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Behavioral/Cognitive

Inattention Blindness to Motion in Middle Temporal Area

Ian T. Harrison, Katherine F. Weiner, and Geoffrey M. Ghose

Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455

Subjects naturally form and use expectations to solve familiar tasks, but the accuracy of these expectations and the neuronal mechanisms
by which these expectations enhance behavior are unclear. We trained animals (Macaca mulatta) in a challenging perceptual task in
which the likelihood of a very brief pulse of motion was consistently modulated over time and space. Pulse likelihood had dramatic effects
on behavior: unexpected pulses were nearly invisible to the animals. To examine the neuronal basis of such inattention blindness, we
recorded from single neurons in the middle temporal (MT) area, an area related to motion perception. Fluctuations in how reliably MT
neurons both signaled stimulus events and predicted behavioral choices were highly correlated with changes in performance over the
course of individual trials. A simple neuronal pooling model reveals that the dramatic behavioral effects of attention in this task can be
completely explained by changes in the reliability of a small number of MT neurons.

Introduction

Appropriate expectations can dramatically improve perfor-
mance. This has been most extensively studied with regard to
attention, which enhances sensory processing of a specific loca-
tion or attribute. Although many studies have demonstrated
physiological changes with attention (McAdams and Maunsell,
1999; Seidemann and Newsome, 1999; Treue and Maunsell, 1999;
Cook and Maunsell, 2002, 2004; Ghose and Maunsell, 2002; Hayden
and Gallant, 2005; Womelsdorf et al., 2006, 2008; Busse et al., 2008;
Cohen and Maunsell, 2009, 2010; Mitchell et al., 2009; Rao et al.,
2012), there has been considerable difficulty establishing whether
they can account for behavior. For example, the magnitude of
these effects may not be sufficient to explain both improvements
associated with expectations and decrements in performance to
unattended stimuli (Cook and Maunsell, 2004; Eckstein et al.,
2009; Cohen and Maunsell, 2010). Additionally, studies may an-
alyze neuronal activity over timescales or populations that are not
strictly related to behavioral choices.

Linking the physiological effects of attention to extreme be-
havioral consequences is particularly challenging. For example,
suprathreshold stimuli can be invisible when attention is directed
elsewhere (Newby and Rock, 1998; Most et al., 2001, 2005). Neu-
rons responsible for the inattention blindness must be both re-
sponsive and effective in the attentive state and either silent or
ineffective in the inattentive state. However, large changes in neu-
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ronal response that would seem necessary to explain inattention
blindness have not been reported (Cook and Maunsell, 2002).

To address these issues, we studied monkeys engaged in de-
tecting very brief pulses of motion. These pulses appeared at ran-
dom times and locations but according to a fixed probability
schedule. Without ever receiving explicit cues, the animals
learned the pulse statistics and selectively directed their attention
according to this schedule so they could detect likely pulses
(Ghose, 2006; Ghose and Harrison, 2009) but largely failed to
detect unlikely pulses.

We recorded from neurons in the middle temporal (MT) area,
which are thought to play a critical role in motion perception
(Parker and Newsome, 1998). Previous studies have demon-
strated that MT neurons are modulated by attention (Seidemann
and Newsome, 1999; Treue and Maunsell, 1999; Martinez-
Trujillo and Treue, 2004; Womelsdorf et al., 2006) and strongly
predictive of behavioral choices during motion pulse detection
(Ghose and Harrison, 2009). We therefore recorded from neu-
rons in area MT and analyzed how the timing and reliability of
single-unit activity might account for the observed inattention
blindness.

We found that fluctuations in the reliability with which neu-
rons signaled pulse occurrences were highly correlated with
changes in behavior resulting from attention. Changes in neuro-
nal reliability were twofold: (1) MT neurons were both better at
encoding motion pulses; and (2) their activity was better associ-
ated with behavioral choices, during periods of high behavioral
performance. Moreover, in contrast to previous studies, modu-
lations in single neurons were largely sufficient to explain changes
in behavioral performance. A simple model in which behavioral
decisions are completely based on the activity of sampled MT
neurons suggests that the behavioral effects of expectations can
be entirely explained by reliability changes in a small number of
neurons.

Materials and Methods

Ethics statement. All animal procedures conformed to guidelines estab-
lished by the National Institutes of Health and were approved by the
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Institutional Animal Care and Use Committee of the University of
Minnesota.

Task design. In many tasks, neural activity present over large epochs of
time and large numbers of neurons is potentially responsible for the
transformations necessary to perceive a stimulus, make a decision, and
enact a motor plan. This broad distribution of signals over time and
throughout the brain makes it difficult to study the physiological basis of
behavioral choices because the same action might arise from a variety of
different patterns of activity. Analogously, fast or accurate performance
could arise from better integration of neuronal signals at a particular
stage of processing or from relatively global changes across a large pop-
ulation of neurons. To address these issues, we have simultaneously re-
corded behavior and single-neuron responses in a reaction time task in
which the set of potential stimuli and motor acts in our task were strongly
constrained. Specifically, we have used a detection task in which the
motion pulse stimulus to be detected evokes strong activity in the neuron
under study by virtue of its location and direction of movement. Upon
stimulus detection, animals were required to saccade to its location.
Thus, both the relevant sensory input (pulse present or absent) and the
requisite action (saccade or fixate) were binary. This simplicity allowed
us to quantify the relationship of neuronal activity to the full gamut of
behaviorally relevant sensory inputs and behavioral choices. Moreover,
because the stimuli to be detected were at specific locations in visual space
and brief in duration, decisions were necessarily based on a limited pool-
ing of signals across neurons and time.

Task schedule. Three male monkeys (Macaca mulatta) performed a
motion detection task. The animals were trained to perform a peripheral
motion detection task, which required rapid responses to a pulse of co-
herent motion in one of two stimulus patches (see Fig. 1). Head position
was stabilized by a chronic titanium head postimplant secured with or-
thopedic screws. Eye position was monitored by scleral eye coil or infra-
red eye tracker (Arrington Research) and recorded at 200 Hz.

Trials began with a fixation point (0.1°) appearing at a central location
ofa CRT placed 57 cm in front of the animals. At 500 ms after the animals
fixated upon this dot, a motion noise stimulus appeared at both loca-
tions. The animals were required to maintain fixation within a 1.5° win-
dow while these motion noise stimuli were present. Failure to maintain
fixation resulted in immediate termination of the trial without reward.
Correct trials were those in which the animals made a rapid eye move-
ment to the location of a motion pulse within a reaction time window of
150-500 ms (see Fig. 1) and were rewarded with Gatorade. Failures to
respond within the time window, saccades made before pulse appear-
ance, or saccades made to inappropriate locations resulted in immediate
termination of the trial without reward. To ensure vigilance, a small
percentage of trials were catch trials, in which no pulse appeared and the
animals were required to maintain fixation on the central fixation dot
throughout the trial (~6 s). The task was challenging because the pulse
was only briefly presented (duration 67-83 ms), appeared at random
times within a trial and was embedded in the high contrast background of
motion noise.

Although the timing of motion pulse presentation within each trial
was randomized, the statistics of pulse appearance were kept constant
throughout training. For any moment of time within a trial, the pulse was
likely to occur over one patch (p = 0.95-0.98), and unlikely to occur
over the other patch (p = 0.02-0.05; see Fig. 1). During physiological
recording sessions, the unlikely probability was increased to p = 0.05—
0.10 to improve sampling of these events. The likely side is illustrated
using Figure 1 (dark panels). This likelihood varied over time with a
square wave modulation. In different sessions, three temporal frequen-
cies were used for the square wave, one for each animal: 0.5 Hz (“slow”),
0.94 Hz (“intermediate”), and 1.33 Hz (“fast”). For all trials, the initial
likely location of pulse occurrence was in the receptive field (RF) of the
neuron under study.

The overall instantaneous probability of a pulse occurring decayed
exponentially with time (mean 1.5-2.5 s; see Fig. 1¢, left). The exponen-
tially decaying instantaneous probability had important consequences
for the behaviorally relevant hazard function, which is the probability
that a pulse will occur at a point in time given that a pulse has not yet
occurred. When the instantaneous probability is described by a decaying
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exponential, the hazard function is flat: encouraging a fixed level of effort
(e.g., vigilance) throughout each trial (Luce, 1986). Without such a de-
sign, reaction times typically shorten for longer intervals because of the
increased probability of a signal (Salidis, 2001). The combination of the
exponential distribution of pulse occurrences and the spatiotemporal
square wave (see Fig. 1c, middle) ensured that, at any point within the
trial, the animals could not form a strong expectation about whether a
pulse was going to occur or not but could form expectations about its
likely location (within or outside of the RF) if it were to occur (see Fig. 1,
right).

Visual stimulus. Stimuli were two arrays (spanning 5-7°) of small
100% contrast achromatic patches (31 Gabors, 1 cyc/deg SF, o = 0.3—
0.4°) containing luminance-modulated sine waves of identical orienta-
tion (Ghose, 2006). One array was centered on the RF of the neuron
under study, whereas the other array was placed at a symmetric location
(equal elevation, opposite azimuth) with respect to the vertical meridian
(see Fig. 1). Although the phase of the sine wave within each Gabor was
varied independently, the Gaussian envelopes of the Gabors were fixed.
Sine wave phases for every Gabor were updated on each frame refresh
(120 Hz, intermediate schedule monkey; 160 Hz, fast and slow schedule
monkeys). Motion noise was produced by randomly and independently
stepping the phase within each patch (£90° at 120 Hz, +72° at 160 Hz;
see Fig. 1, white arrow), and coherent motion was introduced by briefly
(60—83 ms) enforcing a consistent phase change across all Gabor patches
(motion pulse; see Fig. 1, black arrows). Local temporal frequency and
velocity were constant (30°/s and 32°/s). The direction of this coherent
motion was set in accordance with the preferred direction of the neuron
under study.

