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Abstract: A systematic optimization model for binding sequence selection in computational enzyme

design was developed based on the transition state theory of enzyme catalysis and graph-theoreti-
cal modeling. The saddle point on the free energy surface of the reaction system was represented

by catalytic geometrical constraints, and the binding energy between the active site and transition

state was minimized to reduce the activation energy barrier. The resulting hyperscale combinato-
rial optimization problem was tackled using a novel heuristic global optimization algorithm, which

was inspired and tested by the protein core sequence selection problem. The sequence recapitula-

tion tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to eval-
uate the predictive power of the design methodology. The results of the calculation show that

most of the native binding sites can be successfully identified if the catalytic geometrical con-

straints and the structural motifs of the substrate are taken into account. Reliably predicting active
site sequences may have significant implications for the creation of novel enzymes that are capa-

ble of catalyzing targeted chemical reactions.

Keywords: computational enzyme design; computational protein design; protein–ligand interaction;
binding; active-site recapitulation; global optimization

Introduction

The ultimate goal of computational enzyme design is

to generate an in silico amino acid sequence that

will fold into a predefined topological structure and

run the targeted reaction with levels of activity simi-

lar to those of naturally occurring enzymes for their

primary substrates. The high efficiency and unsur-

passed selectivity, such as chemoselectivity, region

and stereospecificity, and the biodegradability of

enzymes have made them attractive green catalysts

for chemical transformations in the pharmaceutical

industry. However, the limited availability of natu-

rally occurring enzymes has restricted their applic-

ability to broader problems in biotechnology.

Structure-based enzyme design is a significant alter-

native that can contribute to the discovery of

enzymes that can efficiently catalyze chemical reac-

tions of interest, but that are currently inaccessible

via natural enzymes. After the first fully automated

design of a novel sequence for an entire protein was

reported,1 various protein variants with appreciable

activities for different reactions have been designed.

Hellinga and coworkers have designed several

metalloenzymes2–4 based on the ligand binding site
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construction program, DEZYMER, which was ini-

tially developed by Hellinga and Richards.5 Mayo

and coworkers have extended their computational

protein design tool, ORBIT, to enzyme active site

design.6,7 The artificial enzymes that were designed

based on Rosetta from Baker, Houk, and coworkers

were experimentally confirmed for three different

reactions,8–10 demonstrating that computational

enzyme design can be used to generate active cata-

lysts. Naturally occurring enzymes, such as amylase,

fumarase, and staphylococcal nuclease, enhance the

rates of the reactions that they catalyze by more

than 1014 fold11; however, most computationally

designed enzymes provide enhancements of less

than 106 and are more than six orders of magnitude

below the diffusion limit.12 To determine why the

activities of artificial enzymes fail to reach those of

the natural enzymes, various studies have been car-

ried out to investigate the origins of the cataly-

sis,13,14 to further increase their activity by using

directed evolution,15 and to study the influence of

dynamics on evaluation and iterative improvement

of the designs.16

Assuming that the ideal active site description

can be completely transferred into the catalytic effi-

ciency of the computationally designed enzyme and

the structural recapitulation based on self-assembly

folding could be implemented perfectly, we would

want to know, whether or not the designed binding

sequence is compatible with the matched catalytic

sites or, whether or not the binding sequence can sta-

bilize the interface between the active site and the

small molecule, and maintain the transition state

structure accurately. To address these questions, the

design method used in Rosetta8,17 was first reiter-

ated. After the matching process was finished, the

positions and conformations of the catalytic residues

and transition state that satisfy the active site

description were determined. In the last step for full

sequence optimization of the binding positions sur-

rounding the docked transition state model, the cata-

lytic site description was kept fixed. According to the

transition state theory for enzymatic reaction11 the

conformation of the catalytic site description lies at a

maximum point on the free energy surface along the

reaction coordinate, and the optimal binding between

the transition state and the active site residues lies

at a minimum point on the free energy surface of the

reaction system. However, the decomposition-based

enzyme design method might not find the saddle

point for the reaction,18 because the degrees of free-

dom of the catalytic site description were neglected

during sequence selection for the binding residues.

This will result in a high activation energy for the

reaction and a low catalytic efficiency for the

designed enzymes. Lassila et al.7 developed a process

for ligand placement in computational enzyme design

that allows ligand rotation, translation, and confor-

mational freedom to be explored within the full

sequence design calculation, which includes both the

catalytic and binding residues.

To identify the saddle point on the free energy

surface of the enzymatic reaction system, we con-

structed a systematic optimization model for

sequence selection of the binding residues based on

graph-theoretical modeling within the decomposed

enzyme design methodology implemented in

PRODA,19 that is, PROtein Design Algorithmic

package, and developed a novel global optimization

algorithm to solve the hyperscale combinatorial opti-

mization problems for generic sequence selection in

computational protein design. The systematic opti-

mization model and global optimization algorithm

for enzyme design that we developed were evaluated

by the recapitulation of native sites for the two

hydrolytic reactions shown in Figure 1. The catalytic

Figure 1. The reaction schemes catalyzed by PGA and CA. PGA: penicillin G acylase; CA: cephalosporin acylase; PG: penicillin

G; PAA: phenylacetic acid; 6-APA: 6-aminopenicillanic acid; GL-7-ACA: glutaryl-7-aminocephalosporanic acid; 7-ACA: 7-amino-

cephalosporanic acid.
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geometrical relationships that were obtained are

presented in Figure 2.

