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SUMMARY tively benign furuncles and soft tissue abscesses to others that are

This review begins with a discussion of the large family of Staph-
ylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin
T lymphocyte superantigens from structural and immunobiologi-
cal perspectives. With this as background, the review then dis-
cusses the major known and possible human disease associations
with superantigens, including associations with toxic shock syn-
dromes, atopic dermatitis, pneumonia, infective endocarditis,
and autoimmune sequelae to streptococcal illnesses. Finally, the
review addresses current and possible novel strategies to prevent
superantigen production and passive and active immunization
strategies.

INTRODUCTION

S taphylococcus aureus is a Gram-positive, catalase-positive,
coagulase-positive, facultative aerobe that is a major cause of
many kinds of illnesses throughout the world. In 2007, based on
data collected in 2005, the Centers for Disease Control and Pre-
vention (CDC) and their collaborators published a report stating
that S. aureus is the most significant cause of serious infectious
diseases and infectious disease deaths in the United States (1). S.
aureus can cause a wide variety of infections, ranging from rela-
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life-threatening, such as infective endocarditis, necrotizing (hem-
orrhagic) pneumonia, sepsis, and toxic shock syndrome (TSS)
(2-12). The ability of S. aureus to be such a capable pathogen,
while at the same time appearing as part of the human normal
flora, resides largely in the myriad of cell surface and secreted
virulence factors that the organism produces (7). Estimates sug-
gest that 30 to 40% of the human population are asymptomati-
cally colonized at any given time on one or more of their mucosal
surfaces; up to 70% of people may be transiently colonized (7, 10).
Importantly, people who are colonized by S. aureus have a higher
risk of infection than noncolonized persons.

Streptococcus pyogenes (group A streptococcus) is also a Gram-
positive coccus, but the organism is a catalase-negative, aerotoler-
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ant anaerobe. Like S. aureus, group A streptococci are highly as-
sociated with serious infections and deaths in humans, primarily
also due to their myriad cell surface and secreted virulence factors
(4, 13-17). Group A streptococci are considered primary human
pathogens in that initial exposure to the organisms usually results
in acute illness, typically manifested as pharyngitis or impetigo
(18). There are an estimated 10 million cases of pharyngitis in the
United States each year. The organisms can also cause life-threat-
ening illnesses such as TSS with or without necrotizing fasciitis
and myositis (19, 20), and the organisms are associated with de-
velopment of autoimmune diseases such as rheumatic fever (21),
acute glomerulonephritis (22), and guttate psoriasis (23). Group
A streptococci may be asymptomatically carried by up to 10 to
20% of humans, usually after having overt infections (24).

Other beta-hemolytic streptococci, including group B, C, and
G strains, also have the ability to cause serious human illnesses,
including streptococcal TSS with or without necrotizing fasciitis
and myositis (25-37). Additionally, group B streptococci are well
known to cause neonatal sepsis and meningitis, and group C and
G strains cause pharyngitis.

This review discusses a highly important family of secreted
virulence factors produced by both organisms and additionally by
certain strains of group B, C, and G streptococci. This family,
referred to as pyrogenic toxin superantigens or more simply su-
perantigens, overstimulates many immune processes that allow
these organisms to cause serious human illnesses (4, 8, 15, 38). The
review will focus on S. aureus and group A streptococci since more
data are available for these organisms, but the key principles are
also relevant to the pathogenesis of other beta-hemolytic strepto-
cocci that produce superantigens. It is important to note that
whereas other beta-hemolytic streptococci secrete superantigens,
other staphylococci (coagulase negative) of human origin so far
do not secrete detectable superantigens (39). Coagulase-negative
staphylococci from other animals may produce superantigens (40,
41). It is not our intent to discuss cell surface virulence factors of
these organisms, though we recognize that both organisms rely
heavily on production of numerous cell surface, as well as se-
creted, exoproteins in order to colonize the host and cause serious
illnesses (7, 8, 38,42, 43). The cell surface virulence factors include
the large families of microbial surface components recognizing
adhesive matrix molecules (MSCRAMMs) and immunoglobulin
Fc-binding proteins which are important for host colonization
and for the interference with local host immune responses (42,
43). The secreted virulence factors, in addition to superantigens,
include multiple cytolysins, proteases, nucleases, and lipases that
we will mention only in relation to superantigen involvement in
disease processes.

The major goal of this review is to present new information on
superantigen disease associations and novel ways to interfere with
the production and activities of superantigens. Superantigens are
critical to development of TSS and likely other cardiovascular and
vascular diseases associated with S. aureus and beta-hemolytic
streptococci. We and our clinical colleagues have described 25
novel superantigen-associated illnesses, making it is likely that
agents that interfere with superantigen production and activity
will greatly impact human medicine (8, 44, 45).

THE SUPERANTIGEN FAMILY

Superantigens are an extraordinary family of nonglycosylated
low-molecular-weight exoproteins. They are secreted by all hu-
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man-pathogenic S. aureus and group A streptococci that we have
tested (>8,000), with secretion dependent on a cleavable signal
peptide. Superantigens have molecular sizes ranging from 19,000
to 30,000 Da (8). The proteins are unusually resistant to heat (for
example, most remain biologically active despite boiling for 1 h),
they are generally resistant to proteolysis (for example, by trypsin
and pepsin) and acids (such as stomach acid), and they are highly
resistant to desiccation (toxic shock syndrome toxin 1 [TSST-1]
remains biologically active after being dried on petri dishes for
more than one year) (8, 15, 38). Their biological toxicity and en-
vironmental stability have resulted in some superantigens being
categorized as select agents of bioterrorism.

S. aureus strains secrete from 1 to 23 of at least 24 serologically
distinct superantigens, and group A streptococcal strains have the
ability to produce up to 11 superantigens (8, 15, 38). For example,
we have one S. aureus strain in our collection that produces 23
superantigens, lacking only the ability to produce TSST-1 (46).
The only S. aureus strains that we are aware of that do not secrete
superantigens are NCTC 8325-4 and its variant strains (RN4220,
RN6390, and RN450); this makes the restriction-less strain
RN4220 a highly useful organism for cloning superantigen genes.
The S. aureus superantigens include TSST-1, the staphylococcal
enterotoxins (SEs) (serotypes A, B, C,, [where n refers to multiple
variants], D, E, and G), and the SE-like (SE-I) superantigens (se-
rotypes H, I, and ] to X) (4, 8, 15, 38, 47). It is important to note
that there is no SE serotype F (SEF) or SE-1 protein serotype F (SE-1
F) designation. The name SEF was retired from use as a result of
the renaming of staphylococcal pyrogenic exotoxin C (PE C) and
SEF as TSST-1 in 1984 (48).

