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Abstract
With the ever-increasing amount of anatomical information radiologists have to evaluate for
routine diagnoses, computational support that facilitates more efficient education and clinical
decision making is highly desired. Despite the rapid progress of image analysis technologies for
magnetic resonance imaging of the human brain, these methods have not been widely adopted for
clinical diagnoses. To bring computational support into the clinical arena, we need to understand
the decision-making process employed by well-trained clinicians and develop tools to simulate
that process. In this review, we discuss the potential of atlas-based clinical neuroinformatics,
which consists of annotated databases of anatomical measurements grouped according to their
morphometric phenotypes and coupled with the clinical informatics upon which their diagnostic
groupings are based. As these are indexed via parametric representations, we can use image
retrieval tools to search for phenotypes along with their clinical metadata. The review covers the
current technology, preliminary data, and future directions of this field.
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1. INTRODUCTION
1.1. MRI Scan Use and the Roles of Quantification

Technologies for the quantitative analysis of magnetic resonance imaging (MRI) of the brain
have developed considerably in the past two decades (e.g., see 1–9), with image
quantification remaining an active area of development in the general research community.
The development of image analysis methods is intimately related both to the imaging
modality employed and to the imaged objects. In this review, we focus on brain MRI. In
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most cases, MRI is based on signals from water molecules, and the technique can map the
spatial distribution of these molecules. MRI can also create various types of contrasts based
on the physical and chemical properties of water molecules, which allows various
anatomical structures to be visualized noninvasively. The raw MRI data are quantitative
two-dimensional (2D) or three-dimensional (3D) matrices, which are ideal formats for
quantitative analyses.

If we consider the research or clinical studies of neurological or psychiatric diseases of the
human brain, we can roughly divide the studies into three categories, among which the role
of quantitative image analysis differs: basic disease mechanism studies (category 1),
development of biomarkers/surrogate markers of brain diseases to evaluate disease status
and treatment efficacy (category 2), and daily clinical diagnoses (category 3). In the first two
categories, image quantification is deemed essential. Without quantification, group
differences cannot be statistically analyzed, and image-based findings cannot be correlated
with other observables, such as functional status. The image quantification technologies
developed in recent years have been applied to these two research categories extensively,
thanks, in no small part, to widely available tools for voxel-based analysis, such as SPM
(10), FSL (11), LONI-pipeline (12), and ANIMAL (13).

In terms of the impact on human society, the third category, clinically based radiological
diagnoses, is by far the most important role of MRI. The number of clinical MRI scanners
deployed in the United States exceeds 8,000 units, and the number of clinical scans is
approaching 25 million per year, which represents a significant portion of the $14 billion
annual Medicare costs for diagnostic imaging (14). What is most intriguing for researchers
is that radiological diagnosis is based almost entirely on subjective and visual evaluation—
advanced quantitative image analysis technologies have had a limited role in this enormous
area of diagnostic radiology, in terms of the personal and economic impact. The most
important roles for brain MRI scans include the evaluation of intensity alterations and space-
occupying lesions and the identification of the locations of these abnormalities, which can
be visually assessed. MRI can also be used to rule out diseases that cause intensity
alterations or space-occupying lesions, such as stroke and tumor. Once these conditions are
ruled out, the diagnosis of neurodegenerative and psychiatric diseases becomes more
challenging, which necessitates the integration of various sources of clinical information.
Even after the integration of all imaging and nonimaging information, we often cannot reach
a final diagnosis. During this diagnostic process, however, quantitative image analysis is
rarely employed.

1.2. Disparity in Study Design Between Research and Clinical Studies
In comparing the designs of research studies (categories 1 and 2) and clinical diagnoses
(category 3), the differences arc striking (Table 1). The clinical diagnosis paradigm seems
almost to be an example of how modern research should not be conducted. Conversely, as
much as the scientific foundation of the clinical diagnosis process seems suboptimal for
many researchers, the advanced quantification tools of researchers seem ineffective for
clinicians. Indeed, we are not completely sure whether our advanced image analysis tools
can accurately detect visually appreciable abnormalities in a given patient. For example,
consider a multiple sclerosis patient with T2-hyperintense lesions. Trained radiologists can
readily identify the lesions accurately and immediately. However, automated identification
of these lesions is a challenging task and is still a target of active research (15–19). In
addition, many quantitative tools are designed for group analysis, which is an integral part of
research in the first and second categories. In group analysis, researchers attempt to extract
information about specific brain locations or structures that are consistently affected (e.g.,
hippocampal atrophy) within the patient population, such that population averaging only
enhances the statistical power. This is why homogenization of the patient population through
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rigorous inclusion criteria is so important in research studies. Such an experimental design
is, however, inherently incompatible with clinical practice, where there are no assumptions
about the nature and location of abnormalities and a judgment must be made for each
individual.

To increase study sensitivity, a rigorously screened control group is also an integral part of
modern research. Measurements based on subjective classification, or even manual
delineation that relies on subjective judgment, is usually not preferable. The advanced and
automated tools play an essential role in providing objective criteria, quantification, and a
high level of precision (reproducibility). Moreover, the final conclusion must be based on a
sound statistical result. These rules do not apply to daily clinical diagnosis, which is based
on subjective judgment about a single subject without explicit age-matched controls,
quantification, or statistics.