Recording. In two animals (fast and slow schedules), the patches were
retinally stabilized to reduce the influence of small fixational eye move-
ments on neuronal activity (Leopold and Logothetis, 1998; Snodderly et
al., 2001) and behavioral performance. For the third animal, although no
stabilization was done, no obvious differences in performance or physi-
ology were observed. Eye position was continually calibrated throughout
experimental sessions by randomly alternating between four fixation
points separated by 1° around the center of the screen. Stabilization was
accomplished by shifting the entire Gabor array, but not the fixation
point, according to the most recent eye position sample after calibration.
Behavioral control, visual stimulation, and data acquisition were com-
puter controlled using customized software. We recorded well-isolated
single neurons using standard extracellular recording techniques and
digitized the occurrence of action potentials and CRT frame updates (1
kHz, slow animal; 10 kHz, intermediate and fast animals). Area MT was
identified physiologically by the presence of audible low-frequency
(<100 Hz) local field potential responses to the motion noise stimulus, a
high proportion of direction selective responses, and RF mapping. At the
start of each recording session, the RF of each neuron was mapped by
shifting the position of the entire array while the monkey performed the
task. Direction selectivity was assessed by recording responses to rela-
tively long (167 ms) motion pulses of eight different directions while the
monkey performed the motion pulse detection task. On the basis of these
tuning runs, a specific stimulus location and direction were chosen for
extended recording.

Analysis. To study the physiological correlates of expectations as well
as their behavioral consequences, we separately analyzed observations
from different epochs within the trials. Because each epoch had a consis-
tent motion pulse probability throughout all experiments with a given
schedule, this analysis allowed us to compare how behavior and physiol-
ogy were affected by probability. For each schedule, we grouped obser-
vations across different trials into bins according to when the
observations relative to trial onset were made. We used four epochs per
square wave cycle (see Fig. 1c, right). For the 0.5 Hz schedule, epochs
were 500 ms in duration, for the 0.94 Hz schedule, epochs were 265 ms in
duration, and for the 1.33 Hz schedule, epochs were 188 ms in duration.

Spike rate and variability. Firing rates were computed in nonoverlap-
ping 50 ms bins. For each trial, the analysis interval began at stimulus
(motion noise) onset and ended when a motion pulse occurred, 200 ms
before a saccade, or after 2.5 full likelihood cycles, whichever came first.
Responses from all trials within a single cell were used to compute the
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z-score of the firing rate across time. z-scores of cells from the same
schedule were then averaged to determine how pulse-likelihood affected
prepulse activity levels. To determine whether pulse-likelihood was re-
lated to the variability of activity, we computed the Fano factor by divid-
ing the variance of the firing rate at each time point by the mean at that
time point. The resultant Fano factors were then averaged across cells of
the same schedule.

To examine how expectations modulated responses to the motion
pulse in area M T, we computed event-triggered firing rates over 50 ms
bins that were aligned to the onset of motion pulses and saccades (see Fig.
3). The bins were moved by 10 ms steps, so that changes in response could
be detected over the brief interval between pulse appearance and sac-
cades. Pulse-aligned responses were computed regardless of behavior
and included both successful detections and misses. Saccade aligned re-
sponses were computed regardless of the stimulus and included both
false alarms and successful detections. Only stimuli within and saccades
toward the neuron’s RF were considered for this and all following anal-
yses. For pulse-aligned responses, firing rates were computed separately
according to the likelihood of the pulse at the time at which it was pre-
sented (see Fig. 1). For correct detections, saccade-aligned responses
were also sorted according to pulse likelihood. For false alarms, in which
the animals made a saccade in the absence of a pulse, pulse likelihood was
inferred according to reaction time.

Mutual information analysis. The most commonly used metric for
comparing the reliability of physiological responses with behavioral per-
formance in a two alternative forced choice task is the receiver operator
characteristic analysis, which quantifies the discriminability of two dis-
tributions according to the performance of an ideal observer using a
single criterion threshold. Such an approach is inappropriate for our task
for a number of reasons. First, because reaction times in our task are both
short and narrowly distributed, comparing the temporal precision of
neuronal activity and behavior is particularly important. Because re-
ceiver operator characteristic analysis (Britten et al., 1992) is based on
single sampling periods, it does not directly permit such a comparison.
Second, because we do not use a two alternative design, we require a
metric that can accommodate biases in the task paradigm. For example,
especially when analyzed on a scale of tens of milliseconds, motion pulses
are far less probable than motion noise. Finally, we require a metric that
allows us to predict the correlations between neuronal discharge and
behavioral choices that may arise solely because of stimulus-related co-
variances. For example, increases in activity before saccades (see Fig.
3b,d) might simply arise from pulse-locked responses if there was a
strong and consistent tendency for saccades to follow pulses.

To accomplish these goals, we applied information theory metrics to
simultaneously recorded behavioral and physiological data parceled at
different temporal resolutions within each epoch (Ghose, 2009). This
allowed us to characterize how expectations modulated the reliability
and temporal precision of both detection decisions and physiological
responses with a comparable metric. Data from each epoch of every trial
was parceled into equally sized temporal windows (4, 8, 16, 32, 64, and
128 ms) and the onset of the motion pulses, the initiation of saccades to
the stimulus, and the number of action potentials within each bin were
used to increment contingency tables between these events (see Fig.
4a,b). Both the visual stimulus and the behavioral response were treated
as point processes, so that the onset of a motion pulse or a saccade
anywhere within a bin incremented the corresponding location within
the table. Neuronal activity was characterized according to the number of
spikes within a bin.

The same analytical techniques were applied to behavioral responses,
stimulus events, and neural activity. For behavioral information, each
contingency table was 2 (pulse and no-pulse) X 2 (saccade and no-
saccade). For neuronal information, the contingency tables were 2 X 1,
where 1 was the maximum number of spikes observed within a single bin.
These contingency tables defined both the joint probability distribution
between the two variables and the probability distributions of the two
variables separately. The uncertainty of a particular variable or set of
variables, which assumed discrete values, was quantified by entropy H as
follows:
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H= —>p,log(p) (1)

where p, is the probability of observing value x. This analysis made no
assumptions concerning the underlying probability distributions of the
variables. In our case, there were three relevant probability distributions
regarding the task: neural activity (spike count), stimulus (pulse/no-
pulse), and eye movement (saccade/no-saccade). We therefore defined
three mutual information measures of how much knowledge of one
variable reduced the uncertainty of the other variable as follows:

Ibelmv = Hstim + Heye - Hstim,eye (2)
Isensory = Hstim + Haclivity - Hstim,activity (3)
Ichoice = Heye + Hactivity - Heye,activiry (4)

Each of the equations was specific for a particular temporal window
width and delay between the variables. Thus, for each resolution and
delay, we obtained the three information metrics. To examine how mu-
tual information depended on these temporal properties, we resampled
all the trials at different resolutions and delays and computed the corre-
sponding information metrics. All information values were then con-
verted to information rate by dividing by the resolution. The final
product was an “information surface” showing how information rate
changed over time (delay) and temporal resolution (precision) for each
epoch (see Figs. 4c and 5). For each epoch of every neuron, we computed
three information surfaces: a behavioral surface describing the correla-
tion between pulse occurrence and saccades (behavioral information)
and two neuronal information surfaces, one describing the correlation
between spike count and pulses (sensory information) and one between
spike counts and saccades (choice information).

Information metrics have an inherent positive bias because two sets of
samples drawn from the same distribution will tend to be slightly differ-
ent (Panzeri et al., 2007). We used a bootstrapping method to estimate
this bias and determine significance levels. Each contingency table was
resampled 100 times, keeping the probabilities for each variable category
constant, to determine the information estimation when joint probabil-
ities were assigned by chance. The significance level was specified as the
95th greatest value. Information values that did not reach significance
were set to 0. The average of the bootstrapped values was subtracted from
significant points. Confidence measures represent the SD of the boot-
strapped information values. This bias correction tended to sharpen the
peak of the information surfaces and to decrease the rates of both at-
tended and unattended information. In particular, there was a relatively
large effect of bias correction for larger resolutions, where for physiolog-
ical information surfaces, there are a large number of possible spike
counts that can be observed within any bin. Peak position, in terms of
delay and resolution, was largely unaffected by bias correction, and dif-
ferences in peak information rate associated with attention are present
even in information surfaces without bias correction (data not shown).

To account for the possibility that covariances, for example, between
activity and the stimulus (sensory information) and behavior and the
stimulus (behavioral information) were completely responsible for ob-
served correlations between activity and behavior (choice information),
we used the behavior and sensory contingency tables to predict the choice
contingency table. Similarly, we computed the sensory information that
would be expected solely according to behavioral and choice information
(Ghose, 2009). This procedure was applied to all resolutions and delays.
For example, if p[activity = i|stim = a](#,) describes how the probability
of observing i spikes at an interval ¢, after the stimulus «, and p[eye =
Blstim = «](t,) is the probability of observing the eye movement 3 at an
interval , after the stimulus ¢, then probability of observing i spikes at an
interval t = £, — f, before the eye movement (3 solely because of chance
because of these relationships to stimulus « is the product of two prob-
abilities as follows:

plactivity = i, eye = Bla](r)
= plactivity = istim = a](t;) pleye = Blstim = a](,) (5)
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and the total probability of observing i spikes before the eye movement 3,
taking into account all possible stimuli is as follows:

pchfmce[aCtiVitY = i) eYe = B](t) = z

a

plactivity = i|stim = a](t,) pleye = BJstim = a](t,) p[stim = a] (6)

By repeating this calculation for all activity levels and eye movements, we
constructed a chance contingency table for the variables of activity and
eye movement. For any given interval ¢ between activity and saccade,
there were a range of intervals between activity and stimulus (#,) and
corresponding stimulus/eye movement delays (#,) that may have been
responsible. Using Equations 1 and 4, we computed a chance informa-
tion value for each ¢, t, pair for which ¢t + ¢, = t,.