Results

A heuristic global optimization algorithm for the

sequence selection problem

The goal of the optimization problem (P) is to repack

the active site as tightly as possible in order to iden-

tify the global minimum binding energy between the

enzyme active site and the transition state. Our ear-

lier solution to the core sequence selection problem,19

that is, Algorithm 0, used the following approach: (i)

first run the dead-end elimination (DEE) based filters;

(ii) construct the MILP problem using the selected

rotamers; and (iii) solve the MILP problem. This

approach does not work for the binding sequence

selection problem because of two differences between

it and the core sequence selection problem; namely, (i)

a larger backbone independent rotamer library which

included 7421 rotamers20 was used in enzyme design

and this resulted in a hyperscale combinatorial

optimization problem, and (ii) the complex free energy

function that was used to compute the interactions

between polar residues diminished the energy gap

between rotamers and greatly decreased the effective-

ness of the DEE theorem-based heuristics.21,22 There-

fore, the solution to the optimization problem (P) has

become a great challenge. In our previous study19 of

the core sequence selection problem, we found that

the gap between the MILP problem and its linear pro-

gramming (LP) relaxation was quite small, for

instance the relative gap of 14 case studies is less

than 5.0%, and the maximal relative gap is only

11.49%, although the LP rarely found an integer solu-

tion. In the present study, we recalculated the 20 case

studies of Zhu,19 by first solving the LP problem with-

out running the DEE. The results of this calculation

are shown in Table I. The LP relaxation solutions for

three of the case studies are the same as their global

minimum energy conformation (GMEC) solutions and

the gap between the LP solution and the GMEC solu-

tion for the other case studies is small. After analyz-

ing the LP solution carefully, we found that most of

the vertex decision variables converged at their lower

bounds. Based on this important finding, we devel-

oped a heuristic algorithm for the generic sequence

selection problem, Algorithm 1. Algorithm 1 uses the

following approach: (i) first solve the LP problem; (ii)

eliminate the rotamers for which the LP solutions

converge at their lower bounds and construct a small

MILP problem using the remaining rotamers; and (iii)

solve the small MILP problem. The effectiveness of

Algorithm 1 was confirmed by the results in Table I,

which show that the heuristic solutions for seven of

the case studies are the same as their GMEC solu-

tions. After analyzing the other case studies for which

the heuristic solutions are greater than their GMEC

solutions, we found that some of the GMEC rotamers

for these cases were wrongly eliminated because they

were not selected by the LP solution. To overcome

this problem and restore these GMEC rotamers, we

designed a scoring function to rank all the rotamers

at each design site as,

eðijÞ5EðijÞ1
X
k6¼i

min
s
fEðksÞ1Eðij; ksÞg (1)

An example of the ranking effect of this scoring

function for all the rotamers at the third design site

of case study 1CC7 is shown in Figure 3. The

rotamer selected by the LP solution ranked first

and, although the GMEC rotamer ranked fourth, it

was not selected by the LP solution. To be restored,

the rotamers should satisfy three conditions: (i) it is

not selected by the LP solution; (ii) it should rank in

the top N for all the rotamers at the current design

site; and (iii) it should rank in the top X for all the

same amino-acid type rotamers at the current

design site. N and X are algorithmic parameters

that should be set as small as possible in order to

Figure 2. The catalytic geometrical constraints for two reac-

tions catalyzed by PGA and CA, and the exact geometry def-

initions are included in Supporting Information Tables S1 and

S2. (a) PGA; (b) CA.

Huang et al. PROTEIN SCIENCE VOL 22:929—941 931

info:x-wiley/pdb/1CC7


minimize the number of rotamers that are selected

for the final small MILP problem. The second step of

Algorithm 1 was therefore revised as: (ii-a) eliminate

the rotamers for which the LP solutions converge at

their lower bounds, restore rotamers based on the

scoring function described by Eq. ((1)), and finally

construct a small MILP problem using all the active

rotamers. A close-up view of the top 20 rotamers at

the third design site of 1CC7 is shown in the inset

in Figure 3, and the top two rotamers for each

Figure 3. Effect of scoring function on recovery of rotamers which were mistakenly eliminated by LP. The inset figure is the

close-up view for the top 20 rotamers at the third design site of 1CC7. The LP rotamer refers to the rotamers saved by the frac-

tional solution of LP relaxation problem, while the GMEC rotamers refer to the rotamers which are taken in the global minimum

solution at the current design site.