Another important difference includes data acquisition protocols. Even after the tremendous
amount of progress in MRI hardware capability over the past few decades, clinical imaging
protocols are often based on low-resolution imaging with a 3–5-mm slice thickness and slice
gaps. Because most quantitative image analysis sees image data as a 3D object and involves
image transformation, the clinical data with thick slices can be incompatible with modern
image quantification tools. In terms of image contrasts, although a considerable amount of
effort has been invested to create new types of image contrasts that include measurements of
relaxation (T1, T2, multiexponent relaxation), perfusion, vascular physiology, diffusivity,
chemical exchange, susceptibility, magnetization transfer, etc., only a small portion of these
techniques have been adopted as part of routine clinical scans.

The economic aspects of clinical studies should also be considered. Suppose the 5-mm slice
thickness of a T1-weighted image were reduced to 1 mm, or 5 min of diffusion tensor
imaging (DTI) were added to a 30-min clinical protocol. These changes would not cause a
significant elongation of scanning time or be a burden to patients. However, the
disadvantages of these modifications would be immediate and tangible: Radiologists would
need to read five times as many image slices. If the scanning time were elongated by 10%,
from a macroscopic point of view, there would be 10% fewer patients who could receive
MRI scans. What would be the immediate and tangible merits? We do not know whether
thinner slices would increase the sensitivity and specificity of the detection of abnormalities.
Even if such modifications would allow quantitative image analysis, the meaning of the
measurements, such as hippocampal volume, is not immediately clear. We are not sure
whether the quantitative reports would increase diagnostic accuracy either. Thus, there are
reasons why our advanced image analysis technologies have not been widely adopted in
clinical arenas; namely, they have not passed the cost-benefit test.

1.3. Do We Need Quantification? What is the Rationale for the Effort to Bring
Quantification Tools to the Clinical Arena?

The discussion thus far brings up an interesting question: Do we need to change the way
images are read in clinical studies? In the long term, we believe the answer is yes. With the
ever-increasing number of scanners, faster scans with higher image resolutions, and the
larger number of patients as our population ages, we expect that the amount of anatomical
information that radiologists need to handle will increase at a tremendous rate. But, with $14
billion of Medicare costs invested in medical imaging each year (14), the cost associated
with diagnostic imaging has been under heavy scrutiny in recent years. As long as we rely
on a radiologist’s reading for daily diagnosis, the throughput is necessarily limited. To
accommodate the increasing amount of anatomical information, we would need to increase
the number of radiologists, which would further increase medical costs. To harness the
advancement of image acquisition technology, such as improved image resolution and faster
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scans, while reducing the associated cost, the introduction of computer aids seems an
obvious choice.

2. CURRENT STATE OF THE ART IN QUANTITATIVE IMAGE ANALYSIS
The brain is the most frequently scanned organ in clinical MRI and consists of many
structures, each with a unique function. In this review, we want to stress the distinction
between the two targets of quantification—namely, the nature of abnormalities (atrophy,
hypertrophy, hyperintensity, etc.) and the location of abnormalities (thalamus, caudate, etc.).
Similar types of abnormality situated in different locations in the brain could lead to very
different clinical outcomes; for example, stroke lesions of the same size could lead to motor,
sensory, or language disability, depending on their location. Therefore, in addition to
detecting and measuring abnormalities, quantifying their location and identifying damaged
structures are essential steps in image analysis of the brain. Precisely locating abnormalities
is one of the most unique and difficult challenges in image analysis. The brain consists of
more than 100 billion neurons, with each neuron potentially responsible for different tasks.
The granularity of the location information that MRI can provide is greatly constrained, and
in terms of neuronal resolution, provides only a coarse measure of structural localization.
With T1-weighted MRI, which is one of the highest-resolution MRI modalities routinely
used in the clinic, typical resolution can be as fine as 1 mm, implying that for a brain volume
of 1.3 L, there are 1.3 million voxels inside the brain (i.e., a voxel contains over 100,000
neurons). Apparently, these data, a mere 10 MB in size, are a tremendously sparse
representation of brain anatomy. However, as soon as we start to analyze images, we quickly
realize the magnitude of the location information. To compare two brains on a voxel-to-
voxel level, we must define corresponding voxels between the two brains, essentially
parsing the brains into homologous structures in a manner very similar to the parsing in
Chomsky’s computational linguistics. This is an issue of 1.3 million × 1.3 million possible
combinations. In this example, our region of interest (ROI) is one voxel. However, it is often
useful to cluster voxels to obtain larger ROIs. For example, signal intensities from multiple
voxels can be averaged to enhance signal-to-noise ratio (SNR). Quantification of structural
volumes, for example, the caudate volume, inevitably also requires voxel clustering. Thus,
the size of ROIs introduces another huge dimension of freedom. Once these variables
accumulate, even the 10 MB of data can quickly grow beyond our ability to index and to
retrieve in clinical applications.