Ichoice(chance)(t) = maX(Ichoice(chance)(tl 7t2)) (7)

Finally, we subtracted this “worst-case” scenario from the mutual infor-
mation originally computed as follows:

Ichoice(corrected)(t) = Ichoice(t) - Ichoice(chance)(t) (8)

In the above equations, we computed corrected choice information on
the basis of behavioral and sensory contingency tables. We applied the
same procedure to compute corrected sensory information on the basis
of behavioral and choice contingency tables.

After these covariance and bias corrections, a single peak was observed
in most cases for both physiological and behavioral information surfaces.
The peak described a single combination of delay and resolution for
which the relationship between the variables was the most consistent. We
extracted three parameters describing this peak for each of the three
information surfaces: reliability, delay, and precision. We defined reli-
ability as the information rate at the peak regardless of its location with
respect to delay and resolution. We defined delay according to the loca-
tion of the peak regardless of temporal resolution. Finally, we computed
precision by averaging the resolutions weighted according to the infor-
mation rates observed at the optimal delay. Although these measures
readily allowed a comparison between different types of information,
they are not necessarily strictly analogous to traditional measures of
physiological activity and behavioral performance. For example, the de-
lay of sensory information does not strictly correspond with response
latency, which is usually defined as the shortest interval after the presen-
tation of a stimulus at which neuronal discharge significantly increases.
By contrast, sensory information delay describes the interval at which
pulse-related discharge is the most significantly different from the dis-
charge evoked by motion noise. Similarly, with respect to behavior, be-
havioral delay does not strictly correspond with reaction time because
behavioral information incorporates both false alarms and misses, and is
not restricted to just correct trials.

To evaluate the effects of attention on a cell-by-cell basis, we per-
formed a paired ¢ test analysis of log-transformed information rates dur-
ing likely and unlikely epochs. For this analysis, the minimum non-0
information rate we observed (0.01 bits/s) was added to all points. Figure
7 plots these data without that added value. When calculating the mean
factor by which attention increased reliability, ratios containing a 0 were
ignored. This left a sample of N = 57 for the change in sensory reliability
and N = 58 for the change in choice reliability.

Because unlikely pulses occurred with a probability of 0.05-0.10 dur-
ing recording sessions, there was a large difference in the number of pulse
responses observed between the two likelihood conditions. To ensure
that the limited sampling of unlikely pulses was not affecting our results,
we repeated the analysis using epochs defined according to behavior
instead of pulse probability. For each cell, we sorted all of the epochs
based on behavioral performance and categorized the epochs drew from
the epochs with the best behavior for the “attentive” condition and the
worst epochs for the “inattentive” condition such that the number of
pulses occurring in each was as similar as possible. Data analyzed in this
manner confirmed all major results of our analysis on epochs defined by
pulse likelihood. Both sensory and choice neuronal reliability were sig-
nificantly greater (p < 0.0001) in the attentive state. Cells with the high-
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est sensory reliability were also those with the highest choice reliability, in
both the attentive (r = 0.69) and inattentive (r = 0.75) states, and the
correlation was not significantly different between conditions. Finally,
the behavioral prediction for single cells was significantly greater for the
attentive condition (p < 0.0001), and the behavioral prediction based on
pooled cells was able to account for the behavior actually observed during
these epochs.

Behavior prediction. One benefit of our contingency table-based anal-
ysis is that it allows us to predict the reliability and timing of behavior if it
were solely based on a single neuron’s activity. Specifically, we can
slightly modify the covariance analysis (Eq. 5) to predict the behavior that
would be expected solely because of the correlation of a cell’s activity with
both stimulus and eye movement. So, for example, the predicted proba-
bility of stimulus a preceding movement 3 by t = ¢, + t, is related to
sensory contingencies at delay ¢, and choice contingencies at delay t, as
follows:

Pehoicel StM = @, eye = B](t)zp[stim = afactivity = i] (t,)
X (t,) pleye = Blactivity = i](t,) p[activity = i] (9)

In the case of the physiological covariance correlations, we asked the
question: for any given delay, what is the highest information that can be
expected due to covariance between the other physiological measure and
behavior? Thus, we chose the particular combination of delays, consis-
tent with the delay we wished to predict, that maximized information
(Egs. 6 and 8). For a covariance correction of either sensory or choice
information, this was the most conservative approach. However, in the
case of behavior predictions, we wanted to ask a slightly different ques-
tion: what was the most likely (not necessarily maximal) reliability that
could be expected due to covariance between sensory and choice infor-
mation? We computed this by performing a weighted average of the
information across all possible delay combinations consistent with the
behavioral delay whose reliability was being predicted. In this average,
each delay combination was weighted according to its information on the
original sensory and choice surfaces. Thus, informative sensory and
choice delays (corresponding to delays at which the correlations between
activity and stimulus and choice are maximal) were preferentially
weighted.

Isensory(tl )Ichoice(tz)

]Isensory(tl )Etzlchoice(tZ)

(10)

Ibchav(prcdicl)(t) = 2 z yfll)chav(chancc)(tbtz) E
hof
t

Neuronal response pooling. This same covariance-based analysis can be
applied to generate behavioral predictions for any neural activity mea-
sure, including measures of activity over a population of neurons. To
generate behavior predictions of pooled neuronal activity from single-
unit data, however, we had to make some assumptions about how signals
from multiple neurons are correlated and combined. In all of our simu-
lations, we generated pools of neurons by randomly choosing neurons
from our sample without replacement. In each recording session, the
stimulus was oriented and positioned according to the preferred direc-
tion and RF location of the particular neuron under study. Despite this,
many neurons had low sensory reliability. The fact that some neurons
were unresponsive to the pulse is presumably because factors, such as
size, speed, and spatial and temporal frequencies, were not optimized.
Thus, our pooling model is essentially one in which all neuronal RFs
share the same directional preference and location but likely differ in
other RF properties. Because choice information reflects the correlation
between behavior and a neuron, we used each neuron’s peak choice
information to bias our choices, such that neurons with high choice
information were more likely to be chosen early rather than later. For
example, for an existing pool of three neurons, a neuron whose choice
information was 0.2 bits/s would be twice as likely as a neuron with
choice information of 0.1 bits/s to be chosen as the fourth neuron. This
process was repeated so that, for every pool size, there were 5-10 unique
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pools of neurons that were analyzed. For each of these pools, a behavior
prediction on the basis of attentive and inattentive epochs was generated.

These predictions were generated according to pooled sensory and
choice contingency tables. We assumed a linear summation of activity
with equal weighting within the pool. For example, if the spike count
categories for the sensory contingency table corresponding to a particu-
lar resolution and delay were 0, 1, and 2 in one neuron, and 0, 1, and 2, in
another, then we added the possible spike counts to form a new set of
categories with respect to a spike sum: 0—4 spikes. So to compute the
probability p of a pooled spike count of i in this pool of two neurons, we
summed over all the probabilities p that a total count of 7 can arise given
the individual neurons as follows:

d=i

P, [activity = i] = ZPl [activity = d]P,[activity = i — d]

=0
(11)

To generate predictions for populations of neurons, this process was
repeated iteratively by incorporating additional neurons one at a time, so
that the pooled response probability for neurons 1...L is given by adding
one neuron L to the previous pooled responses (neurons 1...L-1) as
follows:

= D> Py, -ilactivity = d]P[activity = i — d] (12)
=0

How quickly information changes with the progressive addition of neu-
rons depends on the particular neurons added. Uninformative neurons
will add little to the pooled performance, whereas highly informative
neurons can improve performance substantially. We therefore tested
three different sequences for adding neurons to the pooled response. In
the first, we use the neuron’s choice information but ignored the sensory
information, as a reflection of the chances that that neuron was contrib-
uting to behavior. For this sequence, the first neuron was therefore the
one in our sample with the highest choice information, whereas the last
neuron added was the neuron with the lowest choice information. In the
second sequence, we postulated that choice information might not be an
absolute determinant of a neuron’s incorporation but rather might sim-
ply serve as a bias. In this model of pooling, the order of neurons selected
was random but biased according to choice information, such that the
first neuron in a pool is likely to be one with high choice information, but
not necessarily the neuron with the highest choice information. In the
final sequence, choice information was completely ignored, and the or-
der with which neurons were incorporated into pools was completely
random.

In addition to the composition of neuronal pools, another potentially
critical factor in pool performance is the presence of correlations between
neurons within the pool. In Equations 11 and 12, we have assumed that
neurons are independent and that there is no tendency for the activity
between any two neurons, for example, to covary under the same stim-
ulus conditions. However, numerous studies suggest that this is not a
valid assumption and that weak spike rate covariances can be observed
(Ecker et al., 2010). Such correlations are labeled as “noise correlations”
because they contribute to spike rate variance and therefore limit the
ability of a spike rate decoder to identify the stimulus. Although a com-
plete characterization of such correlations would require simultaneous
multineuronal recording with our task and stimuli, we used previous
studies as a guide for defining correlations within our pools. In particu-
lar, we made two assumptions on the basis of these previous studies. First,
we assumed that spike rate covariance was constant over a variety of time-
scales, such that the covariance observed over 128 ms is similar to the cova-
riance observed over 16 ms (Bair et al., 2001). Second, we assumed that spike
rate covariance was stimulus independent (Bair et al., 2001).

Even with these assumptions, the magnitude and distribution of co-
variances across nearby cortical cells remained uncertain. Whereas some
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studies have reported near independence between neurons (Ecker et al.,
2010), other studies have reported covariances as high as 0.2. We there-
fore chose to implement two different models of noise correlation across
our population: (1) “modest” correlation (r = 0.07) and (2) “scaled”
correlation in which neurons with very similar stimulus selectivities have
higher correlations (r = 0.15) than neurons with dissimilar preferences
(r = 0.07) (Cohen and Newsome, 2009; Huang and Lisberger, 2009).
Because we did not have quantitative stimulus tuning curves with regards
to all potential stimulus parameters (speed, size, and direction of mo-
tion), we used the peak sensory information value as indication of stim-
ulus selectivity, such that neurons with very similar sensory information
are better correlated than neurons with very dissimilar sensory informa-
tion rates.