Table I. Computational Results for 20 Core Sequence Selection Problems

PDB No. of site (no. of rotamer) LP solution (GMEC)

MILP solution (no. of rotamer of MILP)

N 5 0, X 5 0 N 5 20, X 5 2 N 5 20, X 5 5

1aac 20 (1860) 2125.99 (2124.56) 2122.86 (81) (219)a (342)a

1b9o 23 (2139) 2149.61 (2139.69) (48)a (243)a (393)a

1c5e 18 (1674) 2104.11 (2103.03) (24)a (173)a (297)a

1c9o 12 (1116) 265.73 (264.66) (29)a (129)a (210)a

1cc7 11 (1023) 277.11 (268.67) 265.21 (20) (114)a (183)a

1cex 50 (4650) 2263.41 (2262.26) 2261.14 (69) (504)a (833)a

1cku 11 (1023) (261.86)a (11)a (111)a (193)a

1ctj 17 (1581) (299.14)a (17)a (181)a (290)a

1cz9 28 (2604) 2149.96 (2147.22) 2142.13 (62) (286)a (462)a

1czp 18 (1674) 285.83 (284.30) (28)a (162)a (281)a

1d4t 20 (1860) 2140.72 (2124.55) 2121.94 (81) 2122.14 (226) (351)a

1igd 10 (930) 270.21 (266.79) 260.20 (20) (108)a (170)a

1pga 10 (930) (267.75)a (10)a (110)a (169)a

1qq4 40 (3720) 2217.88 (2209.39) 2202.98 (66) (412)a (673)a

1qtn 26 (2418) 2169.08 (2162.60) 2160.92 (58) (282)a (447)a

1ubq 14 (1302) 285.45 (276.81) 270.19 (66) (154)a (239)a

2pth 45 (4185) 2235.59 (2222.16) 2216.32 (110) (471)a (750)a

3lzt 26 (2418) 2157.49 (2142.01) 2138.24 (49) 2141.28 (270) (443)a

5p21 45 (4185) 2283.16 (2269.56) 2265.37 (104) (465)a (760)a

7rsa 15 (1395) 290.82 (289.45) 286.68 (20) 289.39 (145) (253)a

a The global minimum solution of the sequence selection problem is represented by GMEC, and the LP relaxation solution
or the heuristic MILP solution is the same as the GMEC solution.
N refers to the number of top rotamers at the current design site.
X refers to the number of top rotamers having the same amino-acid type at the current design site.
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amino acid type in the top 20 rotamers are indicated

by different symbols. The GMEC rotamer at the

third design site of 1CC7 was restored successfully

using this scoring function. The results for the 20

case studies that were obtained using the revised

Algorithm 1 with two different sets of parameters

are given in Table I. For N 5 20 and X 5 2, the heu-

ristic solutions for 17 of the case studies were the

same as their GMEC solutions. By increasing X

from 2 to 5, the GMEC solutions for all 20 case stud-

ies were obtained. The heuristic algorithm has two

additional advantages: (i) the LP relaxation problem

is polynomial-time tractable even though its size is

huge; and (ii) the size of the final MILP problem is

small as shown by the number of rotamers of the

MILP problems in Table I. For the largest case

study 1CEX, the original MILP problem had 4650

rotamers but the small MILP problem constructed

using N 5 20 and X 5 2 had only 504 rotamers, and

its solution was the same as that of the original

MILP problem, namely the GMEC solution.

For the binding sequence selection problem, two

preliminary filtering strategies to prune the large

number of dead-end rotamers at each design site were

applied before running the revised Algorithm 1. The

first filter is the intrinsic energy check which elimi-

nates rotamers that either have intrinsic energies

20.0 kcal/mol above the energy of another rotamer of

the same amino-acid type or have energies 50.0 kcal/

mol above the energy of another rotamer of any

amino-acid type at the same design site. The second

filter is the single Goldstein DEE criterion.22 It should

be noted that the interaction energy between each cat-

alytic rotamer pair was biased to favor those contacts

that satisfy the catalytic geometrical relationship.

Sequence recapitulation test of the native

enzyme binding site
The systematic optimization approach developed in

this study for binding sequence selection was tested

using the two enzyme-catalyzed hydrolytic reactions

shown in Figure 1, and the catalytic geometrical rela-

tionships between catalytic residues and TS small

molecules are presented in Figure 2. The parameters

for the catalytic geometrical relationships and small

molecule placements are presented in Supporting In-

formation Tables S1–S4. The design schemes for scaf-

folds penicillin G acylase (PGA) and cephalosporin

acylase (CA) are presented in Supporting Information

Table S5. The total numbers of rotamers for all

design sites were 74,089 and 77,586, and the compu-

tational complexities reached 9.53 3 1074 and 5.15 3

1084 for PGA and CA, respectively. To evaluate differ-

ent binding sequences for a specific reaction, we

assumed that the native enzyme was the best cata-

lyst among all the designed proteins. In the crystal

structures of the complexes, the side chains of two

substrates for two reactions are different, although

the catalytic mechanism is identical. The side chain

of penicillin G (PG) in the binding pocket of PGA is a

phenyl ring, which is hydrophobic, while the side

chain of glutaryl-7-amino cephalosporanic acid (GL-7-

ACA) in the binding pocket of CA is a linear carbox-

ylic acid, which is hydrophilic and charged. As a con-

sequence of this difference, the active pockets of PGA

and CA are different; the binding pocket of PGA

mostly contains hydrophobic amino acid side chains,

while the binding pocket of CA has more polar amino

acid side chains. To characterize such differences in

the design sites, we introduced some specific 0–1 lin-

ear programming constraints, and added them into

the optimization problem (P) to reflect these aspects.

