Skip to main content
. 2013 May 6;22(7):929–941. doi: 10.1002/pro.2275

Table I.

Computational Results for 20 Core Sequence Selection Problems

MILP solution (no. of rotamer of MILP)

PDB No. of site (no. of rotamer) LP solution (GMEC) N = 0, X = 0 N = 20, X = 2 N = 20, X = 5
1aac 20 (1860) −125.99 (−124.56) −122.86 (81) (219)a (342)a
1b9o 23 (2139) −149.61 (−139.69) (48)a (243)a (393)a
1c5e 18 (1674) −104.11 (−103.03) (24)a (173)a (297)a
1c9o 12 (1116) −65.73 (−64.66) (29)a (129)a (210)a
1cc7 11 (1023) −77.11 (−68.67) −65.21 (20) (114)a (183)a
1cex 50 (4650) −263.41 (−262.26) −261.14 (69) (504)a (833)a
1cku 11 (1023) (−61.86)a (11)a (111)a (193)a
1ctj 17 (1581) (−99.14)a (17)a (181)a (290)a
1cz9 28 (2604) −149.96 (−147.22) −142.13 (62) (286)a (462)a
1czp 18 (1674) −85.83 (−84.30) (28)a (162)a (281)a
1d4t 20 (1860) −140.72 (−124.55) −121.94 (81) −122.14 (226) (351)a
1igd 10 (930) −70.21 (−66.79) −60.20 (20) (108)a (170)a
1pga 10 (930) (−67.75)a (10)a (110)a (169)a
1qq4 40 (3720) −217.88 (−209.39) −202.98 (66) (412)a (673)a
1qtn 26 (2418) −169.08 (−162.60) −160.92 (58) (282)a (447)a
1ubq 14 (1302) −85.45 (−76.81) −70.19 (66) (154)a (239)a
2pth 45 (4185) −235.59 (−222.16) −216.32 (110) (471)a (750)a
3lzt 26 (2418) −157.49 (−142.01) −138.24 (49) −141.28 (270) (443)a
5p21 45 (4185) −283.16 (−269.56) −265.37 (104) (465)a (760)a
7rsa 15 (1395) −90.82 (−89.45) −86.68 (20) −89.39 (145) (253)a
a

The global minimum solution of the sequence selection problem is represented by GMEC, and the LP relaxation solution or the heuristic MILP solution is the same as the GMEC solution.

N refers to the number of top rotamers at the current design site.

X refers to the number of top rotamers having the same amino-acid type at the current design site.