To implement pairwise correlations, we generated a modified spike
count probability distribution for each neuron added to the pool (Eq. 12)
using the pairwise firing rate statistics of the new neuron L with each of
the neurons 1...L-1 already in the pool. So the probability of observing i
spikes in this new neuron (p;) depended on the probabilities of each
neuron in the pool (p,,) generating j spikes as follows:

Py (covlactivity = i]

m=L—1

= >, XPactivity = i]P, [activity = j|Cov,,,(i,j) (13)

m=1 ]
For the independent model, the probability of getting any particular
spike combination was simply the product of the probabilities observed
in single neurons L and m, so Covy_,,,(i,j) = 1 for all spike pairs L,m with
spike counts of 4,j. In the previous example, if both neurons had a distri-
bution of 50% 0 spikes, 25% 1 spike, and 25% 2 spikes, then for the sum
category of 0 spikes the probability would have been 0.5X0.5 or 25%,
whereas the probability of getting one spike out of their sum would have
been 0.5X0.25 + 0.5X0.25. For activity covariance, the Cov matrix must
be nonuniform, so that the larger the difference in activity (i-j) the
smaller the likelihood. To explicitly define such a relationship, we define
Cov as linearly decreasing with increasing differences in the mean-
normalized firing rate of neurons L and m as follows:

COVL,m(i) ])

i J
2 pilactivity = nln - =, p,[activity = n]n

=(1-v) (14)

Thus, the factor y defines the tightness of the correlation. To define this
probability falloff factor in accordance with experimental observations of
pairwise covariance, we generated spike count probability distributions
consistent with Poisson statistics, and computed pairwise correlation as a
function of this factor. We found that low correlations (r = 0.07) were
associated with y = 0.2, whereas higher correlations (r = 0.15) were
associated with y = 0.5. For the low and high correlation cases, these
respective factors were used for all neuronal pairs. For the scaled corre-
lation, vy was scaled according to the stimulus response similarity of the
neurons. We defined this similarity by the difference in sensory reliability
between the neurons, divided by the maximum reliability difference ob-
served over our sample. This ensured that neurons with very different
sensory reliabilities, presumably because of differences in their stimulus
selectivity, were less correlated with each other than neurons with very
similar sensory reliabilities (Cohen and Newsome, 2009; Huang and
Lisberger, 2009).

|Rsensory,L - Rsensory,m|
maX(Rsensory) - min(Rsensory)

Yim = 0.5 — 0.3* (15)

Thus, a “corrected” firing probability was generated for each cell on the
basis of pairwise correlations between the individual neurons of the ex-
isting pool, and this probability is then incorporated into the pooled
activity prediction (Eq. 12). All of the pooling equations (Egs. 11-15)
were applied to the spike count distributions associated with a single
delay, resolution, and condition (motion pulse/noise in the case of sen-
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Figure 1. Motion pulse detection for two example trials. Animals were required to fixate on

a central point while monitoring two peripherally located arrays of Gabors. One of these arrays
was centered on the RF (dashed circle) of the neuron under study, whereas the other was
located across the vertical meridian. At both locations, motion noise (white arrows) was pre-
sented by randomly and independently shifting the phases of the sine waves within the Gabors.
A brief motion pulse was defined by consistently shifting the phases of all of the Gabors within
one array in a direction consistent with the preferred direction of motion of the neuron under
study (black arrows). Correct trials were defined by the monkeys breaking fixation and saccad-
ing to the location of the motion pulse immediately after its appearance. Pulse occurrence was
random for every trial, but the statistics governing the timing and locations of pulses were fixed.
Likely pulse location (a, b, black panels) alternated systematically over the duration of the trial.
Two correct trials in which the pulse appeared at the likely location given its timing are illus-
trated. a, In the first trial, the monkey saccades to the array within the RF in response to motion
pulse appearing within the first period of high likelihood. b, In the second trial, the monkey
correctly saccades to the opposite array in response to a motion pulse appearing at that location
during one of its periods of high likelihood. Statistics governing pulse likelihood were deter-
mined by multiplying the probability of pulse occurrence at a given time by the probability of it
appearing at a given location (c). To analyze how the effects of attention changed with time,
each pulse cycle was divided into four epochs so that the first two epochs were “Likely,” the
second two, “Unlikely,” etc.

sory, eye fixation/saccade in the case of choice). Therefore, for every
neuronal pool, pooled sensory and choice response distributions were
created for each delay and resolution, and behavioral predictions gener-
ated just as they were for single neurons (Eq. 9).

Results

Motion pulse probability schedule and inattention blindness
Three monkeys were trained in a motion detection task in which
the probability of a brief pulse (67—83 ms) of coherent motion
varied according to specific spatiotemporal schedules (Fig. 1).
Motion pulses could occur in one of two stimulus patches. One
was centered on the RF of the neuron under study, whereas the
other was located symmetrically across the vertical meridian. The
timing of pulse presentations was randomly determined accord-
ing to an exponential distribution (Fig. lc, left), but the likely
location of its appearance alternated according to a rhythmic
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probability schedule (Salidis, 2001) (Fig. 1¢, middle), which was
varied between the animals (slow = 0.5 Hz, intermediate = 0.94
Hz, fast = 1.33 Hz). The consistency of the schedule defining
where pulses were likely to occur, as well as the consistency of the
actual pulse used within each experimental session, enabled the
animals to attend features of the pulse stimulus (Sekuler and Ball,
1977) and the likely location of its appearance (Ciaramitaro et al.,
2001). The animals were trained to immediately saccade to the
location of the motion pulse whenever it occurred. At no point
during training were any explicit cues provided indicating where
or when these pulses were likely to occur. However, because the
probability of pulse occurrence varied consistently over the
course of the each trial and because the pulse was difficult to
detect, the task encouraged the animals to anticipate where pulses
were likely to occur and consistently direct their attention to that
location.

Success in this task requires continuous monitoring of the
stimuli to judge whether a pulse did or did not occur. Because of
this, the end result of a particular trial does not necessarily reflect
performance throughout the trial. For example, a trial was imme-
diately terminated and marked as wrong whenever an animal
made an inappropriate saccade regardless of when that saccade
was made. If that wrong occurred late in a trial, the animal was
correctly rejecting all prior stimuli. Similarly, a failure to detect a
pulse late within a trial meant that the animal was performing
well until that failure. To compute performance, we divided each
pulse probability cycle into four epochs (Fig. 1¢, right). For each
epoch, we included all trials containing that epoch, and counted
both correct detections of pulses and correct rejections of motion
noise in a single hemifield (Fig. 2). Correct detections were plot-
ted as the proportion detected out of the total number of pulses
presented within each interval in each hemifield (solid lines).
Likewise, correct rejections were plotted as the proportion of
correct rejections out of the total number of intervals containing
only noise stimuli in each hemifield (dotted lines). Performance
was clearly modulated in approximate accordance with the pulse
probability of the three schedules. The incidence of correct detec-
tions was higher at the location where the pulse was likely for all
schedules. Because no cues were provided about when and where
the pulse was likely, these modulations in performance indicate
the animals were using a behavioral strategy acquired during the
course of training. Specifically, the animals learned the schedule
of alternating motion pulse probability and attended to the stim-
ulus where the pulse was more likely at a given point in time.

The brief and transient nature of our stimulus (Muller et al.,
2001) strongly encouraged the formation of consistent temporal
strategies and constant vigilance during periods of likely changes.
Changes in performance occurred within hundreds of millisec-
onds of changes in the probability schedule (Busse et al., 2008).
The magnitude and speed of these effects suggest that dynamic
strategies, formed without any explicit cuing, might contribute to
behavioral fluctuations and variability in any task (Ghose and
Maunsell, 2002; Krug, 2004). In tasks with no pressing urgency,
such as those not strongly constrained by reaction time, transient
allocations of attention or intention may occur at different times
within different trials (Hayden and Gallant, 2005). Similarly, for
a less challenging stimulus, such as a more sustained motion
pulse, briefallocations of attention might be sufficient to improve
behavior (Rao et al., 2012). If the timing of transient allocations
of attention varied either within trials or across trials, then anal-
yses ignoring this variation and assuming constant attention
might considerably underestimate attentional effects. Thus, the
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Figure2.  a—c Performanceforthe three schedules asafunction oftime within the rial. Gray bars
represent periods in which the likely location of pulse appearance was within the neuron’s RF; white,
periods during which RF pulses were unlikely. Performance is plotted according to the two types of
stimulus presented: motion pulses and motion noise. In the column on the left, the proportion of
pulses that were correctly detected within a cell's RF (solid) is plotted along with the proportion of
motion noise epochs that were correctly rejected (dashed). The column on the right plots correct
detection of pulses and rejection of noise for the stimulus patch in the visual hemifield ipsilateral to the
recorded cell. For all schedules, pulse detection performance was modulated according to the sched-
ules. Modulation of correct rejections was not as clear.

consistency of behavior with probability shifts seen in our data
makes it ideal for looking at physiological correlates of attention.

Physiological correlates of inattention blindness

To detect these motion pulses, animals must encode motion in-
formation with neural activity and use that activity as the basis for
a behavioral choice. Previously, we have shown that, in this task,
the average firing rate of MT neurons is precisely modulated by
both the stimulus and the behavioral choice (Ghose and
Harrison, 2009), suggesting that MT neurons may play a role in
the actual decision process. Because attention affects perfor-
mance, neurons that play such a role must also be substantially
modulated by attention. This modulation could take a variety of
forms. For example, attention might increase responses by a con-
stant multiplicative factor to both the background noise and the
motion pulse (Cook and Maunsell, 2004), such that the differ-
ence between the two responses is on average more detectable
(McAdams and Maunsell, 1999). Alternately, attention may have
modest effects on mean firing rates but substantial effects on
overall response variability (Mitchell et al., 2009), such that there
is a more dependable difference between motion noise and mo-
tion pulse responses. Consistent with these possibilities, many
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physiological studies of attention have found alterations in re-
sponses before the stimulus change to be detected, including both
increases in mean firing rate and decreases in response variability.
To examine this possibility in our data, we analyzed mean re-
sponse rates and Fano factors to motion noise preceding pulse
occurrence and >200 ms before a saccade. To examine the devi-
ation of firing rate from the mean during pulse probability ep-
ochs, we plotted the average of firing rate z-scores for all of the
cells recorded with each probability schedule (Fig. 3a; gray rep-
resents unlikely; black, likely). To determine whether attention
altered response variability, we also plotted the average of the
Fano factors for all of the cells recorded with each probability
schedule (Fig. 3a). Surprisingly, we found no substantial changes
in these measures between periods in which the pulse was likely
and periods in which it was unlikely, despite striking perfor-
mance differences (Fig. 2).