For instance, because the side chain of GL-7-ACA is

hydrophilic and negatively charged, we assumed that

there was one positively charged amino-acid side

chain in the active pocket of the designed CA, but no

negatively charged amino-acid side chains. These

restrictions can be described by two 0–1 equalities as,

X
i2SP

j2fK;Rg

yij
¼ 1 (2)

X
i2SP

j2fD;Eg

yij
¼ 0 (3)

where SP is the set of primary design sites. The

results of binding sequence selection for PGA and

CA under different design types are shown in Table

II and Figure 4. For scaffold PGA, up to five primary

design sites were recovered under different design

types, but the compositions of the designed sequen-

ces were different. Under design type (*,*,*), this

means that there was no restriction on the number

of charged and polar residues during the binding

sequence selection process, and the designed enzyme

had three charged residues, LysB67, AspB154, and

ArgB177, which formed salt-bridge networks

between their charged groups. The strong pairwise

interaction between these residues reduced the total

free energy of the protein system, but these residues

may not contribute to the binding between the tran-

sition state and the active site of PGA, because the

side chain of PG in the active pocket is the hydro-

phobic phenyl ring. After adding the design type

restriction constraints to limit the appearance of

charged residues in the designed positions, the

selected residues at primary sites were all hydropho-

bic, even when no limit was placed on the number of

polar residues. To recover the polar residues at sites

B31 and B67, one or two polar residues were forced

to appear in the designed sequences under design

types (0,0,1) and (0,0,2); however, the B31, B67, and

B154 sites were still not recovered. After carefully

analyzing the crystal structure of PGA (1GK9), we

found that a specific water molecule formed two

water-mediated hydrogen bonds with atom OG of

Huang et al. PROTEIN SCIENCE VOL 22:929—941 933
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SerB67 and atom NE1 of TrpB154. Because we used

the implicit solvent model in our free energy func-

tion, elaborate structural motifs of this type are

rarely recovered, perhaps explaining why sites B67

and B154 were not recovered. Using a Monte Carlo

optimization, five binding sites of PGA were recov-

ered, and site B31, although not recovered, was sim-

ilar to the wild type, that is, TyrB31Phe. These

maximum recovered design results are shown in

Figure 4(a) and compared with the optimal confor-

mations of the wild type. The results show that the

side-chain conformations of the residues at the

recovered PheA146, PheB57, PheB24, and IleB177

sites were identical with those of the wild type. For

scaffold CA, the designed sequence had four sites

with charged residues under design type (*,*,*)

when there was no restriction on the number of

charged residues; however, just two sites, ArgB57

and ThrB69, were recovered. As for the scaffold

PGA case, the active site repacking optimization

without considering the specific environment of the

binding pocket cannot recapitulate the native

sequence. Because the side chain of GL-7-ACA is a

negatively charged carboxylic acid, we restricted the

appearance of negatively charged residues and the

number of positively charged residues in the subse-

quent design types. The computational results

shown in Table II suggest that the binding sequence

selection was greatly improved under the restricted

design types. The maximum recovered design result

was obtained under design type (1,0,4), where six of

the primary binding sites were recovered and the

remaining three sites were similar to those of the

wild type, namely, LeuB24Ile, TyrB33Phe, and

AsnB68Gln. This result, shown in Figure 4(b),

implies that the side-chain conformations of the

recovered residues overlap completely with those of

the wild-type residues. The guanidine group of

ArgB57 formed a very good salt bridge with the car-

boxylic group of transition state side chain, and the

OH group of TyrA150 formed a good hydrogen bond

with the carboxylic group of the transition state side

chain. The mutation TyrB33Phe in the design site

resulted in the loss of the hydrogen bond with the

transition state carboxylic group, but this was

replaced by the mutation AsnB68Gln, because the

mutated GlnB68 formed two hydrogen bonds, one

between the atom NE2 of GlnB68 and the backbone

atom O of PheB58, and the other between the atom

OE1 of GlnB68 and the guanidine group of ArgB57.

These mutations led to a lower free energy of the

whole protein system compared with the free energy

of the wild type shown in Table II, but the loss of

the hydrogen bond with the transition state will

impair the binding between the enzyme active site

and the transition state, and further affect the cata-

lytic activity.