The SE superantigens are defined by emetic activity when in-
gested by humans or when given orally to monkeys (47). TSST-1
was originally thought to have emetic activity when purified by
Bergdoll et al. (3), but that activity was later shown to result from
SEA contamination. TSST-1 lacks emetic activity and lacks the
cystine loop structure thought to be important for emetic activity
of SEs (49). It is also important to note that TSST-1 was so named
to recognize its principal association with TSS and to allow for the
possibility that TSST variants may arise (for example, TSST-2,
etc.). To date, there are no human TSST-1 variants, though there
is a protein referred to as TSST-ovine that has 7 amino acid dif-
ferences from TSST-1 (50). TSST-ovine is biologically inactive
when tested against human lymphocytes, but the protein is active
against lymphocytes from sheep (50). The SE-like proteins either
lack emetic activity or have not been tested (47). Several, including
SE-1H, SE-1K, SE-1L, and SE-1 Q, have been tested and are non-
emetic; the remaining SE-1 proteins have not been tested (51-54).
Almost all of the staphylococcal superantigens are encoded on
variable genetic DNA elements, with the exception of SE-l X,
which is encoded on the core chromosome (8, 55). SEA is encoded
by the sea gene located on a bacteriophage (56), and SED is en-
coded by the sed gene found on a plasmid (57), but most staphy-
lococcal superantigens are encoded by genes on S. aureus patho-
genicity islands (SaPIs) (8).

Like other exoproteins and cell surface virulence factors, staph-
ylococcal superantigens are under complex regulatory control, in-
cluding by global regulators such as agr, sae, rot, and srr. It is not
our intent to discuss these DNA regulatory elements in detail.
Later in this review, we discuss selected regulatory elements as they
pertain to novel agents that prevent superantigen production.
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Readers are encouraged to read important reviews that discuss
global regulatory pathways in detail (58-60).

Group A streptococci also may produce large numbers of su-
perantigens. These were originally known as scarlet fever toxins or
erythrogenic toxins due to their abilities to cause the scarlet fever
rash (discussed in detail later in this review) but have more re-
cently been referred to as streptococcal pyrogenic exotoxins
(SPEs) (8, 15, 61, 62). Group A streptococci can produce up to 11
serologically distinct superantigens (8, 15, 63—67). The strepto-
coccal superantigens include SPE (serotypes A, C, and G to M),
streptococcal superantigen (SSA), and streptococcal mitogenic
exotoxin Z,, (SMEZ,) (8, 15). All of the streptococcal superanti-
gens are encoded by genes located within bacteriophages, exclud-
ing SPE G and SMEZ, which are encoded on the core chromosome
(8, 15, 18). There is another SPE, designated SPE B, whose gene
speB is also encoded in the core chromosome (68). Although
shown to have superantigen activity, this protein is clearly a cys-
teine protease based on activities and structure determination (62,
69, 70). Its superantigenic activity has also been controversial,
with observed superantigen activity possibly being the result of
contaminants (71). However, it is also possible that the molecule
has superantigen activity due to regions of the protein not in-
volved in protease activity. There is precedent for this to occur, as
another protein, streptococcal M protein, has both recognized
antiphagocytic and superantigen activities (72, 73). It thus seems
likely that the protein is both a cysteine protease and an atypical
superantigen. SPE B will not be discussed further in this review
except as related to poststreptococcal acute glomerulonephritis.

As noted above, pyrogenic toxin superantigens are not limited
to S. aureus and group A streptococci. In fact, a number of other
organisms produce superantigens. Recent reports of coagulase-
negative staphylococci of animal origin (40, 41) and other beta-
hemolytic streptococci, namely, groups B, C, and G (4, 8, 15, 25,
31, 33, 74-76), have been published. Superantigens of group B
streptococci have not been purified. Some superantigens of group
C streptococci appear to be unique, whereas others, and those
from coagulase-negative staphylococci and group G streptococci,
are identical or nearly identical to those from S. aureus and group
A streptococcal strains. Superantigens have also been reported to
occur in Mycoplasma arthritidis, Yersinia enterocolitica, Yersinia
pseudotuberculosis, Plasmodium falciparum, Clostridium perfrin-
gens, Candida albicans, and Toxoplasma gondii (77-82). Interest-
ingly, a superantigen has even been found in the rhizomes of the
stinging nettle, Urtica dioica (83).

The global regulation of SPEs has not been extensively studied.
As noted above, the majority are encoded on bacteriophages.
However, SPEs that have been studied, such as SPE A and SPE C,
are produced primarily in the post-exponential phase/early sta-
tionary phase of streptococcal growth. This corresponds to the
time of maximal production of major staphylococcal superanti-
gens such as TSST-1, SEB, and SEC (84, 85) by S. aureus. In un-
published studies, we have shown that the gene speA, encoding
SPE A, is regulated by endogenous S. aureus global toxin regula-
tors, such as agr and srrAB, when speA is cloned into S. aureus.
Additionally, the SPE A protein, which shares highly significant
primary sequence similarity to SEB and SEC, is highly resistant to
S. aureus proteases when the protein is produced in S. aureus. In
contrast, neither the SPE B nor the SPE C protein is stably pro-
duced when their genes are cloned into S. aureus, with both pro-
teins being quickly proteolyzed to small fragments. These data
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suggest that group A streptococci may have acquired the SPE A
gene from bacteriophage transduction from S. aureus or a com-
mon ancestral organism. The SPE B and SPE C genes do not ap-
pear to have originated from S. aureus or a recent ancestor.

SUPERANTIGEN BENEFITS TO MICROBES

S. aureus and group A streptococci are highly successful patho-
gens. This almost certainly is because these two organisms are
multidimensional in disease causation, producing a myriad of cell
surface and secreted virulence factors, among these being supe-
rantigens. It is interesting to ask what the potential microbial sur-
vival benefit from superantigen production by S. aureus and group
A streptococci is. We hypothesize the following. Both S. aureus
and group A streptococci colonize and cause infections in the
presence of immune systems; neither organism resides in other
environments in nature. Thus, it is most likely that superantigens,
and the majority of other virulence factors, are selected because
they interfere with normal immune function, increasing the
chances of survival and transmission for both organisms.