Even with these challenges, we have witnessed remarkable advancements in technologies
for quantitative image analysis. There are several important keywords associated with this
advancement. The term “computational anatomy” was introduced in 1990; in this arena,
“brain mapping” plays a central role (20–22) in building correspondences between
anatomical coordinates. Through mapping, corresponding regions between two brains can
be defined, either manually or automatically, using image “transformation” or “warping”
(22–26). When the mapping is performed at the voxel level (all the voxels in one brain are
mapped to those in the other brain), it establishes a foundation for “voxel-based analysis
(VBA)” (8, 24, 27). Quite often, one of the brains is declared a “common template” to which
all other brains are mapped. Some of the common templates that have evolved and are
widely used are “stereotaxic atlases.” which have defined coordinates and assigned
structures (9, 22, 28–38). Two of the most commonly used types of these are the Talairach
atlas (39, 40) and the MNI atlases (22, 28), in which the anterior commissure at the midline
(or its approximate location) defines the origin of the coordinates and all brain locations can
be defined as [x, y, z]coordinates. Once all brains of interest are mapped to the atlas, the
corresponding brain locations in all of the remaining brains can be identified by the
standardized 3D ([x, y, z]) coordinates; this procedure is therefore also called
“standardization.” Similar to the standardization of text terminology, it provides a common
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language by which to identify a specific location across different subjects, regardless of
anatomical differences. Although a brain location can be referenced by the standardized [x,
y, z] coordinates, the coordinates themselves do not carry anatomical meaning. The brain
can also be “segmented” into gray matter, white matter, and CSF (cerebrospinal fluid space),
each of which can be further “parcellated” into smaller structural units. Segmentation and
parcellation are voxel-clustering procedures and can also be considered mapping or
standardization procedures. If we were to define, for example, the hippocampus in 10
subjects, we could then establish corresponding clusters of voxels across subjects. This
general concept of segmentation or parcellation is a “data reduction” based on location
information; parcellation of the brain into 200 structures reduces 1.3 million voxel locations
to 200 structures. As indicated in the references cited above, a great deal of past research has
contributed to the advancement of brain image analysis, with the main focus revolving
predominantly around automated quantification of the location information.

3. TECHNOLOGIES REQUIRED FOR NEXT-GENERATION IMAGE-BASED
DIAGNOSIS
3.1. Clinical Neuroinformatics: A Tool to Facilitate the Utilization of Past Image Records

There are several roles that a computer can play in image analysis, as shown in Figure 1,
which plots such roles based on their required levels of sensitivity and specificity. An
important question that arises is, Can a computer replace a human? or, stated differently,
Can a computer perform better than a human? In research studies, automated quantification
is the preferred method of visual evaluation or manual structural delineation, primarily
because of its increased precision (higher reproducibility). Thus, in research at least,
automated quantification methods (e.g., VBA and automated segmentation as shown in
Figure 1) could be considered human replacements. If such methods are to be useful for
clinical purposes, however, we must ensure that they have at least equivalent sensitivity and
specificity to human evaluation. One notable challenge is that validating the results of such
tools is difficult. If a report is based on automated segmentation and the structure in question
is manually definable (e.g., hippocampus volume), the automated results can be validated,
but the accuracy of the manual delineation remains within the realm of subjective judgment.
Validation of VBA is even more difficult because it requires identification of corresponding
voxels across subjects.

A more realistic improvement for clinical diagnosis is the use of prescreening by visual
support, which does not require the same level of performance as human judgment yet
provides results that can be validated. Tools such as this, by providing visual support, can
potentially increase the efficiency of image reading, allowing quantification of potential
abnormalities while maintaining a low false-negative rate and high sensitivity. The term
neuroinformatics was coined (41, 42) to describe the tools needed to integrate a wide range
of neuroscientific information using numerical models and analytical methods. In the
context of image-based clinical diagnosis, We can narrowly define clinical neuroinformatics
as a tool to make past clinical image data available to enrich the clinical decision process. It
is very important to note that the image analysis technologies required for neuroinformatics
operate within a human’s capability to perceive anatomical phenotypes; the technologies
required for clinical neuroinformatics do not break any new ground in terms of sensitivity
and specificity. In order to evaluate their performance, we analyze whether the results agree
with radiologists’ results. Although these types of image analysis tools do not improve the
performance of daily image reading in terms of sensitivity or specificity, they can offer
several important features that are difficult for a human to accomplish alone. These include
(a) high throughput, processing a large amount of data in a short amount of time; (b)
conversion of images into a standardized and quantitative entity, a process called an image-
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matrix conversion in this review; (c) structurization of the image database, as a result of the
standardization and quantification; and (d) conversion of the image database, as a result of
the structurization, into a neuroinformatics database, which allows image searching and
individual-versus-population comparison. Using the analogy of a text-based database, free-
text fields, such as dictated physicians’ diagnoses, are un-structured, but they can be
converted into structured fields (e.g., diagnostic categories, classes, associated clinical
outcomes, etc.) and become available for search by key words and relational analysis [e.g.,
how many Alzheimer’s disease (AD) patients are in the database, and how are their
cognitive functions scaled by the Alzheimer’s Disease Assessment Scale?] (43–45). Text-
based information can be structurized by inputting data directly into structured fields in a
database. Natural language processing is a technology that can automatically structure free-
text fields; thus, image-matrix conversion is similar to natural language processing of tree-
text fields.

3.2. Successful Medical Record Management
Blood testing and gene screening are examples of successful and widely used clinical tests.
There are several properties common to all successful medical screening tools. First, the
samples go through a high-throughput device (e.g., blood analyzer or gene sequencer) that
converts the raw materials into a standardized and quantitative format. For example, a blood
sample is converted into a table of measured items (e.g., hematocrits) and their numerical
levels (e.g., 50%, 60%, etc.). Second, these readings are compared with normal values, and
if abnormal values are found, they are compared with existing knowledge stored in a
database, which contains information about the relationship between abnormalities in
specific items and the likely causes or outcomes they imply (e.g., a high cholesterol level
increases the risk for heart disease). If these systems are well established, clinical testing can
provide meaningful information about the patient through comparison with past population
data.