These analyses suggest that any attentional effects on MT re-
sponses to the motion noise in our task are modest and therefore
unlikely to explain behavior. However, attention might also in-
crease detectability by selectively increasing motion pulse re-
sponses. To test for this possibility, we compared how pulse- and
saccade-aligned firing rates in MT varied according to pulse like-
lihood. The analysis revealed a sharp low-latency increase in fir-
ing rate after pulse onset, and a similarly sharp increase before
saccades (Fig. 3). Notably, both pulse- and saccade-aligned re-
sponses were higher when pulses were likely within the cell’s RF
(Fig. 3, black vs gray). This was true for both individual cells (Fig.
3a,b) and the average for all neurons recorded (Fig. 3¢,d).

The similar dependence of performance and average firing
rate on pulse likelihood suggests that these neurons might play a
critical role in determining the behavioral effects of attention in
this task. However, although these measures are correlated, it is
not clear that even rapid changes in average firing rate are suffi-
cient to explain the behavioral effects of attention. These aver-
ages, as well as variability measures such as Fano factor, are based
on the sampling of many repetitions and therefore do not
necessarily reflect the moment-to-moment variability that
constrains performance in both attentive and inattentive be-
havioral states. For example, the detection of motion pulses
embedded in noise can be formulated as a signal detection
problem for the animals: how different are the sensory signals
following motion pulses from the signals preceding them? If
the moment-to-moment fluctuations within a trial are suffi-
ciently large, then even neurons that on average have a higher
response rate to the pulse may be insufficient to explain per-
formance within a single trial.

Timing, especially in tasks with short reaction times, offers an
additional constraint on physiological correlates of attention. For
example, although firing rate differences are present over ~150
ms periods (Fig. 3c—f), psychophysical evidence suggests that be-
havioral decisions were based on stimulus information acquired
over tens of milliseconds (Ghose, 2006; Ghose and Harrison,
2009). Thus, firing rate changes associated with attention might
persist over timescales larger than those relevant to the detection
process. In this situation, one might overestimate the contribu-
tion of neurons to behavioral improvements. Even if the analysis
of firing rate is restricted to the behaviorally relevant time win-
dow, it is not clear how to translate differences in firing rates to
improvements in performance and reaction time. Finally, firing
rate analyses are subject to potential covariances. For example,
presaccadic activity might be related to saccade initiation, but if
there is a strong and consistent behavioral relationship between
saccades and pulses, the activity could simply reflect a pulse-
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a—f, Responses to motion noise were analyzed as a function of time throughout cycles of pulse probability (a,b) and when aligned to behaviorally relevant events (). For each cell, the firing rate

and Fano factor during the noise stimulus were calculated within a 50 ms bin. Firing rates and Fano factors were then averaged across cells for each schedule. Black segments represent periods in which the pulse
was likely, and gray represents periods of low likelihood. Motion noise responses and their variability were unaffected by pulse probability. Stimulus (¢, €) and saccade (d, f) locked firing rates were also calculated
foran example cell (¢, d) and the population of cells recorded with all schedules (e, f). Motion pulses evoked a sharp increase in mean firing rate within 100 ms, but the increase was significantly higher when
pulses were likely (black) than when they were unlikely (gray). Similarly, presaccadic activity was also significantly higher when the pulses were likely (black vs gray). Error bars for the pulse-aligned population
were larger for unlikely pulses (c) because they occurred with only 5-10% probability. In all plots, line thickness represents the SEM above and below the mean.
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Figure4. Behavioral, sensory, and choice reliability were calculated for each recording session. The events of a single trial were

first parceled using bins of a certain width (resolution) separated by a fixed length of time (a, delay). Three different colors
represent the variables between which pairwise mutual information is computed. The stimulus was described by a binary variable
according to whether a motion pulse was present (P) or absent (NP) within the red bin. Neural response was described by the
number of spikes within the green bin (b, green numbers). Finally, choice was characterized according to whether the animal made
a saccade (S) or did not make a saccade (NS) within the blue bin. We used the values of pairs of these variables to update
contingency tables (b). The bins were moved along the length of the trial while maintaining the same delay and resolution, and
contingency tables were appropriately incremented. This process was repeated for all trials from a single recording session,
resulting in three contingency tables that described the relationship between values of the variables at a given delay and resolu-
tion. In this example, sensory and choice information are being calculated for the same delay (the distance between red to green
bins is the same as that of blue to green bins), but the behavioral delay is twice that length of time (the distance between red to blue
bins). The contingency tables were then used to calculate mutual information rates for the specified delay and resolution. ¢, An
information surface was created by repeating the process for different delays and resolutions.

locked response. Resolving these issues requires a common met-
ric to compare neuronal discharge and behavioral performance
and a means of explicitly incorporating the covariances present in
this task.

Comparison of physiological and
behavioral reliability

Previous work from our laboratory
demonstrated that an information the-
oretic approach can provide directly
comparable measures of behavioral and
physiological responses while accommo-
dating for the effects of covariance. The
analysis computes mutual information,
which quantifies how knowledge of one
variable reduces uncertainty about an-
other variable. The reduction in uncer-
tainty per unit time is measured in units of
bits/s for all pairs of variables, allowing
information rates to be directly compared
(Fig. 4). First, we defined three variables:
motion stimulus (pulse/no pulse, red),
behavioral choice (saccade/no saccade,
blue), and neuronal response (spike
count, green). Then we computed the
mutual information rate between three
pairs of these variables: one in which
the relationship between the stimulus and
behavioral response was analyzed (behav-
ioral information), one in which the rela-
tionship between the stimulus and spike
count was analyzed (sensory informa-
tion), and one in which the relationship
between spike count and behavioral re-
sponse was analyzed (choice informa-
tion). To fairly compare behavioral and

physiological responses, analyses only considered stimuli within
the RF and saccades toward the RF. A strength of our analyses is
the ability to incorporate the effect of covariances. For example,
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high choice information could arise sim-
ply by a strong correlation of neuronal ac-
tivity with the stimulus and a strong
correlation between behavioral choices
and the stimulus. Covariance-corrected
choice information was computed by sub-
tracting the choice information predicted
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rameters (Figs. 4c and 5). Most surfaces
contain a single peak whose height we de-
fine as reliability. With this analysis, we
have shown that the sensory and choice
information of individual neurons in MT
over timescales of tens of milliseconds was
similar to behavioral information (Ghose
and Harrison, 2009). However, that study
did not examine the effect of attention on
behavioral and neuronal responses. We
therefore applied these information the-
ory metrics to observations parceled according to periods of time
in which the pulse was likely and periods of time in which it was
unlikely.

For an example recording session (Fig. 5a,c,e), we found that
pulse probability had a large effect on behavioral information
metrics. Consistent with measures of behavioral performance re-
ported above, we found that, when the pulse was likely, there was
a reliable correlation between motion stimuli and behavioral
choice with a latency of ~250 ms and over timescales as small as
32 ms. At this latency and a temporal resolution of 128 ms, the
information rate was 1.72 bits/s. This reliability between stimulus
and choice variables was nearly absent when the pulse was un-
likely: the peak of the information surface was much lower (in-
formation rate = 0.05 bits/s). For all animals, behavioral
reliability was much higher during periods of high pulse proba-
bility, indicating that attention can be allocated according to a
variety of task schedules (fast, 1.04 vs 0.13; medium, 1.96 vs 0.39;
slow, 1.28 vs 0.05 bits/s).

Physiological data recorded simultaneously with behavioral
data revealed a similar pattern: pulse probability had dramatic
effects on the reliability with which a single neuron’s discharge
reflected both stimulus events (Fig. 5¢) and subsequent behav-
ioral choices (Fig. 5e). As with the behavioral observations, reli-
able physiological signals at a resolution of tens of milliseconds
were only present during intervals in which the pulse was likely.
For an example cell, at a resolution of 32 ms, the sensory infor-
mation rate was 0.72 bits/s when the pulse was likely and
0.02 bits/s when it was unlikely. Choice information, reflecting
the covariance-corrected correlation between neuronal activity
and behavioral choices, was similarly modulated (likely, 0.18

foran example neuron (a, ¢, e) recorded with the 0.5 Hz schedule and the population, including cells recorded with all schedules (b,
d, f). Colorindicates reliability (bits/s) of the relationship between pairs of variables. Color scales are consistent between conditions
of high and low pulse probability but are different for different types of calculated information to emphasize the shape of the
surfaces. Surfaces indicate how this reliability changed according to temporal sampling (resolution) and interval between the
variables (delay). Population surfaces are the average of all surfaces from individual neurons. Behavioral information (a, b),
describing the correlations between pulse occurrence and saccade initiation, is plotted as a function of delay and resolution. With
regard to neuronal discharge, two types of information were computed. Sensory information (¢, d) describes the mutual informa-
tion between pulse occurrence and spike count, whereas choice information (e, f) describes the mutual information between
saccades and spike count. Both behavioral and physiological reliabilities were strongly modulated by likelihood in both the
example recording session and over the population.

bits/s; unlikely, 0.04 bits/s). Analogous results were seen in the
average information surface for our entire sampled population
(behavioral, 1.19 vs 0.09 bit/s; sensory, 0.12 vs 0.04 bit/s; choice,
0.06 vs 0.03 bit/s; Fig. 5b,d,f). The similarity of the effect of atten-
tion on behavior and single neuron discharge in MT supports the
hypothesis that MT neurons played a critical role in motion pulse
detection. Moreover, because effects were seen in both sensory
and choice information, it suggests that attention modulates both
the encoding of sensory information and the decoding of activity
associated with behavioral choice.