The effect of the degrees of freedom of the tran-

sition state on binding sequence recapitulation was

investigated further using scaffold CA, because the

side chain in its binding pocket is a linear and flexi-

ble carboxylic acid; the side chain in the binding

pocket of PGA is a rigid phenyl ring. These differen-

ces can be corroborated by the small molecule place-

ment results. For scaffold CA, a total of 1,644,463

conformations of GL-7-ACA were obtained based on

the placement rules given in Supporting Information

Table S4, and 1090, 1868, 3455, and 5762 conforma-

tions were collected after root-mean-square deviation

(RMSD) screening with parameters 1.0 Å, 0.9 Å, 0.8

Å, and 0.7 Å, respectively. For scaffold PGA, only

1111 conformations of PG were obtained based on

the placement rules given in Supporting Information

Table S3, and 25, 30, 35, and 46 conformations were

Table II. Binding Sequence Selection Results for PGA and CA Under Different Design Types

Scaffold
No. TS
rotamer

Design
typea Primary residuesb Energy

PGA 25 WT A142 M A146 F B24 F B31 Y B56 V B57 F B67 S B154 W B177 I 2238.29
(*,*,*) 1 2 2 F F 2 K D R 2278.98
(0,0,*) 1 2 2 F F 2 V F F 2273.01
(0,0,1) 1 2 2 H F 2 V F F 2272.93
(0,0,2) F 2 2 F L 2 Q Q 2 2267.76
(0,0,*)c 1 2 2 F F 2 V F 2 2270.59

CA 3455 WT A149 Y B24 L B33 Y B50 Q B57 R B58 F B68 N B69 T B177 F 2307.22
(*,*,*)d R N R E 2 W Q 2 E 2329.16
(1,0,*) F I F 2 2 2 Q V 2 2325.85
(1,0,3) F L F 2 2 2 Q 2 2 2325.52
(1,0,4) 2 I F 2 2 2 Q 2 2 2323.77
(1,0,5) 2 I F 2 2 H Q 2 2 2319.22

a The design type is represented by the specified number of positively charged residues, negatively charged residues, and
polar residues shown in the parenthesis. The asterisk implies that no restriction is forced on the designated residue type.
b The primary residues are those that contact with TS directly and vary type and conformation simultaneously.
c This sequence is found by Monte Carlo optimization based on the sequence obtained under design type (0,0,*).
d The MILP solution has encountered convergence difficulties, and the sequence was arrived at 8% gap.
1: The type of designed residue is the same as that of WT, but the conformation is different.
2: The type and conformation of designed residue are the same as those of WT.
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collected after RMSD screening with the same pa-

rameters as those used for CA. Therefore, we investi-

gated the effect of transition state rotamer library

size on binding sequence selection using scaffold CA,

and the results of the calculation are shown in Table

III. It should be noted that only the design type for

maximal sequence recovery was given for each transi-

tion state rotamer library. Table III shows that the

sequence recapitulation in the binding pocket of CA

was greatly improved as the transition state rotamer

library size increased, and the design results con-

verged when the transition state rotamer library was

big enough. Based on the transition state theory of

enzymatic catalysis, these results imply that identifi-

cation of the saddle point on the free energy surface

of the reaction system is critical for high catalytic ef-

ficiency, because the lower the saddle point the lower

the activation energy along the reaction coordinate.

Figure 4. The maximum recovered design results for PGA and CA, and only TS and residues at primary design sites are

shown. (a) PGA; (b) CA. The TS small molecules are shown in ball and stick model, and O/N/C/S atoms are shown in red/teal/

gray/orange. The primary binding residues are shown in stick models, the wild-type residues are shown in colors of their atoms

and labeled in black, and the designed residues are shown in cyan and labeled in cyan. The hydrogen bonds formed in active

site of CA are shown by cyan dotted lines, and the distances between donors and acceptors are shown in Å. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Discussion

Although the volume of sequence space for a protein

structure in the core was found to be restricted to a

region around the native sequence,23 the amino acid

sequence on the surface or in the boundary area still

cannot be predicted accurately in silico if only the

protein backbone structures are given.24 The active

site of an enzyme is always on the surface or in the

boundary area of a protein, and in the present study

we found that the binding sequence of an active site

can be predicted accurately at most design sites if

the catalytic geometrical constraints and the struc-

tural motifs of the natural substrates are taken into

account simultaneously. The reliable prediction of

the active site sequence is of great significance for

computational enzyme design,25 because it can help

to eliminate the large number of false positives and

identify the active mutants for target reactions.

In the systematic optimization model (P) for

binding sequence selection, the third set of con-

straints force the search for repacking to locate the

optimal point, which minimizes the binding energy

between enzyme active site and transition state,

while satisfying the catalytic geometrical relation-

ships. This point is the saddle point on the free

energy surface of the enzyme-catalyzed reaction sys-

tem as shown in Figure 5. The saddle point is a min-

imum along the binding process, and a maximum

along the reaction coordinate. The catalytic effi-

ciency of the designed enzyme can be promoted if

the activation energy of the Michaelis complex is

lower and the saddle point is the limit. To find the

saddle point, the degrees of freedom of the transition

state should be explored sufficiently in the sequence

selection process for binding sites, and this means

that the size of the small molecule transition state

rotamer library should be large enough. This hy-

pothesis was confirmed by the recapitulation test of

native binding sites for scaffold CA as shown in Ta-

ble III. Although our experimental results to support

this viewpoint are still not available, the same con-

clusion could be drawn based on the successful

design cases reported by Baker’s group,8–10 because

all the transition states of their target reactions are,

to a large extent, rigid. Their recent paper26 on the

computational design of hydrolytic enzymes for three

esters also indicates that the designed esterase

mutants show less activity toward the tyrosyl ester

than the coumarin ester and the p-nitrophenyl ester,

though the acyl groups of the three esters are

identical.