It can be envisioned that there are three levels of protection
afforded to both organisms by their virulence factors. First, supe-
rantigens interfere with immune system function systemically
(globally), while both organisms initiate disease from initial infec-
tion sites. Itis well recognized that women who develop menstrual
TSS (mTSS) do not produce protective antibodies against TSST-1
or other staphylococcal products during or upon recovery from
their illnesses (86). The continued use of tampons by such women
places them at high risk of recurrent illnesses (86). It has also been
shown that production of multiple superantigens by strains is
more toxic than production of a single superantigen (87, 88), pre-
sumably through overactivation of multiple T cell populations. It
has been shown that the suppression of antibody production by
superantigens results at least in part from gamma interferon
(IFN-vy) production by overactivated CD4 T cells (4, 89). Addi-
tionally, it has been shown that the massive production of tumor
necrosis factor (TNF), a proinflammatory cytokine, by immune
cells exposed to superantigens counterintuitively suppresses nor-
mal phagocytic cell infiltration into infection sites (90). This sup-
pression of phagocytic cell infiltration has been noted in both
staphylococcal and streptococcal TSS cases (90-93). The major
mechanism of immunity to both pathogens is thought to be anti-
body neutralization of toxins combined with antibody-comple-
ment opsonization and microbial killing by phagocytic cells; the
production of superantigens interferes with both activities by in-
terfering with antibody production and phagocytic cell che-
motaxis. Second, both organisms also produce cytotoxins that act
locally to kill immune cells that have come into infection sites in
spite of the presence of superantigens. Third, the organisms pro-
duce cell surface virulence factors that provide the last line of
defense against the immune system. The combination of these
mechanisms effectively allows the organisms to persist in their
hosts and increase the likelihood of transmission.

BIOCHEMISTRY AND STRUCTURES OF SUPERANTIGENS

Superantigens were initially known by their first described biolog-
ical activities (4, 94). Thus, SEs were known as enterotoxins due to
their causation of staphylococcal food poisoning (95, 96). SPEs
were defined as erythrogenic toxin (SPE A) and scarlet fever toxins
due to their abilities to induce the scarlet fever rash (61, 94, 97).
Unfortunately, the scientific and medical communities adopted
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TABLE 1 Structural features of staphylococcal and streptococcal superantigens

Cystine loop (length

Group  Superantigens MHC II binding in amino acids) Other feature
I TSST-1, SE-1X, TSST-ovine Low-affinity site a-chain No Unique amino acid
sequence

11 SEB, SEC, SEG, SE-1U, SE-1W, SPE A, SSA Low-affinity site a-chain Yes (10-19)

11 SEA, SED, SEE, SE-I1 H, SE-1], SE-IN to SE-1P  Low-affinity site a-chain, high-affinity site B-chain ~ Yes (9)

v SPE C, SPE G, SPE, ], SMEZ Low-affinity site a-chain, high-affinity site B-chain ~ No

A% SE-11, SE-1K to SE-1 M SE-1Q to SE-I1 T, SE-1 Low-affinity site a-chain, high-affinity site 3-chain ~ No 15-amino acid loop
V, SPEH insertion

these as the only activities of the SEs and SPEs. Thus, when SPEs
were first identified as a family of pyrogenic exotoxins, it was
thought they were different from erythrogenic toxin and scarlet
fever toxins (94). In 1979, Schlievert et al. showed that the rash of
scarlet fever, as caused by erythrogenic toxin, depended on lym-
phocyte activation (now known as superantigenicity) superim-
posed on preexistent delayed hypersensitivity (61). Thus, it was
unlikely that humans or animal models of human illnesses would
show a scarlet fever rash upon initial SPE or other superantigen
exposure. This is consistent with scarlet fever being more preva-
lent in certain geographic areas of the United States, with regions
with more cases of group A streptococcal infections having more
cases of scarlet fever (98). Additionally, it is consistent with the fact
that many women who develop menstrual TSS have had at least
one episode of TSS in which the rash, a defining criterion of TSS,
is absent, prior to the full-blown episode in which the rash is
present. Lastly, this is also consistent with the observations that
many individuals with streptococcal TSS or persons with non-
menstrual staphylococcal TSS, with only single exposures to TSS
organisms, do not show rashes (99). In contrast, women who have
menstrual periods with continuous vaginal colonization by S. au-
reus are likely to have monthly repeated exposures to TSST-1.

For many years, the superantigens TSST-1, SEs, SE-1 proteins,
and SPEs were known as pyrogenic toxins, since pyrogenicity was
a shared activity of all of the proteins (4). Additionally, all of the
proteins shared the unusual activity of enhancement of suscepti-
bility to lethal shock caused by lipopolysaccharide (LPS) by up to
10°-fold (100, 101). These became the defining properties of the
family. It had been known since the 1970s that pyrogenic toxins
were highly potent stimulators of T lymphocyte proliferation, in-
dependent of antigen specificity, and that this property was im-
portant in human illness (9, 61, 87, 102, 103).

The term superantigen was coined by Marrack and Kappler to
emphasize the novel way that pyrogenic toxins stimulate T cell
proliferation (104). Superantigens cross bridge T cell receptors
(TCRs) with major histocompatibility complex class II (MHC II)
molecules on antigen-presenting cells (APCs) in a relatively non-
specific manner, inducing highly significant proliferation of T
cells and activation of APCs such as macrophages (8, 105, 106).
Typically, antigens stimulate approximately 1 in 10,000 T cells
through their specific interaction with MHC IT and processed pep-
tides displayed on the surface of APCs. In contrast, superantigens
stimulate up to 50% of T cells, inducing in T cells and macro-
phages what is often referred to as a “cytokine storm” that defines
many symptoms of TSS (discussed below). There are four prop-
erties that define staphylococcal and streptococcal superantigens
and distinguish them from conventional peptide antigens (107):
(i) superantigens elicit strong primary responses which are not
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seen with conventional peptide antigens; (ii) the variable part of
the B-chain of the TCR (VB-TCR) is sufficient for recognition of
a superantigen, which is not the case with peptide antigens; (iii)
MHC 1II proteins are required for superantigen stimulation of T
cells, but the interactions are not class II restricted; and (iv) supe-
rantigens interact with MHC II as unprocessed molecules. It is
possible for strong conventional antigens to appear as weak supe-
rantigens, so it is necessary to demonstrate that putative superan-
tigens have these four activities.

