated u and log z fields.

Lyu and Simoncelli Page 21

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Fig. 3.
Marginal log distributions of coefficients from a multi-scale decomposition of four
photographic images (dashed line), synthesized FoGSM samples from the same subband
(solid line), and a Gaussian with the same standard deviation (thin dashed line).
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Fig. 4.
Joint distribution of pairs of subband coefficients obtained from samples drawn from the
best-fitting FoGSM model. See the caption of Fig. 1 for explanation.
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Fig. 5.
A sample from the hGMRFs with parameters shown in Fig. 2.
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Fig. 6.
Performance comparison of denoising methods for three different images. Plotted are
differences in PSNR for different input noise levels (σ) between FoGSM and four other
methods (■ BM3D [37], ★ BLS-GSM [17], ◆ kSVD [39] and ▴ FoE [27]). The PSNR
values for these methods were taken from corresponding publications.
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Fig. 7.
Denoising results using local GSM [17] and FoGSM.
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Fig. 8.
Zoom-up regions of the images in Fig. 7.

Lyu and Simoncelli Page 27

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Fig. 9.
Denoising results using local GSM [17] and FoGSM. Performances are evaluated in peak-
signal-to-noise-ratio (PSNR), 20 log10(255/σe), where σe is the standard deviation of the
error between the restored image and the original image.
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Fig. 10.
Zoom-up regions of the images in Fig. 9.
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TABLE I

Comparison of FoGSM denoising results with those of the local BLS-GSM method [17], and the recently
published BM3D method [37], which represents the current state-of-the-art.

σ/PSNR
Barbara 512 × 512 boats 512 × 512 hill 512 × 512

FoGSM GSM BM3D FoGSM GSM BM3D FoGSM GSM BM3D

5/34.15 38.65 37.79 38.31 37.39 36.97 37.28 37.16 36.91 37.14

10/28.13 35.01 34.03 34.98 34.12 33.58 33.92 33.78 33.38 33.62

15/24.61 32.85 31.86 33.11 32.31 31.70 32.14 31.99 31.51 31.86

25/20.17 30.10 29.13 30.72 30.03 29.37 29.91 29.91 29.37 29.85

50/14.15 26.40 25.48 27.17 27.01 26.38 26.64 27.38 26.82 27.08

75/10.63 24.29 23.65 25.10 25.33 24.79 24.96 25.93 25.46 25.58

100/8.13 23.01 22.61 23.49 24.20 23.75 23.74 24.88 24.53 24.45

σ/PSNR
house 256 × 256 Lena 512 × 512 peppers 256 × 256

FoGSM GSM BM3D FoGSM GSM BM3D FoGSM GSM BM3D

5/34.15 38.98 38.65 39.83 38.66 38.49 38.72 37.91 37.30 38.12

10/28.13 35.63 35.35 36.71 35.94 35.61 35.93 34.38 33.73 34.68

15/24.61 33.89 33.64 34.94 34.28 33.90 34.27 32.34 31.70 32.70

25/20.17 31.64 31.40 32.86 32.11 31.69 32.08 29.78 29.18 30.06

50/14.15 28.51 28.26 29.37 29.12 28.61 28.86 26.43 25.93 26.41

75/10.63 26.69 26.41 27.20 27.37 26.84 27.02 24.53 24.11 24.48

100/8.13 25.33 25.11 25.50 26.12 25.64 25.57 23.17 22.80 22.91

Performance values are expressed as PSNR, 20 log10(255/σe), where σe is the standard deviation of the difference between the denoised image

and the original image. Numbers in boldface indicate the best performance among the three methods for each image and noise level. Cases in
which the two best methods differ by less than 0.1dB (the averaged standard deviation of the PSNR values) are considered a tie.
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TABLE II

Effects of different algorithm variations.

ortho wvlt 4 orns 3 × 3 nb 7 × 7 nb gen param no accl

ΔPSNR (dB) −0.47 −0.32 −0.07 −0.17 −0.39 0.01

Δt/t (%) −62.8 −52.6 −1.2 2.5 −41.7 163.8

ΔPSNR specifies the changes in PSNR resulting from a change in the corresponding attribute. Δt/t specifies the percentage of change in running
time relative to the running time of the standard algorithm described in Section V-C. All values are averages over three 512 × 512 images (“boats”,
“Lena”, “Barbara”) for the noise level σ = 50.
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