To visualize how well behavioral and neuronal reliability re-
flected the task schedule across time, we computed surfaces, such
as those shown in Figure 5 within each epoch. For each surface
(behavioral, sensory, and choice), we characterized reliability ac-
cording to the maximal information rate observed, regardless of
delay or temporal resolution, and plotted reliability as a function
of the epoch’s time after stimulus onset. Behavioral reliability was
plotted on a different scale than physiological reliability to allow
comparisons regarding the shape of these modulations. For ex-
ample recording sessions, the analysis showed strong modulation
in the time course of behavioral information, with certain epochs
having almost no information (Fig. 6, gray): the stimulus change
was invisible when the pulse was unexpected. Moreover, analysis
of discharge from highly reliable single neurons, recorded during
either the slow (Fig. 6a) or fast (Fig. 6b) pulse likelihood sched-
ules, showed that both sensory (dashed black) and choice (black)
information were also modulated with pulse probability over the
course of the trial.

To quantify the comodulation between the schedule of pulse
probability, behavioral performance, and sensory and choice
neuronal reliability, we examined the Spearman (rank) partial
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Figure 6.  Physiological and behavioral reliability as a function of time within the trials for

two recording sessions. Reliability, the peak information rates observed over an information
surface (Fig. 5), was computed for each epoch. a, b, For example, neurons recorded with the
slow (a) and fast (b) schedules, behavioral (gray), sensory (dashed black), and choice (black)
reliabilities were often strongly modulated over time in accordance with periods of high pulse
probability (gray shading). Black numbers to the left of the plot indicate the scale for sensory
and choice reliability, and gray numbers to the right of the plots indicate the scale for behavioral
reliability.

Table 1. Partial correlations (N = 60)

Behavior Sensory Choice
Schedule 0.4062 0.1242 —0.0252
Behavior — 0.1997 —0.0135
Sensory — — 0.6138

correlations between each of these variables across epochs (Table
1). In this analysis, epochs with sufficient data were not required
to be contiguous and all recorded cells were used (N = 60).
Consistent with the animals forming a temporal strategy on the
basis of task timing, peak behavioral reliability had a significant
positive correlation with the schedule (r = 0.4062, p < 0.0001).
The partial correlations between the peaks of neuronal sensory
reliability and the schedule, and between peak sensory reliability
and behavior, were both positive and significant (r = 0.1242,
p < 0.005 and r = 0.1997, p < 0.0001). Neither the partial cor-
relations between the peaks of neuronal choice reliability and
schedule nor between peak choice reliability and behavior were
significant (p = 0.56, p = 0.75). However, variations in choice
reliability were well correlated with variations in sensory reliabil-
ity, suggesting that attention had covarying effects on the two
measures (r = 0.6138, p < 0.0001). The simultaneity of physio-
logical and behavioral modulations over time provides further
evidence in support of these neurons playing a fundamental role
in the decisions made by the animals.

To quantify the overall effect of task schedule on sensory and
choice reliability, we combined all epochs with high pulse prob-
ability as “likely” and those with low pulse probability as “un-
likely” (as in Fig. 5) and plotted the peaks of these surfaces. As
stated previously, behavioral information was significantly
higher during likely periods in all animals (slow, 1.28 vs 0.05
bits/s; medium, 1.96 vs 0.39 bits/s; fast, 1.004 vs 0.13 bits/s). For
all schedules, sensory (Fig. 7a) and choice (Fig. 7b) information
rates in individual neurons were often significantly higher during
periods of high pulse probability (paired ¢ test of log values, p <
0.0001 for both sensory and choice) consistent with the observed
changes in behavior.

Notably, the reliability of the relationship between MT re-
sponses and behavioral choices (choice information) was com-
parable to the reliability seen between motion pulses and MT
responses (sensory information). This differs from previous
studies where animals were required to discriminate the direction
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Figure 7. Neuronal activity was more reliably linked to both the stimulus and behavioral

choices when pulse probability was high. This was true for neurons recorded with all schedules
(circles represent slow; triangles, intermediate; squares, fast). For each neuron, epochs when
the pulse was likely or unlikely to occur in the neuron’s RF were analyzed separately, and
information surfaces (e.g., Fig. 5) were computed. Reliability was defined as the peak informa-
tion rate observed in an information surface and plotted on a log scale. Histograms represent
distance from unity (black represents significant; white, not significant). a, b, For most neurons,
both sensory (a) and choice (b) reliabilities were higher when motion pulses were likely. ¢, d,
The relationship between sensory and choice information within single cells was plotted for
both anticipated (c) and unanticipated (d) epochs. In both attention states, sensory and choice
information is correlated such that cells that most reliably signal the presence of a motion pulse
are also the most predictive of the animal’s subsequent behavior. e, A covariance analysis of
sensory and choice information surfaces from attentive and inattentive epochs was used
to generate predicted behavioral information surfaces, from which the peak predicted
information rates were extracted. The responses of single cells predicted strong increases
in behavioral reliability during attended epochs consistent with actual observations (Figs.
5, 6). Black shapes on the scatter plot represent the average observed behavior for each
schedule.

of a patch of random dots with low motion coherence, neces-
sitating substantial spatial and temporal integration. In those
studies, MT neurons exhibit only a modest ability to predict
behavioral choices, whereas neurons in a higher area (lateral in-
traparietal area) show much better correlations with behavior
(Shadlen and Newsome, 2001; Huk and Shadlen, 2005) and cue-
related expectation effects (Rao et al., 2012). If training increases
the behavioral weight of neurons with appropriate signals
(Law and Gold, 2008), then a task such as ours that uses highly
dynamic and coherent motion stimuli, well suited for MT RFs
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(Buracas et al., 1998; Ghose and Bearl, 2010), would result in a
higher reliance on MT neurons than one involving the low
coherence motion of random dot fields. This is supported by a
recent study of MT neurons, which showed high correlations
with behavior in a task using brief pulses of coherent motion
(Smith et al., 2011).

Consistent with this task-related explanation, we found that
choice information was comparable to sensory information both
when the animals were performing well (likely epochs) and when
the animals were performing poorly (unlikely epochs; Fig. 7). It is
also possible that the high choice information values observed in
some neurons are related to our task’s required behavioral out-
put. A saccade to the location of the motion, rather than a saccade
to a different target or the press of a lever, may correspond better
with the natural role of attention in directing eye movements to
salient stimuli (Moore et al., 2003; Awh et al., 2006).

Neither sensory nor choice information was uniform across
our sample population. Although we chose the location and di-
rection of our motion pulse according the RF of the neuron under
study, no effort was made to match the speed selectivity or exact
spatial extent of the RF. Thus, in many cases, we were likely
presenting a motion pulse of inappropriate speed and/or size for
the neuron under study (Huang and Lisberger, 2009). In such
cases, a minimal pulse response would likely be evoked, and the
sensory information would be correspondingly low. Interest-
ingly, and in contrast to previous studies relying of metrics, such
as choice probability, neurons with poor pulse responses and low
sensory information had correspondingly poor choice informa-
tion. Across the population, sensory and choice information rates
were strongly correlated regardless of pulse probability (Fig.
7¢,d): those neurons that most reliably reflected the stimulus were
also the most predictive of behavioral choice, both when the pulse
was likely (Pearson’s correlation of log values: r = 0.75, p <
0.0001) and when the pulse was unlikely (r = 0.63, p < 0.0001).
The best fitting model of how choice information varied with
stimulus information was similar for both likely and unlikely
epochs and did not include an intercept term (choice = 0.48 X
sensory”" 0.78, likely; choice = 0.35 X sensory”" 0.50, unlikely).
Not only was sensory and choice information highly correlated
among the population, but importantly, significant choice infor-
mation was only observed for neurons with reliable sensory in-
formation, even when the animal was attentive.

Modulations in reliability associated with attention were
larger than those observed in mean firing rate (Fig. 3) and often
dramatic: in many cases, information rates increased by a factor
of 10. Although peak choice information increased with a mean
factor of 1.67 = 0.14, sensory information increased with a mean
factor of 4.7 £ 0.35. Attention had a significantly greater impact
on the reliability of sensory information (paired ¢ test of log-
transformed ratios: p < 0.0001). Recent work by Masse et al.
(2012) found that, in some tasks, spatial attention may increase
the strength of the correlation between a cell’s sensory sensitivity
and its effect on behavior. However, although the strength of the
correlation between sensory and choice reliability increased
somewhat with attention in our task, this change was not statis-
tically significant (two-tailed test of Fisher z transformed coeffi-
cients, z = 1.13).

These results document that the reliability of MT activity was
modulated in accordance with pulse likelihood but do not reveal
whether the timing of that activity was also altered. If these neu-
rons were indeed responsible for behavior, we would expect
changes in physiological timing parameters consistent with be-
havioral timing changes (Fig. 5). Timing parameters were quan-
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tified according to the location of the peak in the information
surface. For this analysis, we only chose information surfaces
with defined peaks (peak information =0.01 bits/s), and for each
such surface compared delay and resolution as a function of pulse
likelihood. We defined delay according to the location of the peak
regardless of temporal resolution and computed precision by av-
eraging the resolutions weighted according to the information
rates observed at the optimal delay. Behavioral delay was short-
ened by attention (likely, 250 ms; unlikely, 271 ms; paired  test,
p < 0.001, n = 53) and temporal precision decreased (likely, 67
ms; unlikely, 35 ms; paired ¢ test, p < 0.001). Although no signif-
icant changes in sensory (n = 57) or choice (n = 58) delay were
observed, a significant decrease in the sensory precision consis-
tent with behavior was observed (likely, 56 ms; unlikely, 24 ms;
paired ¢ test, p < 0.001).