Numerous structural and mutational analyses have provided
an impressive amount of information regarding the three-dimen-
sional structures and host cell interactions of superantigens. Stud-
ies that have examined the crystal structures of superantigens
determined that superantigens contain a conserved overall struc-
ture made of two major protein domains: an amino-terminal oli-
gosaccharide/oligonucleotide binding (O/B) fold, comprised of a
B-barrel, and a carboxy-terminal -grasp domain made of antipa-
rallel B-strands, with domains connected by a central, diagonal
a-helix (108, 109). Based on small variations in this common core
structure, superantigens can be categorized into 5 major groups
(Table 1; representatives are shown in Fig. 1 and 2).

Group I superantigens are characterized by TSST-1 (Fig. 1),
but the group also includes TSST-ovine and the recently described
SE-1 X (Table 1) (8, 55, 110, 111). Group I superantigens have
unique primary amino acid sequences compared to those of the
other superantigens. These superantigens have only the core
structure, lacking the emetic cystine loop of SEs and the extra loop
of 15 amino acids in group V SE-1 superantigens (8). Group I
superantigens contain only one MHC II binding site, the low-
affinity MHC II binding site in their O/B folds that interacts with
the a-chains of MHC II molecules (Fig. 1) (112). In its binding to
MHC II, TSST-1 also interacts with the antigenic peptide located
in the peptide-binding groove of the molecule. The VB-TCR
binding site of TSST-1 is known; this binding site is located on the
top back of the molecule in the standard view, in a groove formed
between the O/B fold and B-grasp domains (Fig. 1) (113, 114). At
this time, we do not know the location of either the MHC II or
VB-TCR site of SE-1 X.

The group II superantigens are characterized primarily by
SEB,, SEC,,, and SPE A, ,, in addition to others (Table 1) (8, 49).
These superantigens contain the core superantigen structure plus
a cystine loop that has a varying 10- to 19-amino-acid sequence
separating the cysteine residues (49, 115). Importantly, though
the cystine loop is required for emetic activity, its presence does
not guarantee emesis. Indeed, SPE A contains a cystine loop, like
other superantigens in this group; however, it has no emetic ac-
tivity (49, 115). The lack of emesis of SPE A has been suggested to
be due to the presence of a third cysteine in the loop that results in
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Standard View Front

Low affinity MHC I

binding site

Standard View Back

VB-TCR binding site

Dodecapeptide
cell binding site

FIG 1 Three-dimensional structure of the group I superantigen TSST-1. Light blue, low-affinity MHC II binding site; red, VB-TCR binding site; yellow,

epithelial/endothelial/ CD40/CD28 binding site.

an abnormal cystine loop being formed (115, 116). Additionally, it
has been shown in SEC that changing the two cysteines to alanine
results in loss of emetic activity, but changing the residues to ser-
ine does not (49). Thus, it appears that the conformation of the SE
structure, as regulated by cystine loop amino acids, may be more
important in determining emesis than the actual presence of the
cystine loop itself. Similar to group I superantigens, group II su-
perantigens contain only one MHC 1I site, the low-affinity,
a-chain MHC 1I binding site, and this interaction does not de-
pend on interaction with the antigenic peptide within the MHC II
peptide-binding groove (109, 117, 118). The VB-TCR binding site
of the group II superantigens is located on the top front of the
superantigens (109, 119-121). Even though group I and group II
superantigens have only one MHC II site, the low-affinity site,
their interaction with VB-TCRs is on opposite sides of the supe-
rantigens. This makes group I tricomplex interactions appear as
three beads on a string, whereas group II tricomplex interactions
appear as the superantigen forming a wedge between MHC II and
VB-TCR. This means that MHC IT molecules on APCs cannot
simultaneously contact group I superantigens and TCRs, unlike
the standard simultaneous interaction of MHC II molecules with
antigenic peptides and TCRs.

Group III superantigens include SEA (Fig. 2), SED, and SEE,
among others (Table 1) (8). The group III superantigens contain a
cystine loop like the group II superantigens, and thus those tested
have been shown to have emetic activity; however the loop of the
group III superantigens is always nine amino acids long (8). Im-
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portantly, the group III superantigens contain the low-affinity
a-chain MHC II binding site on their O/B folds, but they also
contain a second, high-affinity site, referred to as a Zn>*-depen-
dent MHC 1II binding site, in their 3-grasp domains (Fig. 2) (8,
122). The Zn*"-dependent high-affinity site interacts with the
B-chains of MHC II molecules (8, 122). The presence of two MHC
11 sites allows the superantigens to cross bridge MHC II molecules
on adjacent APCs and increase superantigen activity (123). The
presence of the Zn>"-dependent high-affinity site on these supe-
rantigens makes them 10- to 100-fold more active overall in caus-
ing cytokine production from T cells and APCs than those supe-
rantigens that have only the low-affinity MHC II site. Group III
superantigens bind VB-TCRs in the site comparable to that for
group Il superantigens (Fig. 2, top front in the groove between the
O/B fold and B-grasp domains) (123, 124).

The group IV superantigens are produced by group A strep-
tococci but not S. aureus and are characterized by SPE C, SPE
G, SPE ], and SMEZ (Table 1) (8). These superantigens contain
both low (a-chain)- and high (B-chain)-affinity MHC II bind-
ing sites; detailed studies have shown that the SPE C high-
affinity MHC II site is similar to the site found in SEA (124-
126). It has been suggested that the superantigen SMEZ is the
most potent superantigen (127); however, this group IV super-
antigen, which contains both low-affinity and Zn>*-dependent
high-affinity sites, shares expected activity comparable to that
of other superantigens that have both MHC II sites (8, 15).
Group IV superantigens lack the cystine loop required for
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Standard View Front

VB-TCR binding site

Dodecapeptide
cell binding site
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FIG 2 Three-dimensional structure of the group III superantigen SEA. Light blue, low-affinity MHC II binding site; dark blue, high-affinity MHC II binding site;
red, VB-TCR binding site; white, emetic cystine loop; yellow, epithelial/endothelial/ CD40/CD28 binding site.

emetic activity (8). Their interaction with VB-TCRs is similar
to that of group II and III superantigens (8).