There is no doubt that routine radiological diagnosis provides equally useful information
about the health status of patients. However, the manner in which the data are managed in
radiological diagnosis is very different from the manner in which data is managed for
established screening tests. MR images are stored in a picture archive and communication
system (PACS), which holds scanned images with a few structured and searchable test
fields, such as patient ID, name, sex, and age. The raw images are neither structured nor
standardized. The important database that identifies the relationship between specific
anatomical phenotypes and a diagnosis is stored in the radiologist’s brain and was acquired
through education and experience. Once patient images are pulled from the PACS using the
patient lD, the radiologist will grasp anatomical phenotypes from the raw images and
compare them with his or her internal database to reach a diagnosis, a prognosis, or
therapeutic options. The purpose of clinical neuroinformatics is to turn this process into a
systematic, explicit, and quantitative process through the use of advanced image analysis
tools. Again, we stress that clinical neuroinformatics is not intended to improve diagnostic
sensitivity or specificity. Rather, it is about management of medical imaging records, storing
and utilizing past information as future diagnostic aids. Two essential steps to achieve this
goal are (a) developing a high-throughput image-matrix conversion tool that can structure
raw MR images into a quantitative and standardized entity and (b) establishing a
neuroinformatics database (46) for clinical diagnosis along with tools to retrieve meaningful
information about a patient by comparing his or her anatomical phenotypes with past patient
data. The ideal neuroinformatics database contains both image-based information for
anatomical phenotypes and text-based information for functional phenotypes (clinical
information). Both fields need to be structured to enable searching and relational analysis,
and they each contain a vast amount of data. Obviously, the completion of such a database is
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beyond the scope of image analysis technology, but image structurization will un-doubtedly
be one of the core technologies to enable establishment of a neuroinformatics database.

3.3. Image Structurization Through Image-Matrix Conversion
In a blood test, the raw blood sample is converted to a table with a mere two columns; the
first column contains measured items, and the second column contains measurement results
from the patient blood. Often the table has a third column indicating population averages or
normal ranges. In MRI, the measured items can be classified into morphologic (sizes and
shapes) or photometric (pixel intensities) measures. Compared with blood test results, there
are fewer rows of the table from MRI. If T1-weighted, T2-weighted, fluid-attenuated
inversion-recovery (FLAIR), and diffusion-weighted images are acquired, the rows include
volumes and T1/T2/FLAIR/diffusion-weighted intensities (five rows). However, what sets
imaging data apart from other medical records is the size of the location information. As
described above, the enormous size of the location information has been one of the primary
hindrances to the introduction of systematic image analysis in clinical practice. For
neuroinformatics, compression of the location information is essential. This reduction in
information size is accomplished by clustering voxels, or parcellating the image, and there
are many different methods of parcellation, as shown in Figure 2. In all the examples shown
in Figure 2, the criteria for voxel parcellation are based on our anatomical knowledge about
structural units that represent specific functions. For example, in the anatomical connectivity
map, voxels that are believed to belong to a specific axonal bundle are clustered based on
DTI data. When the location information is reduced by parcellation, it can lead to increased
sensitivity if all the voxels within the parcel share the same properties (e.g., increased T2),
but it can also lead to decreased sensitivity if the distribution of abnormality does not follow
the parcellation boundaries and thus normal and abnormal regions are parcellated together.
Therefore, the parcellation criteria are of great importance for anatomical phenotyping.
Without a priori knowledge about the location, shape, size, and nature of an abnormality, the
parcellation-based analysis has an inherent limitation with regard to the spatial relationship
between employed parcellation criteria and unknown abnormalities. Conventional structural
criteria (Figure 2a) are based on structural units that are preserved across a wide range of
animal species and on stable features that can be reproducibly identified across individuals;
these features quite naturally represent functional units. Although there are many examples
in which a neurological disease selectively affects specific brain structures, this, of course, is
not always the case. For example, stroke lesions observe the vasculature territory but not the
structural boundaries. If we wanted to establish an automated method to identify an affected
vasculature, the correlation between stroke lesion location and vasculature territory
parcellation would be more logical. It is important to note that, although the different
parcellation schemes in Figure 2 are mutually exclusive, the brain can be divided in five
different ways: Thus, if each parcellation criterion divides the brain into 200 structures,
1,000 structures are defined in one brain.

Setting aside the issue of structural definitions, we believe that automated parcellation/
segmentation tools for the entire brain (Figure 3) will be key for the future development of
neuroinformatics. Because the brain can be parcellated in different ways, automated tools
require human input about criteria for structural definitions, as a form of atlas (Figure 2). If a
brain is successfully parcellated into well-defined structures, usually on the order of 100 to
300 structures, a substantial reduction in the size of the location information can be
achieved. If the number of defined structures is 200 and the volume and T2 intensity of each
structure are measured, the resultant table is a 2 [volume, intensity] × 200 [structures]
matrix. As the same structural definition is applied to both clinically normal and abnormal
cases, the results can be built into the atlas, as shown in Figure 3f; for example, each defined
structure in the atlas contains information about the age-dependent structural volumes of
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clinically normal as well as abnormal cases. With averages and standard deviations of an
age-matched normal population for each of the 2 × 200 elements, the final outcome of the
quantification is a bar-code-type matrix (called an anatomical matrix hereafter), as shown in
Figure 4, with the color scale representing z-scores [=(patient’s value − normal average)/
standard deviation]. If the population distribution is normal, only 5% of subjects will have a
z-score greater than two. This image-matrix conversion is an essential step for
neuroinformatics; at this point, the data are quantitative and standardized and ready for high-
throughput analysis based on the anatomical matrix, not the raw images. The word
standardized means that the matrix is directly comparable across subjects. The reduction in
the data size is also an important aspect of this process. If a data set consists of T1, T2,
FLAIR, and DTI images, the raw data size will far exceed 50 MB. After matrix conversion,
the data are a mere few kBs, which can be readily stored and analyzed with minimum
computation power.