Behavioral predictions from physiological observations

A strong and consistent correlation between sensory and choice
information among neurons, regardless of task statistics, sug-
gested that small numbers of neurons may be sufficient to explain
behavioral performance across attentive states. Those neurons
that were the best at signaling stimulus events (high sensory in-
formation rates) were also the most strongly predictive of behav-
ioral choices (high choice information rates). We therefore used
our covariance analysis to produce an estimate of behavioral per-
formance and timing under the assumption that a single cell’s
activity was completely responsible for behavior. In other words,
we used the probability of a stimulus given a particular neuronal
response and the probability of a behavioral choice given that
same neuronal response to predict behavior. For both likely and
unlikely epochs, we applied this analysis to the sensory and choice
surfaces of individual cells (Fig. 7e). As expected given the effect
of attention on both sensory and choice reliability, behavioral
predictions of single cells often showed an increase in predicted
behavioral reliability with attention (Wilcoxon paired-sample test
on log values, p < 0.0001). Because of the combined modulations of
sensory and choice reliability, for many neurons attention signifi-
cantly increased the predicted behavioral reliability associated with a
single cell by a factor of =10 (Fig. 7e, cells on the y-axis).

To estimate how a pool of these neurons might explain behav-
ior, we combined the responses of different cells to generate
pooled sensory and choice information surfaces and then used
the covariance analysis to predict behavior. Responses were
pooled over 4 ms (our minimum resolution). Unlike most pre-
vious attempts to quantitatively link neuronal activity to choice,
this analysis made no assumptions regarding the pooling noise or
motor delays because these factors were already incorporated in
the choice information surface. A previous analysis using this
methodology demonstrated that a small pool of independent
neurons (~5 in number) was sufficient to explain the reliability
and timing of behavioral decisions in this task (Ghose and Harrison,
2009). However, the analysis did not take into account the dramatic
variations in performance associated with task statistics demon-
strated here, nor did they consider the potential effects of correlated
activity between neurons. The effects of dynamic attention present
an additional challenge to any neuronal model of behavior because,
within a single trial, large and rapid behavioral changes must be
explained. In particular for our task, the neuronal model must ex-
plain the near invisibility of the unexpected pulse stimulus.

We modeled behavioral predictions for pools of neurons by
selecting cells from our sample without replacement and impos-
ing small, physiologically relevant, pairwise correlations on their
sensory and choice responses (Fig. 8). Pairwise correlations were



Harrison et al. @ Attention Gates Neuronal Reliability in MT

J. Neurosci., May 8, 2013 - 33(19):8396 — 8410 - 8407

a b c
2 2 2
@ /\N'\-M-_‘
£ 1.5 | 1.5 1.5
o J|I
2 f
3 1 i Att Inatt 1 1
S | ! =007 ™
€ 05 ." max=0.15 0.5 0.5
0 0
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Neuronal Pool Size Neuronal Pool Size Neuronal Pool Size
e f
450, 6 Attentive Inattentive
128
400 = _
T‘é’\ 350 %5'5 E Observed
= - c
Z 300 3 5 S 4
3 3 2128
250 - & o
4.5 o Model
200
15 4 4
10 20 30 40 50 10 20 30 40 50 4 256 5124 256 512

Neuronal Pool Size

Neuronal Pool Size

Delay (ms)

Figure8.  Asimple population model, in which the responses from pools of sampled neurons were summed, predicted that small numbers of neurons were responsible for task performance and
timing. Pools were constructed by progressively adding neurons from our sample. a—¢, The order in which neurons were selected was varied three ways: (1) sorted according to their choice
information (a), (2) randomly but weighted according to their choice information (b), and (3) completely random (c). For all three cases, the contingency tables from likely and unlikely epochs of
different recording sessions were combined, with varying levels of pairwise correlation (red represents r = 0.07; green, r,,,,, = 0.15), to create pooled sensory and choice information surfaces. f,
Covariance analysis was applied to these pooled sensory and choice responses to create a behavioral information surface. Shaded regions indicate the SD of the random pools for information surface
peak parameters of reliability (a— c), latency (d), and precision (e). Latency and precision are shown for the weighted random selection model only (b). Horizontal lines (black indicates likely; gray,
unlikely) indicate behavioral observations. For all neuronal selection methods, peak information eventually exceeds actual observation of attentive reliability, although the exact number of neurons

at which this happens varies (a— c). An example random pool of 17 neurons (r, .,
single peak nature of observed behavioral information surfaces (e) across attentive states.

assumed to be constant over different timescales, stimulus con-
ditions, and behavioral states (Bair et al., 2001). To test the effect
of such correlations, we imposed on all pools two different pat-
terns of correlation. In the first, a relatively low and constant
correlation was imposed between all neuron pairs (r = 0.07). In
the second, in accordance with MT paired cell measurements
(Cohen and Newsome, 2009), a variable correlation was imposed
such that cells with similar sensory information values (presum-
ably reflecting RF similarities) were more correlated (r = 0.15)
than cells with very different sensory information values. Because
our stimulus was always tuned to the preferred direction of each
cell, we essentially modeled the behavior that would result from a
population of cells with similar preferred directions, tuned to the
direction of the motion stimulus, in two attentional conditions.
For a single pool, we separately analyzed combined activity for
epochs of high and low pulse probability.

In any pooling model seeking to explain behavior, the choice
of which particular neurons are included can have strong effects,
especially when certain neurons are highly reliable. For example,
a pooling of neurons with no sensory information would be in-
capable of predicting how behavior is related to stimulus events.
A pool of neurons with sensory information but no choice infor-
mation would also be incapable of predicting behavior. To min-
imize assumptions regarding readout, all neurons within this
pool were equally weighted. To test the effects of constructing
response pools according to different rules, the sequence in which

=0.15) shows that the small neuronal numbers were capable of explaining both peak parameters (b, d, €) and the

neurons were added to the response pool was varied. In the first
selection algorithm, we progressively included neurons accord-
ing to their ability to predict choices (i.e., choice information),
such that the first neuron was the neuron in our sample with the
highest choice information (Fig. 8a). In the second selection al-
gorithm, we randomly selected neurons from our sample but
biased the selection so that those neurons with high choice infor-
mation were more likely to be included early on (Fig. 8b). In this
algorithm, neurons that show no evidence of behavioral correla-
tions (zero choice information) are less likely to included than
neurons well correlated with choices (high choice information).
Finally, in the third selection algorithm, we completely ignored
choice information and randomly selected neurons from our
sample (Fig. 8¢). Importantly, in all of these cases, pulse informa-
tion, or the strength of the correlation between response and
stimulus, was never used as a basis for sorting. Thus, neurons that
were highly informative about motion pulses were neither pref-
erentially weighted in terms of their chances of being included
into a neuronal pool, nor were they preferentially weighted if they
were included. Similarly, the behavioral predictions from indi-
vidual cells (which reflect the combination of sensory and choice
information) were also not used a basis of sorting.

For each random pool, a behavioral information surface was
generated on the basis on pooled sensory and choice surfaces. As
previously discussed, the location of the peak on the resulting
behavioral information surface was used to quantify predicted
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reliability, precision, and latency. We computed mean = SD of
each of these parameters across random pools of the same size for
different pooling models (choice favored, choice biased, unbi-
ased, N = 3), different correlation structures (weak constant vs
variable correlation, N = 2), and different behavior states (atten-
tive vs inattentive, N = 2).

Regardless of the exact sequence with which neurons were
incorporated into a pool (Fig. 8a—c), small numbers of neurons
were always sufficiently precise and reliable to explain attentive
behavior. Behavior reliability (Fig. 8a—c), precision (Fig. 84), and
latency (Fig Fig. 8e) were all reproduced. This is consistent with
the notion that attentive behavior can be explained by a pool con-
taininga critical number of highly informative neurons, regardless of
the exact pool composition or details of the correlations within that
pool. Moreover, the effects of attention on individual neurons were
so strong that, for every pooling model, the same set of neurons was
also able to largely explain the invisibility of motion stimuli when
attention was misdirected (Fig. 8a—c).

An example pool of 17 randomly selected neurons with vari-
able pairwise correlation demonstrates that the model was able to
accurately replicate not just peak-based measurements, but also
the entire behavioral information surface (Fig. 8f). This result
was not strongly dependent on preferentially including cells
strongly correlated with behavior. For completely randomly cho-
sen cell pools, the number of neurons necessary to explain behav-
ior was larger (~30, Fig. 8¢ vs Fig. 8a,b), but was also able to
explain both attentive and inattentive performance. Thus, a com-
pletely random pool requires a larger number of neurons to ex-
plain performance simply because it is less likely that small pools
will contain the few highly informative cells capable of predicting
both attentive and inattentive performance. This is in contrast to
previous models, in which performance saturates with pool sizes
of hundreds of neurons (Shadlen et al., 1996; Cohen and
Maunsell, 2010) and even then does not necessarily match behavior.
In addition to the previously mentioned experimental differences
regarding the analysis of responses and the stimulus used, the pres-
ence of a strong and consistent correlation between sensory and
choice information across our sampled population is likely to be
particularly important for explaining this discrepancy.

Our data highlight the potential importance of behavioral
state when constructing neuronal pooling models for behavior.
In our case, the physiological effects of inattention on individual
neurons were so severe that increasing the size of the neuronal
pool had little effect on predicted behavior. Because such a large
range of pool sizes were consistent with inattentive behavior, it
did not strongly constrain the size of a contributing pool of MT
neurons. On the other hand, the attentive data did provide a
constraint in that even modest numbers of MT neurons overpre-
dict performance (Fig. 8a—c¢) and temporal precision (Fig. 8d).
Thus, changes in the firing of the same small pool of neurons
(~20) can largely explain behavioral performance in terms of
reliability and timing across attentive states. This is a distinguish-
ing feature of our model, in that unlike previous ones, large num-
bers of neurons are actually less capable of explaining behavior.