Group V superantigens are the last described group and con-
tain many of the recently discovered superantigens (Table 1).
These include SE-1K to SE-1M, SE-1Q, SE-1V, and SPE H (52-54).
Group V contains both the low- and high-affinity MHC II binding
sites and lacks the emetic cystine loop. SE-1K, L, and Q have been
tested for emetic activity, and all lack activity (52—54). The group
V superantigens, however, all have an additional 15-amino-acid
insert that is unique to this group. The insert exists between the
third a-helix and the B-strand 8 and was hence named the a3-38
loop. This loop appears to be critical for the specificity of the
interaction of the superantigens with their respective VB-TCRs
(128). Studies have shown that for both SPE I and SE-1 K, the loop
is required for interaction with T cells (128, 129).

Because group III to V superantigens have a preferred Zn*"-
dependent high-affinity 8-chain MHC II site and the VB-TCR
binding sites on the top front, the tricomplex appears as beads on
a string like the tricomplex of group I superantigens with MHC II
and VB-TCR. It is also important to note that even though group
IIT to V staphylococcal superantigens have the Zn>*-dependent
high-affinity MHC II site, increasing their activities by 10- to 100-
fold compared to that of group I and II superantigens, the group
III to V staphylococcal superantigens typically are produced in
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minute amounts (pg/ml) compared to group I and II superanti-
gens (pg/ml). Thus, group I and II staphylococcal superantigens
are associated with serious human illnesses, whereas group Il to V
staphylococcal superantigens either have no disease association or
are causes of staphylococcal food poisoning. SEA, for example, is
considered the leading cause of staphylococcal food poisoning
worldwide (130, 131).

In addition to the presence of up to two MHC II binding sites,
asite for VB-TCR binding, and a cystine loop required for emesis,
all superantigens also contain an additional host cell binding site,
referred to as the dodecapeptide binding region (Fig. 1 and 2)
(109, 132, 133). This site is important for interaction with epithe-
lial cells (133), possibly endothelial cells, and the immune co-
stimulatory molecules CD40 (134) and CD28 (135). It has been
known since the 1980s that TSST-1 has the ability to bind to both
epithelial and endothelial cells (136-139). However, the impor-
tance of these interactions has only recently been appreciated. As
discussed in a later section of this review, studies indicate that the
interaction of superantigens with epithelial and endothelial cells
most likely initiates many disease processes (109). The dodeca-
peptide binding region is fairly conserved among superantigens,
with the greatest difference being between TSST-1 and other su-
perantigens (109, 132, 133). This difference in the dodecapeptide
binding region has been suggested to explain the greater mucosal
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TABLE 2 Human illnesses caused by or associated with superantigens

Human illnesses

Associated superantigen(s) (reference(s])

Staphylococcal menstrual TSS
Staphylococcal nonmenstrual TSS
Soft tissue infection associated
Postrespiratory viral
Purpura fulminans

TSST-1 (3,9, 48)

Primarily TSST-1, SEB, SEC (145, 200, 327)

Primarily TSST-1, SEB, SEC (145, 200, 327)

Primarily TSST-1 but also SEB, SEC, and SE-1X (5, 55, 152, 154)
Primarily TSST-1, SEB, SEC (154, 155)

Extreme pyrexia Any (156)

Recalcitrant erythematous desquamating syndrome in AIDS Any (153)

Anaphylactic TSST-1

Kawasaki-like TSST-1, SEB, SEC (328-332)

Scleroderma-like
Acute-onset rheumatoid arthritis
Neonatal exanthematous

Streptococcal illnesses

TSST-1 (333, 334)

Scarlatina and scarlet fever SPEs (97)
Erysipleas SPEs
Severe invasive disease without hypotension SPEs (199)

TSS with or without necrotizing fasciitis/myositis

SPE A and C (19, 20, 64, 92, 211, 213, 218, 219, 224, 335), SPE B (218, 224, 335, 336),

others (67, 199)

Purpura fulminans Any (337)

Kawasaki-like Any (338)
Staphylococcal food poisoning SEs (95, 339)
Guttate psoriasis SPEs (23, 284)
Atopic dermatitis Any (46)
Severe nasal polyposis Any staphylococcal (340)
Obsessive compulsive disorder and other nervous system disorders SPEs (286)

Acute rheumatic fever

Acute glomerulonephritis

Perineal erythema

Desquamative inflammatory vaginitis
Sudden infant death syndrome

SPEs (67, 88, 221)

SPE B (88, 288-290, 341)
Any staphylococcal (342)
Any staphylococcal (326)
Any (343, 344)

epithelium penetration of TSST-1 than of other superantigens
(109, 133, 140) and thus TSST-1’s unique association with men-
strual, vaginal TSS (115). The dodecapeptide binding region is
located at the base of the central, diagonal a-helix (Fig. 1 and 2)
(109).

ROLE OF SUPERANTIGENS IN HUMAN DISEASES

Introduction

While superantigens are classically defined clinically by their abil-
ities to cause staphylococcal and streptococcal TSS, they have been
associated with many other illnesses caused by S. aureus and group
A streptococci (Table 2). All serious illnesses caused by S. aureus
and group A streptococci have significant vascular-cardiovascular
effects on the host, including capillary leak syndromes, in the form
of TSS, sepsis, infective endocarditis, pneumonia, and osteomy-
elitis. Since superantigens are produced by all pathogenic S. aureus
and group A streptococcal strains, these toxins should be consid-
ered to be contributory to all such serious illnesses. We will discuss
selected superantigen-associated illnesses in this review. Readers
are encouraged to use Table 2 as a source of references that discuss
other possible disease associations.