3.4. Data Retrieval from a Neuroinformatics Database
If the text fields for clinical information are structured, physicians can search, for example,
on the phrase “past cases with a diagnosis of Alzheimer’s disease,” which might return 100
images of AD patients. Although the retrieved images would be very useful for research
purposes, they would not be useful for everyday clinical decisions. The searching strategy
for clinical neuroinformatics is fundamentally different because a direct search of images is
possible: Physicians submit an image of a new patient and search 100 past cases with similar
anatomical phenotypes. The clinical reports of the 100 patients are then retrieved, and a
statistical report of the diagnosis (e.g., 80% AD) and prognosis (e.g., time course of memory
performance) is generated. The technology for direct image search is called content-based
image retrieval (CBIR) and is similar to face recognition programs (for review, see 47). This
technology has been tested for CT (48–50) and MRI (51–55) but, to date, has seldom been
used in routine clinical practice or in educational resources (47). Two difficulties in applying
CBIR to the human brain are the complexity of the structures and the importance of location
information. Quantitative and standardized structural identification by image-matrix
conversion is expected to allow images to be structured, thereby making a direct image
search possible. This is the key to unlocking the vast amount of information currently stored
in a PACS and using that information to make modern, evidence-based medical decisions.

3.5. Evaluation of Anatomical Phenotypes Stored in Anatomical Matrices
To simplify, consider an anatomical matrix with only one row, the volumes. This means that
a 15-MB T1-weighted image is converted to a 200-element vector; each element contains
the volume of a structure, and the elements collectively represent the brain shape. These
volumes are a 200-dimensional representation of the anatomical phenotype. If we were
interested in, for example, the neurological diseases of aging populations, it would be
feasible to collect 10,000 past cases from a clinical database, which would include various
types of geriatric conditions, such as ischemic lesions, frontal atrophy, and various
anatomical changes caused by neurodegenerative diseases. If all these images were
converted to 200-element vectors and the database also contained clinical information, we
would have a neuroinformatics database of brain anatomical phenotypes, in which the image
information would be structured. When examining the anatomical phenotype of a new
patient, we would compare his or her anatomical matrix with the existing matrices in the
database. In neuroinformatics, we are far more interested in the anatomical relationship with
past patients who share similar anatomical phenotypes, rather thanin group comparisons
with aggregated statistical reports, such as averages and standard deviations of each element
of the anatomical matrices.
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To evaluate the features of anatomical phenotypes, we can simply plot the 10,000 data
points in the 200-dimensional space, which is called an anatomical landscape. Just like two
values, latitude and longitude, can define a location on the earth, 200 values can define the
anatomical position of a patient within the anatomical landscape. This location corresponds
to anatomical information about diagnosis, prognosis, and other clinically meaningful
outcomes. Interestingly, it becomes clear, as soon as this type of relational analysis is
undertaken, that 200 is still a large number to evaluate easily. First, all 200 numbers are not
independent. For example, the atrophy of the hippocampus is usually linked to an increased
size of the inferior horn of the lateral ventricle. Therefore, two independent measures of
these two structures would provide redundant information. Second, too many measured
parameters with noise and redundancy can weaken the soundness of subsequent anatomy-
function correlation analyses. Thus, further reduction of the granularity scale is required to
represent the anatomy (Figure 1).

To evaluate the amount of information in the anatomical matrix, principal component
analysis (PCA) can be performed, reducing the 200-dimensional information into a smaller
number of principal components. Each principal component in the PCA represents a linear
combination of the original 200 elements. In the above example, the volumes of the
hippocampus and the inferior horn of the lateral ventricle should be combined into a single
axis. Figure 5 shows an example of PCA, in which only the first three principal components
are shown for visualization purposes. In this analysis, patients with primary progressive
aphasia (PPA), a neurodegenerative clinical syndrome that causes progressive decline in
language, and age-matched control subjects are plotted. These three principal axes explain
50.3% of anatomical variations in these populations. The diagnosis was based on clinical
signs, not anatomical phenotypes. The anatomical phenotypes were based on the 200-
element anatomical matrix, which was automatically generated from T1-weighted images,
without prior knowledge of the diagnosis. The segregation of the two groups in Figure 5 is
thus naturally achieved. As informative as Figure 5 is, the accuracy of the segregation is not
adequate to reach a diagnosis because there is significant overlap among the two
populations. If the final purpose of the quantitative analysis were to achieve a clinical
diagnosis, this approach would fail. However, neuroinformatics for clinical diagnosis is not
intended to replace human judgment; instead, it is meant to provide a structured past medical
record and support more systematic evidence-based image reading. Radiological decisions
are currently based solely on a radiologist’s expert opinion, which is ranked as the lowest
level of evidence (LOE) in modern evidence-based medicine (56). Neuroinformatics for
clinical diagnosis aims to increase the image reading’s LOE by providing a platform with
which to quantitatively describe image features.