Discussion

To study the neurophysiological basis of how strong expectations
can affect performance, we trained animals to detect a brief stim-
ulus that appeared with consistent statistics and recorded from
individual neurons in area MT. We found dramatic changes in
the reliability of both behavioral and neuronal responses in ac-
cordance with task statistics such that unlikely stimuli were
largely invisible to both the animals and their neurons. Our re-
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sults are directly relevant to the phenomena of inattention blind-
ness where, in the absence of attention, subjects cannot perceive a
suprathreshold stimulus (Newby and Rock, 1998; Most et al.,
2001). Finally, we showed that reliability changes seen in small
numbers of reliable MT neurons were sufficient to completely
explain these behavioral variations.

Attention increased sensory reliability in individual neurons by
an average factor of 4.7 (Fig. 7). This measure was based on selecting
a behaviorally appropriate timescale for analysis (tens of millisec-
onds) and examining activity both before and after motion pulses.
Attentional modulation of prechange responses need not be identi-
cal to attentional modulation of change-related responses; however,
most experimental designs have solely considered activity before
stimulus change (Cook and Maunsell, 2002; Ghose and Maunsell,
2002; Mitchell et al., 2009). In our study, firing rates and rate vari-
ability before pulse presentation did not vary with attention (Fig.
3a,b), whereas the actual pulse response was enhanced by attention.
Analyses excluding responses during periods when decisions are ac-
tually being made (McAdams and Maunsell, 1999) would have
failed to resolve these effects.

The finding that motion pulse responses were more strongly
modulated by attention than motion noise responses (Fig. 3) is
not consistent with a traditional gain model of attention, in which
responses are multiplicatively increased regardless of the stimu-
lus (Cook and Maunsell, 2004). However, recent data from our
laboratory have suggested that attention’s effects on neuronal
responses are not purely linear (Ghose and Bearl, 2010). In par-
ticular, attention can increase the nonlinearity between neuronal
input and output in MT neurons. A modest increase in nonlin-
earity would cause the effect of attention on responses to strong
stimuli, such as our motion pulses, to be larger than on responses
to weaker stimuli, such as our motion noise.

In most studies of attention (Seidemann and Newsome, 1999;
Treue and Maunsell, 1999; Masse et al., 2012; Rao et al., 2012), it
is unclear whether observed physiological changes are sufficient
to explain behavioral improvements. One approach has been to
quantify attentional effects in terms of an equivalent stimulus
change. Using this approach, Cook and Maunsell (2002) reported
that the physiological effects of attention in area MT were incon-
sistent with behavior. By contrast, our direct comparison of be-
havioral and neurophysiological reliability suggests that changes
in individual neurons can explain even extreme attentional ef-
fects on behavior, such as when visibility depends on attention.
Transient applications of attention and potentially incomplete
measures of reliability may be responsible for previous studies’
failure to explain attention effects with MT neurons.

Even if neuronal stimulus response and behavioral measures
are comparable, a neuronal population affected by attention may
be unrelated to the decision process. Previous studies have typi-
cally not examined whether the activity in neurons modulated by
attention is correlated with behavioral choices in a trial-by-trial
manner (Cook and Maunsell, 2004; Cohen and Maunsell, 2010;
Rao et al., 2012). This relationship, typically quantified as choice
probability, has often been measured over timescales that may
not match behavior (Cohen and Newsome, 2009) and can vary
substantially between tasks (Dodd et al., 2001). Recently, Smith et
al. (2011) showed that individual MT neurons can exhibit high
choice probability in a task using brief coherent pulses of motion
similar to those used in our study. Consistent with their observa-
tions, we found that, when analysis was limited to behaviorally
relevant timescales, individual MT neurons were nearly as reli-
able in predicting behavioral choices as they were in reflecting the
onset of coherent motion.
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The difference between choice probabilities as previously re-
ported, which reflect trial-to-trial variability, and the choice in-
formation metric used here, which reflects moment-to-moment
variability, is not simply a matter of analysis. The distribution of
choice information across our sample is very different from what
has been reported previously with choice probability. Specifi-
cally, although certain neurons in our sample had strong choice
information, neurons with small sensory information tended to
have very little choice information. This is in contrast to previous
studies, which have reported significant choice probabilities even
among relatively insensitive cells (Cohen and Newsome, 2009;
Bosking and Maunsell, 2011; Masse et al., 2012). If choice infor-
mation was caused solely by widespread covariation between be-
havior and neuronal activity (Krug, 2004; Nienborg and
Cumming, 2009, 2010), we would expect it to be high regardless
of a cell’s sensory reliability. In such a case, choice correlations
offer relatively little information about whether a neuron is actu-
ally participating in the decision process, as opposed to be simply
correlated with other neurons that are. By contrast, the correla-
tion between sensory and choice information across our neuro-
nal population, as well as the large number of cells that show little
to no choice information, suggests that only those neurons that
were well suited to the task by virtue of their stimulus informa-
tion were used by the animals in making their decisions.

By including a small number of cells that are informative
about the stimulus and predictive of choice, we were able to ex-
plain behavioral performance. Once more than tens of neurons
were included, the same model overpredicted performance. This
occurs because neurons that are noisy (low stimulus informa-
tion) had relatively little effect on behavior derived from pooled
responses because of their small choice information. This is in
contrast to models invoking a broad sampling of neurons, in-
cluding those that are relatively insensitive (Shadlen et al., 1996;
Jazayeri and Movshon, 2007; Bosking and Maunsell, 2011;
Haefner et al., 2013). The absence of choice information among
large numbers of neurons, even when the stimulus was chosen to
match the preferred direction, strongly limits the number of neurons
that can potentially contribute to decisions and ensures that noisy
neurons are not in the pool. Because of the high correlation between
choice and sensory information, we can quantify this absence on the
basis of regression analysis. The best fitting regression model is on a
log-log scale, log(choice) versus log(sensory), consistent with a
model of choice information increasing nonlinearly with sensory
information. The introduction of an intercept term into this model
does not significantly improve the fit (x> F test, nested model). How-
ever, with larger data, it is possible that a slight positive intercept
would be found. If this were true, it could have significant implications
regarding the size of a neuronal pool necessary to explain behavior be-
cause it would suggest that a population of purely noisy neurons may be
integrated into the decision process and affect behavioral choices. De-
pending on the number of such cells, the noise might need to be com-
pensated by a large pool of sensory informative neurons to create a
pooled response consistent with behavioral performance.

In the absence of such noise, our data suggest that a small number
of neurons could be responsible for behavior. One possible mecha-
nism by which a small number of reliable neurons could be so influ-
ential can be imagined by a simple reaction time model in which
actions are initiated as soon as a pooled sensory response reaches a
criterion level. A large and reliable stimulus-evoked response would
be much morelikely to reach the threshold than a small or unreliable
stimulus response from an insensitive neuron. Neurons with high
sensory information would tend to have high choice information. A
similar argument applies to attentional modulation: a strong re-
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sponse from an individual neuron would be more likely to trigger an
action than a weak response from that same neuron (Fig. 3). Thus,
we would expect a strong covariation between sensory and choice
modulation by attention (Table 1). In this case, “top-down” modu-
lations resulting from attention would be propagated in a “bottom-
up” fashion to create high choice information in a select set of
neurons. Our pooling models demonstrate that such a model is able
to explain both the performance and timing associated with atten-
tion and inattention. Consistent with this observation, a simple
threshold model suggests that pulse response modulations in a small
number of neurons by attention are sufficient to explain our obser-
vations (data not shown).

Our results suggest that pooling does not significantly vary with
behavioral state in our task because, for both likely and unlikely
epochs of time, the neurons that most reliably signaled the stimulus
were also the most strongly related to behavioral choice. The ability
of attention to affect pooling (Masse et al., 2012) may be specific to
tasks that require integration of a large pool of neurons over longer
periods of time. Moreover, the number of neurons necessary to ex-
plain behavioral performance was similar in the two probability
states, regardless of the amount of pairwise correlation.

Because we recorded from individual neurons, we assumed in
our pooling simulations that MT spike rate correlations were in a
range consistent with previous measures of spike count covari-
ance (Cohen and Newsome, 2009; Huang and Lisberger, 2009).
However, it is not clear that correlations in firing rates, which have
usually been measured over relatively large timescales, are applicable
over the short timescales relevant for our task. In addition, the cor-
relations themselves may change with attentive state (Cohen and
Maunsell, 2009; Mitchell et al., 2009), which can have substantial
effects of the encoding of stimulus information and decoding of
neural activity. Given our observations of strong effects in the reli-
ability of individual neurons and that our results do not depend
strongly on the level of pairwise correlation, it seems unlikely that
these population effects are the sole explanation for the improve-
ments in behavior resulting from attention, but the exact contribu-
tion of these effects will require simultaneously recording multiple
neurons in area MT during task performance.

Although the small number of cells used in our model is incon-
sistent with the M T literature, it is largely consistent with measures of
single neuron reliability during a visual search task in an area associ-
ated with saccade planning and generation. Over timescales of ~100
ms, single neurons in the frontal eye field exhibited a consistency in
their discharge between different trials that was comparable to be-
havioral performance (Bichot et al., 2001). The activity of just six
frontal eye field neurons was sufficient to explain behavioral timing
and accuracy across a variety of manipulations in task difficulty and
design. However, an important distinction between these results and
ours is the stimulus selectivity of neurons in MT and frontal eye field.
Although frontal eye field encodes spatial salience and is relevant for
potential eye movements, it has relatively limited stimulus-specific
responses. By contrast, MT neurons have well-documented stimu-
lus selectivity for parameters, such as motion direction and binocu-
lar disparity and, as evidenced by our data, can precisely encode
rapid stimulus changes. Indeed, it is the coexistence of both high
stimulus information and high choice information in single MT
neurons that suggests their involvement in the transformation of
stimulus information to behavioral choices that is central to the per-
ceptual decisions made in our task. Our results demonstrate that
attentional effects, especially strong ones as observed in our design,
can serve as a powerful constraint for neural models of decision
making.
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