Staphylococcal Menstrual TSS

The most well-recognized illness caused by superantigens is TSS,
which is a potentially life-threatening illness usually caused by S.
aureus or group A streptococci. However, group B, C, and G beta-
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hemolytic streptococci also cause TSS cases. Staphylococcal TSS,
as originally described, was most often seen in women during their
menstrual periods and is referred to as menstrual TSS (mTSS) (93,
141). mTSS refers only to the association with menstruation and
does not refer to the site of S. aureus isolation; approximately 95%
of mTSS cases are menstrual with vaginal colonization, whereas
the remaining 5% are menstrual with nonvaginal colonization,
occurring with almost any other type of infection. Most men-
strual, vaginal staphylococcal TSS cases are associated with tam-
pon use (93, 141), with higher incidence associated with higher
tampon absorbency (86, 93, 141). The incidence of mTSS peaked
in the early 1980s, when the incidence was as high as 10/100,000
women (86). The incidence of this illness is lower today, at ap-
proximately 1 to 3/100,000 women (142—-145), but importantly,
the illness continues to occur; it is alarming that the illness is
considerably less recognized today since there has not been media
attention for many years. mTSS is defined as occurring within 2 to
3 days of onset of menstruation, during menstruation, and within
2 to 3 days after menstruation. S. aureus reaches its highest num-
bers on days 2 to 3 of menstruation, which precedes by 1 day the
peak onset of TSS (days 3 to 4) (143). On day 2 to 3 of menstrua-
tion, S. aureus counts vaginally as measured by numbers on tam-
pons may exceed 10'" per tampon (143). TSST-1 amounts of as
high as 100 g may be present on soiled tampons (146). Counter-
intuitively, most TSST-1 in tampons is present in regions of tam-
pons that lack menstrual blood (146). Studies have shown that
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blood prevents production of TSST-1 by S. aureus strains (147).
Today, the highest incidence of mTSS is in adolescents of ages 12
to 15, whereas in the early 1980s, the highest incidence was in
women of ages 15 to 21 (144). The reason for this change to
younger mTSS patients is unknown.

Staphylococcal TSS is defined by the following criteria (93, 141,
148, 149): high fever, hypotension, erythematous (scarlet fever-
like) rash, peeling of the skin often during recovery, and any three
multiorgan components (often seen as flu-like symptoms, includ-
ing vomiting and diarrhea), i.e., blood, central nervous system,
gastrointestinal system, liver, mucous membranes, muscular sys-
tem, and renal system. Serology tests for measles, leptospirosis,
and Rocky Mountain spotted fever are negative, as are blood and
cerebrospinal fluid tests for organisms other than S. aureus. It is
now recognized that often one of the defining criteria is not pres-
ent; this illness is considered probable staphylococcal TSS (99).
The defining criterion most often missing is the scarlet fever-like
rash that occurs in association with preexistent delayed hypersen-
sitivity to staphylococcal superantigens (61, 150). However, cases
of probable TSS in which each defining criterion has been absent
have been described. If more than one criterion is absent and other
causes ruled out, the illness can be considered toxin-mediated
disease (151).

As soon as definitive mTSS was described, it was recognized that
the majority of patients with the illness did not meet the full cri-
teria for TSS that had been established to perform epidemiologic
studies by the CDC (141). Additionally, it is now recognized that
the majority of staphylococcal TSS cases are not menstrual and
vaginally associated. Multiple additional nonmenstrual categories
of staphylococcal TSS are recognized, including the more com-
monly seen postrespiratory viral pneumonia-associated TSS
(Table 2) (152). This illness may progress exceptionally rapidly,
being lethal in a matter of hours, and in children this illness is
associated with an extremely high case-fatality rate (up to 90%)
(152). Other categories of staphylococcal TSS include (i) illness
associated with any type of soft tissue infection; (ii) recalcitrant
erythematous desquamating syndrome, an unrelenting TSS in
AIDS patients that results in death after as many as 70 days of
illness (153); (iii) purpura fulminans, a rapidly progressing TSS
illness associated with clotting abnormalities and purpuric rash
(154, 155); (iv) extreme pyrexia syndrome, an illness with a 100%
case-fatality rate and fevers in excess of 108°F (156); and (v) ana-
phylactic TSS, an acute illness that has a 100% case-fatality rate
and high cardiac eosinophilia. The last illness may be a severe form
of chronic TSS episodes in patients who develop atopic dermatitis
(AD) rashes instead of the characteristic scarlet fever-like rash.
Importantly, each year new categories of staphylococcal TSS are
identified, including, most recently, a rediscovered, severe entero-
colitis TSS illness (157, 158). It is interesting that staphylococcal
superantigens were once considered to be common causes of en-
terocolitis. With the recognition and association of enterocolitis
with Clostridium difficile infection, the staphylococcal superanti-
gen association quickly disappeared; however, it is now increas-
ingly rerecognized that enterocolitis cases can be associated with
staphylococcal superantigens in the absence of C. difficile (157,
158).

Staphylococcal superantigens are not evenly distributed among
TSS cases. Nearly all mTSS is caused by TSST-1-producing S. au-
reus strains (3, 9, 145). Rare mTSS cases appear to be associated
with production of SE-1 G and SEI (159). The reason for the high
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association of TSST-1 with mTSS is not completely clear, but it
likely depends on at least three factors: (i) TSST-1 is produced in
high concentrations relative to the majority of other superanti-
gens, (ii) TSST-1 has greater mucosal surface-penetrating ability
than other superantigens (115, 140), and (iii) large numbers of
mucosal S. aureus strains produce TSST-1 (160). It is important to
recognize that when first identified as causing mTSS, S. aureus
strains highly associated with illness belonged to the bacterio-
phage type 29/52 complex (161, 162). These strains with the ability
to produce TSST-1 emerged as major clones in 1972 (161, 162),
such that today essentially 100% of these organisms produce
TSST-1. As many as 25% of persons colonized on mucosal sur-
faces with S. aureus may be colonized with TSST-1-producing
strains (160). We recognize these strains today by other, newer
typing mechanisms, including pulsed-field gel electrophoresis
(PFGE), as primarily type USA200 and staphylococcal protein A
type and/or multilocus sequence type as primarily clonal complex
30. In this review, we use the CDC USA200 designation to refer to
these strains. USA200 strains appear to be highly adapted to mu-
cosal surface colonization, with infections resulting from TSST-1
production and/or microbial spread from those surfaces. For ex-
ample, >95% of USA200 strains have a mutation in the alpha-
toxin gene that greatly reduces production of the cytolysin (163—
165). Alpha-toxin is highly toxic to humans and is the most
inflammatory protein produced by S. aureus strains (163). While
alpha-toxin is critical for production of furuncles and soft tissue
abscesses originating from skin infections, production of high lev-
els of the cytolysin would be expected to result in highly lethal
infections if produced on mucosal surfaces; it is thus likely that the
reduction in alpha-toxin production by USA200 strains has al-
lowed them to colonize mucosal surfaces effectively. This mucosal
niche location of USA200 strains, with consequent diseases origi-
nating from those mucosal surfaces, has been underappreciated,
as evidenced by a recent publication suggesting that USA200
strains are less virulent than historic skin-adapted strains referred
to as bacteriophage type 80/81 (166).