For example, there could be a PPA patient whose anatomical phenotype is localized within
the control subjects (indicated by an arrow in Figure 5). An anatomical evaluation of this
patient indicated normal-appearing anatomy; two radiologists blinded to the diagnosis
described the patient’s anatomy as normal, yet the patient’s symptoms fulfill the diagnostic
criteria of PPA. Thus, the 200-element anatomical matrix could not separate this patient
from controls not because the matrix was unable to capture apparent brain atrophy but
because the patient’s anatomy was indeed a typical of a patient with clinical symptoms of
PPA. Such a patient’s pathological state must certainly be closely monitored. For example,
were there any past records with similar anatomical and clinical phenotypes? If so, what
were the prognoses for those patients, and what were their final diagnoses? These questions
could be easily answered by searching past cases, based on the anatomical matrices, and
comparing the prognoses of patients with typical and a typical anatomical features or
seeking a correlation between how typical the image is and how good or poor the prognosis
was. Although this is retrospective research, the LOE would already be higher than that of
expert opinions alone. This type of systematic management of past anatomical and clinical
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descriptions of individual patients will afford a new opportunity to deepen our
understanding about patients’ clinical states, prognoses, and intervention options.
Neuroinformatics may also help to create a higher LOE by introducing objective inclusion
or exclusion criteria for prospective cohort studies.

3.6. Extension to Machine Learning by Integrating Anatomical and Clinical Phenotypes
PCA is based purely on the anatomical matrix, in which all 200 structures have equal
significance. However, when physicians evaluate MR images, they implicitly place weights
on several key structures that are related to specific diseases. In Huntington’s disease, for
example, the caudate and putamen are known to be two of the earliest-affected structures; in
AD, temporal lobe atrophy is apparent early, often signaled via hippocampal change.
Doctors learn the relationships between a specific disease and anatomical phenotypes; such
knowledge is not always reproducible or specific, but it may provide an important clue about
a patient’s pathological state. To achieve similar connections using an MRI brain database,
machine-learning approaches, such as linear discriminant analysis (LDA) or support vector
machines (57–59), can be used to index the anatomical data with diagnostic labelings from
the groups; for example, in Figure 5, we entered information about clinical labels (clinically
normal for PPA) and calculated the anatomical features that were associated with a specific
disease. In Figure 6, the results of discriminant analysis are shown, and PPA patients are
differentiated from controls with high sensitivity and specificity. Although these results
seem to support LDA’s use as an automated diagnosis tool, care must be taken. Because of
the high number of measured parameters (200), it is highly likely that, simply by chance,
this method could identify a combination of structural volumes that could separate two
groups with high accuracy. The true sensitivity and specificity must be tested using a great
deal of data. Nonetheless, if there were many existing data in a neuroinformatics database,
population-based analysis such as LDA could analyze the anatomical phenotypes of patients
and provide probabilistic information about the diagnosis based on past cases, which could,
in turn, enrich physicians’ decision-making processes.

3.7. Issues Related to Automated Parcellation Technologies
In sections above, we described strategies to analyze the anatomical information captured by
anatomical matrices. However, there remain questions about anatomical matrices
themselves, namely, the accuracy of the brain parcellation and the representativeness of the
anatomical phenotypes (i.e., whether the anatomical matrices effectively represent important
anatomical features). As shown in Figure 2, there are multiple criteria by which to parcellate
a brain, and it is the operator, not an algorithm, who defines the criteria of interest. Usually,
the criteria are entered into an automated parcellation algorithm in the form of a
preparcellated atlas (Figures 2 and 3). The boundaries of defined structures are based on
anatomical contrasts (e.g., gray matter versus white matter) or anatomical landmarks (e.g.,
the anterior limb of the internal capsule is the white matter between the caudate and the
lenticular nuclei). Structures that are not visible by MRI, because of lack of either contrast or
spatial resolution, cannot be reliably parcellated, which limits the definable structures. For
example, the dentate nuclei of the hippocampus can be defined in an atlas, but the automated
parcellation results are not reliable because they cannot be seen on conventional MR images.

The level of granularity (Figure 1) is a very important factor when considering parcellation
accuracy and representativeness. Theoretically, the smallest granularity is defined by the
voxel size. This minimum unit is defined by SNR and is, therefore, hardware driven.
Parcellation is achieved by clustering voxels based on criteria defined by the atlas of choice.
As mentioned above, parcellation is reliable if the target structures have clear contrasts and/
or anatomical landmarks. In this sense, the parcellation criteria are image driven. The atlas
shown in Figure 3a contains about 200 structures that can be clearly defined by T1, T2, and
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DTI contrasts. This 200-dimensional representation is a near 10,000-fold reduction in data
and, as discussed above, must therefore be designed so as not to obliterate the highly
localized abnormalities through the voxel grouping. The minimum granularity (one voxel) is
hardware driven, and the parcellated structures are image driven. Still missing from this
discussion are the clinically-driven demands; in other words, What granularity level is
needed to support clinical practice? It is not a simple question because the required level of
granularity changes dynamically, depending on the potential diseases in a physician’s
knowledge and experience. Sometimes physicians look for lobar-level atrophy patterns (e.g.,
Is atrophy global or focused in the left temporal lobes?) or at a specific structure (e.g., Does
rostral midbrain atrophy exist in this patient with a typical Parkinsonism?). In an interesting
recent test, we parcellated the brains of five elderly patients and asked two radiologists and
one neurologist to examine each of the 200 parcels and judge whether there was atrophy
using a three-point scale [0 (normal), 1 (apparent atrophy), and 2 (severe atrophy)]. The
agreement among the three physicians was rather low (r = 0.58). However, when some of
the 200 parcels were combined to create an atlas with lower granularity (14 parcels), the
agreement improved significantly (r = 0.84). This test indicates that the level of granularity
for visual examination is, in general, lower than 200. Of course, anatomical granularity is
not a simple concept because, as described above, physicians have very flexible views about
it, and the incorporation of such flexibility in an atlas is one of the greatest challenges for
creating image-based analysis appropriate for the clinical environment.