Based on our earlier work on the core sequence

selection problem, we developed the heuristic global

optimization algorithm to successfully identify high

quality near optimum solutions for binding sequence

selection in enzyme design. We have shown that this

mathematical programming based algorithm can

easily handle the catalytic geometrical constraints,

as well as the design type constraints. It should be

noted that the latter constraints are difficult to be

manipulated by DEE theory based algorithms or

random algorithms. Similar mathematical optimiza-

tion-based sequence selection problem was formu-

lated by Floudas and coworkers27–30 for protein

design, and Maranas and coworkers31 for enzyme

design. Boas and Harbury32 mentioned that a high-

resolution rotamer library in which the number of

rotamers is 5000 or more is necessary to design a

protein–ligand binding site. This suggestion was

confirmed by the results of our calculation presented

in Supporting Information Table S6, based on a

small rotamer library that included only 984

rotamers, and that could only recover very few

design sites. Therefore, we used the larger rotamer

library of Xiang and Honig,20 which included 7421

rotamers for the binding sequence selection process.

This approach, however, produced a hyper-scale opti-

mization problem and presented a great challenge

for the development of our algorithm. With the aid

of parallel interior-point method for linear program-

ming problem we developed the heuristic algorithm

that we have shown can solve the sequence selection

problem efficiently and effectively.

The design type constraints that we used

greatly influenced the sequence recapitulation test

of scaffold CA. We found that the free energy of the

wild-type sequence was much higher than that of

the design sequences for both the PGA and CA scaf-

folds shown in Table II. This finding was caused by

excessive pairwise interactions, mainly hydrogen

bonding between polar or charged residues, between

residues in the design sites instead of the binding

interaction between the design site and the transi-

tion state. We used design type constraints to tackle

Table III. Effect of Rotamer Library Size of Transition State on Binding Sequence Selection

Scaffold
No. TS
rotamer

Design
typea Primary residuesb Energy

CA WT A149 Y B24 L B33 Y B50 Q B57 R B58 F B68 N B69 T B177 F
1090 (1,0,3) F W F R F 2 Q 2 2 2323.85
1868 (1,0,5) 2 N R 2 F W Q 2 W 2314.85
3455 (1,0,4) 2 I F 2 2 2 Q 2 2 2323.77
5762 (1,0,4) 2 W F 2 2 2 Q 2 2 2319.34

a Only the design type for maximal sequence recovery is given.
b The primary residues are those that contact with TS directly and vary type and conformation simultaneously.
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this problem by restricting the appearance of polar

residues at design sites. Similar biological con-

straints were used by Floudas and coworkers for

computational protein design, which have been

experimentally validated on a wide variety of differ-

ent systems and applications.33–36 Because the

hydrogen-bonding network is critical for the proper

design of protein–ligand interactions,37–39 more elab-

orate design constraints should be developed and

introduced into the computational enzyme design

methodology to allow for a more systematic manipu-

lation of the binding sites.

Materials and Methods
The decomposition-based computational enzyme

design methodology implemented in PRODA, the

PROtein Design Algorithmic package, comprises

three stages: (i) matching process for catalytic residue

site selection; (ii) small molecule rotamer library gen-

eration based on a modified targeted ligand place-

ment approach7 for transition state sampling; and

(iii) sequence selection for binding residues based on

active site repacking calculation. The matching algo-

rithm for catalytic residue site selection was reported

earlier.40 The focus of the present work was on the lat-

ter two stages. The catalytic residues were assumed

to take the wild-type positions in all the calculations.

Systematic optimization model for binding

sequence selection
As an extension of the sequence selection model for

protein core positions,19 the binding sequence selec-

tion problem in computational enzyme design can be

formulated as a mixed-integer linear programming

(MILP) problem using graph-theoretical modeling.

The transition state (TS) is an additional design site

and its rotamers are sourced from a small molecule

rotamer library produced by the targeted placement

approach. The catalytic geometrical relationships

between the catalytic residues and transition state

are represented by 0–1 linear constraints. If we

assume that there are p optimized sites in a sequence

selection problem, and this problem can be modeled

by an undirected p-partite graph with node set Vi at

each design site i for i 5 1, 2, . . ., p. Each node set Vi

has ni rotamers, then a binary vertex variable yij
; j 2

Vi can be used to represent whether or not a rotamer

{ij} is selected at site i, and a binary edge variable

xij;ks
; i 2 Vi; j 2 Vj can represent whether or not both

rotamers {ij} and {ks} are selected at sites i and k

simultaneously. According to the rigorous proof of

Zhu,19 in computational protein design the binary

edge variable xij ;ks
can be relaxed to be continuous

without affecting the solution and optimum of the

sequence selection problem. Therefore, the MILP

model for binding sequence selection in computational

enzyme design can be represented as follows,

�
P
�

minimize e5
Xp

i51

Xni

j51

EðijÞyij
1
Xp21

i51

Xp

k5i11

Xni

j51

Xnk

s51

Eðij; ksÞxij ;ks

subject to

Xni

j51

yij
51; for i51;…;p

Xni

j51

xij ;ks
5yks

; for s51;…;nk

Xnk

s51

xij ;ks
5yij

; for j51;…;ni

9>>>>>>=
>>>>>>;

for i51;…;p21; k5i11;…;p

X
s2SkðijÞ

yks
� yij

; for j 2 SiðkÞ

X
j2SiðkÞ

yij
51

9>>>>>=
>>>>>;

for each catalytic pair fi;kg

yij
2 f0;1g; for i51;…;p; j51;…;ni

0 � xij;ks
� 1; for i51;…;p21; k5i11;…;p; j51;…;ni; s51;…;nk

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(4)

where, E(ij) is the intrinsic energy resulting from

the interaction between the template and the

rotamer {ij} at position i, and E(ij,ks) represents the

pairwise interaction between rotamers {ij} and {ks}.