USA200 strains secrete large amounts of TSST-1 that allows
them to cause mTSS (and nonmenstrual TSS) (3, 9). Strains may
produce 3 to 20 pg/ml in vitro in broth cultures but up to 16,000
pg/ml in vitro in tampons as biofilms (167). The environmental
factors that allow USA200 strains to produce TSST-1 have been
established; these are similar for most other superantigens. These
conditions include growth in complex media containing animal
protein with low glucose (glucose functions as a catabolite repres-
sor of exotoxin production), neutral pH (as expected vaginally
during menstruation), temperature of 37°C to 40°C, and oxygen
balanced with CO, (84, 168). As noted previously, blood compo-
nents, and more specifically hemoglobin peptides, negatively af-
fect production of TSST-1 (147). The introduction of oxygen into
the human vagina, a typically anaerobic environment, by tampons
is now considered the major reason for the tampon association
with mTSS (84, 168, 169). The introduction of oxygen would also
explain the major association of mTSS with higher-absorbency
tampons in that those tampons introduce more oxygen. Studies of
regulation of TSST-1 production by oxygen led to the identifica-
tion of a global regulator of TSST-1 production called staphylo-
coccal respiratory response (Srr) A/B (170). This important two-
component system functions as a repressor of TSST-1 production
(and that of other exotoxins) when oxygen levels are low. The
repressor function under anaerobic conditions appears to be
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dominant over all other global regulators of exotoxin production
(170). One other factor that increases TSST-1 production has
been identified, the surfactant pluronic L-92, which was present in
one tampon in the early 1980s (171, 172). It is hypothesized that
pluronic L-92 alters staphylococcal two-component system sig-
naling that upregulates TSST-1 production by as much as 8-fold.
It has also been suggested that tampons composed of all cotton
reduce TSST-1 production compared to that with tampons com-
posed of cotton-rayon blends or all rayon (173). These studies are
refuted by multiple, carefully performed studies that fail to find a
reduction in TSST-1 production by all-cotton tampons (174—
177).

Outside-In Signaling Mechanism Results in Staphylococcal
mTSS

S. aureus typically colonizes the vaginal mucosal surface, resulting
in TSST-1 production and penetration through the mucosa.
TSST-1-producing S. aureus strains accomplish this feat by a
mechanism called “outside-in signaling,” where initial interac-
tions with epithelial cells promote TSST-1 penetration and re-
cruitment and stimulation of immune cells (109). As noted pre-
viously in this review, TSST-1 exhibits enhanced mucosal surface
penetration compared to other superantigens (115, 140). In a rab-
bit model of vaginal TSS, TSST-1 was the most lethal, compared to
SEC and the streptococcal superantigen SPE A (115). Porcine vag-
inal ex vivo models, which nearly completely mimic the human
vaginal mucosa, have shown that TSST-1 alone is able to penetrate
the vaginal mucosa (178, 179), but low levels of the cytolysin al-
pha-toxin greatly enhance penetration.

Human and porcine vaginal mucosae are composed of nonke-
ratinized, stratified squamous epithelium with a thickness of 10 to
20 cell layers. The cell layers at the top are flattened and relatively
senescent, while the deeper layers are more cuboidal and are met-
abolically active. It appears that TSST-1, alone and as enhanced by
cytolysin production, penetrates these mucosae through stimula-
tion of chemokine production by epithelial cells (109, 180, 181).
The combined effects of TSST-1, cytolysin-induced inflamma-
tion, and cytolysin toxicity likely contribute to destabilization
of the stratified squamous epithelial barrier, allowing TSST-1 ac-
cess to the deeper layers of the mucosal epithelium where the
superantigen can directly interact with epithelial cells close to the
basement membrane (109). Approximately 10* TSST-1 receptor
sites per cell have been demonstrated on primary human epithelial
cells and immortalized human vaginal epithelial cells (137, 180).
Of these, CD40 and possibly an additional, unknown receptor
bind TSST-1 (134, 182). TSST-1 induces the production of pro-
inflammatory chemokines interleukin-8 (IL-8) (CCL8) and
MIP-3a (CCL20) in human vaginal epithelial cells in vitro by a
mechanism dependent on signaling via ADAM17 and epithelial
growth factor receptor (180, 182). These chemokines attract neu-
trophils and other immune cells, including T cells and macro-
phages, to infection sites. In line with this, immune cell recruit-
ment to the subepithelial mucosa has been shown to occur in the
ex vivo porcine vaginal model (178, 180). Hence, the concerted
action of TSST-1 and low levels of cytolysins, such as alpha-toxin,
results in mucosal epithelium inflammation and increased perme-
ability, followed by TSST-1 penetration and induction of chemo-
kines by metabolically active epithelial cells and finally recruit-
ment of immune cells to the submucosa. This outside-in signaling
mechanism provides TSST-1 accessibility to a sufficient pool of T
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cells and macrophages to elicit the cytokine storm characteristic of
mTSS, IL-1B and TNF-a (produced by macrophages) and
TNEF-B, IL-2, and IFN-y (produced by T cells). It is noteworthy
that TSST-1 has the ability to induce TSS from other mucosal
surfaces such as intestinal and airway surfaces; it is likely that the
same outside-in signaling mechanism contributes to TSST-1 pro-
duction of TSS from those surfaces. Additionally, it is likely that
similar outside-in signaling mechanisms explain the production
of other microbial infections from mucosal surfaces, such as hu-
man immunodeficiency virus (HIV) infections, as we recently
proposed (183). In the simian immunodeficiency virus (SIV)
model of HIV infection, SIV is proinflammatory to epithelial cells,
leading to barrier disruption and recruitment of T cells that be-
come infected.