With these issues in mind, we must make the following assumptions: (a) Measurements of
anatomical properties based on classical structural definitions can effectively represent
anatomical phenotypes that are clinically important, and (b) daily radiological reading is
based on anatomical phenotypes that are clearly visible on conventional MRI and can be
represented with a granularity level of about 200 or less. The remaining issue is the ability to
accurately define the structures.

Roughly speaking, there are two types of solutions for achieving automated brain
parcellation. The first category is based on local solutions (60–69). Typically, the target of
this approach is the parcellation of a single structure or multiple structures (e.g.,
hippocampus parcellation). This approach often requires probabilistic prior information
about the location of the structure(s) of interest. The second category is based on a global
solution (70–75), an approach that shares the same procedure as VBA—the mapping of all
the voxels in one brain to all the voxels in another brain. When the voxel-to-voxel mapping
is completed, the structural definition file (Figure 2) can be readily transferred from one
brain to the other, achieving the parcellation of targeted structures or the entire brain at once
(Figure 3) (13, 76–85). As the local approach extends to a larger number of target structures,
the distinction between the two approaches diminishes.

Atlases defined by a single subject are the simplest form of atlas [e.g., the Talairach atlas
(39), Colin 27 atlas (29), or the Eve white matter atlas (86)], but these atlases have been
criticized because they do not represent population-averaged anatomy. The existence of
subject-specific anatomical features can hurt the accuracy of voxel-to-voxel mapping and
subsequent quantification. Obviously, the more similar the anatomies of the two brains, the
more accurate the image transformation (voxel-to-voxel mapping) is. To expand the
anatomical range of the operation of a single-subject atlas, the transformation method can be
improved. For example, diffeomorphic transformation is designed to achieve greater
accuracy even when the shape difference of two objects is large (77, 87–89). However, there
is always a limit to the anatomical range of applicability. A single-subject atlas can serve as
the origin of the coordinates from which the anatomies of many subjects is measured. If the
atlas is derived from a young adult, it may not be optimum to investigate geriatric or
pediatric populations using that atlas. To accommodate age-dependent anatomical changes,
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the concept of age-matched atlases has emerged (Figure 2f). Population-averaged atlases are
expected to have a brain shape that represents the population of interest and provides better
mapping accuracy (9, 90–93). A population-averaged atlas is typically created by iterative
averaging (linear addition of images) of the populations of interest. One drawback of this
approach is that the population representativeness is a moving target; as a result, to
maximize the expected accuracy, an atlas must be created for each population at a given age
range.

The heterogeneity of the anatomical phenotypes observed in clinical practice (Table 1) is
troublesome for both single-subject and population-averaged atlases because the expected
range of anatomical variability is large and unpredictable. The notion of population-
representative anatomy is not very meaningful if the location and nature of anatomical
phenotypes are incoherent. Similar to the age-matched atlas selections described above
(Figure 2f), multiatlas brain mapping has recently emerged (73, 84, 94–103). Rather than
generating a single population-averaged atlas by averaging, for example, 100 brain images
with heterogeneous anatomies, we keep the original 100 unaveraged images and perform
100 brain mappings to a patient image. This is obviously a much more computationally
extensive approach. Among the 100 atlases, some atlases would be anatomically closer to
the patient than other atlases would be. The parcellation results from these 100 atlases could
be combined either with equal weighting or with weighting based on various types of
information, such as global or local anatomical similarity between the atlas and the patient.
The multiatlas approach has the potential to accommodate the large anatomical variability
encountered in clinical cases and to deliver a high level of parcellation accuracy.

4. FUTURE EXTENSION OF MULTIATLAS-BASED PARCELLATION WITHIN
THE CONTEXT OF A NEUROINFORMATICS DATABASE

A multiatlas approach requires an array of fully parcellated atlases. For clinical applications,
the inventory of these preparcellated atlases must necessarily cover the wide range of
anatomical variability that would be encountered in clinical practice. One interesting
extension of the clinical neuroinformatics database is to use past clinical cases for a
multiatlas approach. In sections above, the structured data in the database were treated as
targets of image search and retrieval, but for the multiatlas analyses, the anatomical labels
are actively used to improve the parcellation of new patient data. An appropriate set of
structured data could be selected based on anatomical similarity measured by, for example,
distances between the target image and atlases in the dimension-reduced PCA/LDA space.
The initial anatomical matrices could be derived from a single-atlas approach as a rough
estimation of the patient anatomy, followed by more accurate multiatlas parcellation using
existing patient data, from the database, that share similar anatomical phenotypes.