The first set of constraints ensures that exactly one

rotamer is chosen for each position, and the second
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set of constraints ensures that the edge variable xij ;ks

is set to 1 only when both rotamers {ij} and {ks} are

chosen. The third set of constraints are specific to

the enzyme design problem, and each set corre-

sponds to a pair of positions (i, k) that are connected

by some catalytic geometrical relationship. Si(k) is

the set of rotamers {ij} at position i whose catalytic

geometrical relationships can be satisfied by at least

one rotamer at position k and Sk(ij) is the set of

rotamers {ks} at position k which can form correct

catalytic geometrical relationships with rotamer {ij}

at position i. These two sets of rotamers are pro-

duced by checking the catalytic geometrical relation-

ships between each pair of rotamers at (i, k) before

the optimization problem (P) is constructed. The

third set of rotamer constraints ensures that each

pair of catalytic geometrical relationship can be sat-

isfied by the optimum solution. The rotamer library

for the transition state was generated using the tar-

geted small molecule placement approach.

Reactions, structures, and transition states

Two hydrolytic reactions shown in Figure 1 for the

preparation of important pharmaceutical intermedi-

ates were used to exemplify the systematic optimiza-

tion approach for computational enzyme design. The

first reaction is catalyzed by penicillin G acylase

(PGA), which converts penicillin G (PG, benzylpeni-

cillin) to 6-amino-penicillanic acid (6-APA) and phe-

nylacetic acid. The second reaction is catalyzed by

cephalosporin acylase (CA), which converts glutaryl-

7- aminocephalosporanic acid (GL-7-ACA) to 7-ami-

nocephalosporanic acid (7-ACA) and glutaric acid.

PGA and CA both belong to the N-terminal nucleo-

phile aminohydrolase superfamily, and share the

same catalytic mechanism41 in which the hydroxyl

group of the N-terminal serine of the B-chain is the

nucleophilic group. The crystal structures of these

enzymes and their substrates were obtained from

the Protein Data Bank (PDB) files without minimi-

zation. The PGA and PG structures are from 1GK9

and 1GM7,42 and the CA and GL-7-ACA structures

are from 1JVZ.43 The active site descriptions for the

two reactions can be constructed from the catalytic

mechanism proposed by Duggleby et al.41 For the

reaction catalyzed by PGA, the four catalytic resi-

dues are SerB1, GlnB23, AlaB69, and AsnB241 and

for the reaction catalyzed by CA, the four catalytic

residues are SerB1, HisB23, ValB70, and AsnB244.

The geometrical constraints between the catalytic

residues and the transition states for PGA and CA

are shown in Figure 2 and the specific ranges of the

catalytic geometrical parameters are presented in

Supporting Information Tables S1 and S2.

Small molecule rotamer library generation

To consider the rotational, translational, and confor-

mational freedoms of the transition state in the

sequence selection process, a slightly modified tar-

geted small molecule placement approach5,7 was

developed to generate the rotamer library for the

transition state in the active site where the catalytic

and the binding residues were all truncated to ala-

nine residues. The placement was initiated by select-

ing a particular catalytic residue as the anchor

residue. The anchor residue was always the residue

that initiates the nucleophilic or electrophilic attack

in the catalytic reaction. Because the sites of the cat-

alytic residues, including the anchor residue, were

predetermined in the matching process, each

rotamer of the anchor residue was chosen from a

rotamer library20 and placed on the backbone posi-

tion. Any rotamer of the anchor residue that steri-

cally clashed with the truncated backbone atoms

was eliminated. For each placed anchor rotamer a

set of ligand orientations and conformations was

generated by sampling the catalytic geometrical pa-

rameters between the anchor residue and the transi-

tion state, that is, the bond length, bond angles, and

dihedral angles, and the internal conformational pa-

rameters of the transition state, that is, the dihedral

angles of the rotatable bonds at a defined step inter-

val in the allowed ranges shown in Supporting Infor-

mation Tables S3 and S4. The small molecule

rotamer was stored in a list if the following three

criteria were satisfied simultaneously: (i) no steric

overlaps inside the small molecule; (ii) no steric

clashes between the small molecule and the placed

anchor rotamer and the backbone atoms of the pro-

tein; and (iii) rotamers exist at each of the other cat-

alytic residue sites that satisfy the defined catalytic

geometrical relationship with the placed transition

state. The placement process was implemented in a

depth-first tree enumerative way, and the branches

that violated the above criteria were pruned at the

Figure 5. Saddle point on free energy surface for enzymatic

reaction system, where ES represents Michaelis complex of

native enzyme E and substrate S, and ES 6¼ stands for the

transition state of ES. E0 represents the designed enzyme

and P represents the product of reaction. The valley curve

refers to the binding process between enzyme active site and

transition state of substrate, and the peak curve refers to the

reaction coordinate. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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early stage of the process. The first two criteria