The purpose of the multiatlas approach is to use the multiple anatomical templates to
achieve accurate brain parcellation, regardless of anatomical variability. However, for
clinical neuroinformatics, the final goal is not accurate parcellation per se; rather, we want to
obtain clinically meaningful information (e.g., diagnosis or prognosis). The process of
defining appropriate atlases and achieving accurate parcellation can be considered an
attempt to define the precise location of the patient within the anatomical landscape; the
parcellation is thus a means by which to identify the precise location. In this sense, the
image search and multiatlas structural characterization will evolve as an interactive and
integrated tool for clinical neuroinformatics in the future.
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5. CONCLUSION
In this review, we have detailed the future roles of neuroinformatics in clinical diagnoses.
Radiologists acquire the ability to read images through education and training and then
correlate anatomical phenotypes with potential pathology. Current medical record systems,
such as PACS, contain a wealth of information that could potentially replicate a clinician’s
knowledge, but the contents of such medical record systems have not been readily available
to enrich routine diagnostic practices. One of the substantial bottlenecks for the systematic
utilization of the vast amount of existing imaging information is the structurization of
anatomical phenotypes. Atlas-based image parcellation, which can systematically reduce the
anatomical contents to quantitative and standardized matrices, has great potential as a tool
for image structurization. We have also reported several concepts to utilize the standardized
image information for an image-based database search and for characterization of
anatomical phenotypes of an individual, with respect to patient population data. Of course,
anatomical phenotypes are valuable only when they are organically related to text-based
clinical information. The usefulness of clinical neuroinformatics will therefore rely on the
development of both image-based and text-based informatics from medical records, which
development will mandate interdisciplinary efforts in the future.
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Figure 1.
Relationship of the level of structural granularity and quantification strategies to define
corresponding brain locations across different subjects. The lowest granularity level is the
entire brain, in which one region of interest is defined across subjects. The highest
granularity level is one voxel. In this case, for each arbitrary voxel chosen in one brain, a
corresponding voxel is defined in the other brain. For voxel-based analysis, all the voxels of
one brain are mapped to all the voxels of another brain. To perform a structure-level
analysis, a cluster of voxels is defined, either manually or using an automated parcellation
tool.
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Figure 2.
Different criteria define structures inside the brain. The same brain can be parcellated into
various structures based on five different criteria: (a) classical structural units, (b) vascular
territory, (c) anatomical connectivity, (d) functional connectivity, and (e) cytoarchitecture.
(f) Age-dependent structural definition is also important because the contrasts and shapes of
brain structures may vary with the age of the patient, and thus an adult atlas may not be
applicable to pediatric or geriatric populations.
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Figure 3.
Whole-brain parcellation based on a preparcellated atlas. An atlas of choice (a), which
defines the parcellation criteria, is elastically Warped to an individual image (e) and
automatically parcels the entire brain into various structures. The images shown in panels b
through d describe the transformation steps for automated parcellation. As the atlas is
applied to many clinically normal and abnormal cases, the quantification results, such as the
structural volumes of each parcel, are stored in the atlas, from which the average and the
standard deviation of normal cases at each age can be characterized (f) (104).
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Figure 4.
Examples of image-matrix conversions. The multiple raw MR images (e.g., T2, FA, MD)
are parcellated into approximately 200 structures, from which their size, T2, FA, and MD
values are then quantified. This converts the three MR images into a 4 × 200 standardized
matrix. If we have the same matrices from age-matched control subjects, the amount of
deviation from the normal average (z-score) can be calculated. Examples include patient
brains with focal and diffuse abnormalities and controls. These standardized and quantitative
matrices are directly comparable across subjects and are searchable in the database.
Abbreviations: FA, fractional anisotrophy; GM, gray matter; L, left; MD, mean diffusivity;
R, right; SD, standard deviation; WM, white matter.
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Figure 5.
Principal component analysis (PCA) of anatomical matrices of primary progressive aphasia
(PPA) patients and age-matched controls. The first three principal component (PC) axes
account for 50.3% of observed variability in the anatomical matrices. Although the two
groups are segregated in this space, there is a substantial amount of overlap. This could be
due to a failure of the anatomical matrices to capture clinically important anatomical
features. However, close inspection of outliers, such as the case indicated by a green arrow,
reveals that their anatomy is, indeed, a typical of patients with the clinical phenotype of
PPA. In this way, anatomical and clinical phenotypes of individuals can be systematically
compared with population data.
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Figure 6.
A result of partial least squares discriminant analysis based on the results shown in Figure 4.
In this analysis, the anatomical features in the anatomical matrices that maximize the
separation of the two groups [patients (p) and controls (c)] are extracted from a training data
set (n = 38) and tested for the ability to diagnose PPA in a test data set (n = 31). It is
important to note that the purpose of this analysis was not to test the accuracy of automated
diagnosis based on population data but rather to provide information about individual
pathology status by incorporating both anatomical and clinical information. Specifically, if a
new PPA patient is categorized in the p (diagnosis)/p (anatomy-based prediction) class, this
patient has typical PPA-type anatomical features. If, however, a patient is diagnosed with
PPA based on clinical symptoms but does not have PPA-like anatomical features (p/c class),
the physician should be aware of the potential for misdiagnosis or for a special subtype of
PPA with a different time course or outcome.
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Table 1

Differences between research and clinical approaches

Research (Categories 1 and 2) Clinical diagnosis (Category 3)

Measurements Quantitative Qualitative

Observation Objective Subjective

Decision Statistics Judgment

Analysis Group-based Individual-based

Effect size Subtle Obvious

Target population Homogeneous (prescreened) Heterogeneous

Control Explicitly required Learned from experience

Image parameters As homogeneous as possible Not consistent

Outcome conclusion As rigorous as possible Immediate, best available judgment

Image resolution As high as signal-to-noise ratio and scan time allow (1–2 mm) 3–5 mm
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