were measured by a scoring function, where only

simplified van der Waals interactions between atoms

were considered.38,40 The third criterion was meas-

ured by checking if the catalytic geometrical varia-

bles lay in the allowed parameter ranges shown in

Supporting Information Tables S1 and S2. The num-

bers of rotamers of the small molecules that were

stored in the list can be very large; however, the

final small molecule rotamer library was produced

by selecting only the rotamers for which the RMSD

between each pair of the rotamers in the list was

greater than a predefined value.

Sequence selection for binding residues

The design sites in the sequence selection process

include (i) catalytic residues sites for which only the

conformations of the side chains are variable; (ii) two

kinds of binding sites: one, primary sites that are in

direct contact with the transition state and for which

both the identities and the side-chain conformations

vary, and, two, secondary sites that lie far from the

transition state but are in direct contact with the pri-

mary sites and for which the side-chain conformations

are varied during the sequence selection process for

the primary sites; and (iii) the transition state, for

which the conformations are taken from the small

molecule rotamer library that is generated as

described in the preceding section. The design

schemes for PGA and CA are shown in Supporting In-

formation Table S5. The protein backbone and the

side chains of the nonoptimized positions referred to

as the template were kept rigid during the sequence

selection process,and the identity at each primary

design site was selected from all the amino acids

except glycine and proline. The side-chain conforma-

tions of these amino acids were from the backbone-in-

dependent rotamer library of Xiang and Honig,20

which contains 7421 rotamers. We used the

CHARMM 22 force field parameters for the atomic

radii and internal coordinate parameters,44 which con-

sider the explicit positions of all the hydrogen atoms.

A free energy function based on a molecular

mechanics energy model and an implicit solvent

model was developed in the computational enzyme

design methodology for a protein–ligand system,

where the reference state refers to the template of

the scaffold in solvent and an isolated small mole-

cule in solvent. The free energy function is a linear

combination of seven terms: (i) the van der Waals

interaction, attractive term; (ii) the van der Waals

interaction, repulsive term; (iii) the hydrogen-bond-

ing term; (iv) the electrostatic interaction, desolva-

tion term; (v) the electrostatic interaction, screened

Coulomb term; (vi) the hydrophobic term; and (vii)

the entropic term. The van der Waals interaction

consists of two terms, an attractive term and a re-

pulsive term.23 Eattr is the attractive portion of a 12-

6 Lennard-Jones potential with the van der Waals

radii and well depths taken from the CHARMM 22

parameter set,44 except that we scaled the van der

Waals radii by 0.95 for heavy atoms and 0.5 for

hydrogen atoms. Erep is the repulsive term that

reaches the maximum value of 10.0 kcal/mol when

two atoms overlap and ramps linearly down to con-

nect with the 12-6 potential at E 5 0. This term is

less repulsive than a 12-6 potential and compensates

for the use of a fixed backbone and a discrete

rotamer set. The explicit geometry and hybridiza-

tion-dependent hydrogen bonding term of Dahiyat

and Mayo,45 namely, EHB, was used because it

allows some more restrictive angle-dependent and

distance dependent terms to be applied to limit the

occurrence of unfavorable hydrogen bond geome-

tries. The long-range electrostatic interaction is

described by a generalized Born model,46 which was

developed to become pairwise decomposable, and

implemented in a computational protein design pro-

tocol47 based on the generic side chain method pro-

posed by Zhang et al.48 The implicit solvent

electrostatic interaction consists of two terms, the

desolvation term Edesolv for polar and charged atoms

upon burial after design, and the screened Coulomb

term ESC for the Coulomb interaction between atoms

with partial charges in a continuum solvent context.

The implicit solvation model is augmented with a

term that accounts for the hydrophobic effects of the

nonpolar atoms. The hydrophobic term, EHP, uses

the pairwise surface area decomposition approach48

based on the generic side chain method to reward

the buried nonpolar surface areas with a parameter

of 26 cal/mol Å2; the solvent-accessible surface area

of the overlapping atoms is calculated using the nu-

merical surface calculation (NSC) algorithm.49 The

contribution of the side-chain entropy loss upon for-

mation of the folded state, ES, is estimated using a

simple model of side-chain flexibility, and the values

used in the calculations for the 20 naturally amino

acids were those reported by Creamer.50

The energy matrix calculation based on the

above free energy function and the global optimiza-

tion algorithm for amino acid sequence selection are

implemented in PRODA, which was written in ANSI

C language and implemented on a computer cluster

with 208 cores. The linear programming problems

and the mixed-integer linear programming problems

for sequence selection were solved on a workstation

with 64 cores sharing 256G RAM using the parallel

interior-point LP and branch-and-bound based MILP

algorithms.
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