TSST-1 Production of TSS

Once TSST-1 is produced and T cells and macrophages become
activated to secrete a cytokine storm, the cascade of events visibly
seen as TSS begins. Fever depends on TSST-1 and/or cytokine
stimulation of the hypothalamic fever response control center
(101, 184, 185). The most severe symptom associated with TSS is
hypotension, which may progress to shock and death, resulting
from capillary leakage. TSST-1 induces vascular injury in part by
the combined effect of toxin-induced systemic release of vasoac-
tive mediators such as TNF-o and TNF-B (8, 105), synergy with
other molecules such as LPS (186-188), and direct toxic interac-
tion with the vascular endothelium (138, 139). The identity of the
endothelial cell receptor for TSST-1 is currently unknown and
under investigation. However, it is clear that fluid replacement to
offset capillary leakage is required for management of TSS cases in
humans (93, 141) and rabbit models (189).

An interesting and potentially important property of superan-
tigens is their ability to enhance the lethality of LPS by up to
10°-fold. This mechanism depends on synergistic TNF produc-
tion in the presence of both superantigens and LPS (188) and on
the impaired LPS clearance function of the liver in the presence of
superantigens (190). Although the LPS enhancement mechanism
is not universally accepted as contributing to TSS, it is intriguing
for many reasons. Humans and rabbits are approximately equally
susceptible to TSST-1 and TSS, and both have high numbers of
LPS-containing Gram-negative intestinal and vaginal flora (191).
In contrast, mice are approximately 10'' times more resistant to
TSST-1 lethality on a per-gram basis than rabbits and humans
(191), and mice are less colonized by LPS-containing Gram-neg-
ative bacteria. Rabbits become approximately 1,000 times more
susceptible to TSST-1 at 8 months of age than young rabbits, and
this corresponds to the same time as rabbits become 1,000 times
more susceptible to the lethal effects of LPS. Typically in cases of
mTSS, S. aureus is cultured vaginally together with Escherichia coli
(143, 146, 192), and these E. coli organisms may provide LPS that
penetrates into the circulation. Once together in the circulation,
the combination of TSST-1 and LPS may synergize to cause en-
hanced TNF production and consequent enhanced capillary leak-
age associated with TSS (188). E. coli vaginally may also provide
tryptophan or tryptophan precursors needed by the majority of
TSS S. aureus organisms, 75% of which are tryptophan auxo-
trophs because their operons encoding proteins for tryptophan
production are disrupted by insertion of the pathogenicity island
(SaPI-2) carrying the TSST-1 gene (193-195).

The ability of S. aureus to cause mTSS depends also on the
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immune status and genetics of colonized women. It has been long
appreciated that women with low levels of or no antibodies to
TSST-1 are serosusceptible to mTSS, whereas those individuals
with antibodies, particularly the IgG4 subclass, appear to be pro-
tected (3, 196-198). There is an age-dependent appearance of an-
tibodies to TSST-1 in humans, with 80% of humans having anti-
bodies to the superantigen by 12 years of age (196, 197). The
remaining 20% of serosusceptible individuals are among those
who develop TSS. Importantly, these 20% appear not to be able to
produce protective antibodies to TSST-1 and thus remain suscep-
tible to TSS recurrences (86). The failure to develop antibodies in
serosusceptible women likely results from the TSS cytokine storm
preventing B cell function (87, 199). The same lack of antibody
production has been seen in approximately 50% of rabbits tested
in a model of human TSS (134). In contrast, 100% of rabbits
respond with production of neutralizing antibodies when chal-
lenged with a nontoxic mutant of TSST-1, referred to as TSST-
1(G31S/S32P). These studies indicate that the failure to develop
antibodies is not due to genetic nonresponsiveness but rather is
due to native TSST-1 effects on the immune system. A final im-
portant point to mention relative to mTSS is that some women
who have TSST-1 present in tampons and who lack antibodies to
TSST-1 do not develop mTSS (146). This indicates that these
women may lack an epithelial cell receptor for TSST-1, which
leads to a failure in the outside-in signaling mechanism. If all
known factors are taken into account, such as the percentage of
women using tampons, the percentage of women who fail to make
antibodies to TSST-1, the percentage of women with TSST-1-pro-
ducing S. aureus vaginally, and the percentage of women lacking a
needed epithelial cell receptor for TSST-1 penetration, the pre-
dicted incidence of mTSS should be approximately 5/100,000,
which is the approximate incidence seen.

Nonmenstrual Staphylococcal TSS

As noted above, nonmenstrual staphylococcal TSS occurs in asso-
ciation with nearly any type of staphylococcal infection. As with
mTSS, not all superantigens are equally associated with nonmen-
strual TSS. Studies indicate that 50% of nonmenstrual TSS cases
are caused by USA200 and related strains producing TSST-1 (145,
200). The remaining 50% of strains nearly always produce the
superantigen SEB or SEC (145, 200). The reason for the associa-
tion of these three superantigens with most TSS cases, whether
mTSS or nonmenstrual TSS, is their high level of production com-
pared to that of other superantigens. SEB and SEC are produced in
greater concentrations than even TSST-1 by strains, i.e., 25 to 100
pg/ml in vitro in broth cultures and up to 20,000 pg/ml in vitro in
tampon biofilm cultures. However, it is important to remember
the greater mucosa-penetrating ability of TSST-1 than of SEB and
SEC (115).

Whereas TSST-1 is restricted to USA200 and related strains of S.
aureus, SEB and SEC may be produced by both USA200 and
USA400 strains. As many as 15 to 30% of mTSS, USA200 strains of
S. aureus coproduce TSST-1 and SEGC; it is highly unusual, how-
ever, to isolate strains that coproduce TSST-1 and SEB, though
rare strains have been identified (46). Interestingly, the strains
producing both TSST-1 and SEC do not appear to be more lethal
in mTSS than strains that only produce TSST-1. This is almost
certainly because (i) critical medical intervention prevents lethal-
ity and (ii) TSS strains may produce TSST-1 amounts alone or in
the presence of SEC in excess of 100,000 TSS-inducing doses per
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tampon (146, 167). Thus, just production of TSST-1 alone ap-
pears to be in vast excess of that needed to cause illness. It has been
shown that amounts of superantigens as low as 0.1 jug may induce
TSS symptoms in humans (201).

USA400 strains are the major clones of S. aureus that produce
either SEB or SEG; rare strains may coproduce SEB and SEC. In
the 1990s, community-associated methicillin-resistant strains of
S. aureus (CA-MRSA) were first identified in children (6). Many of
these strains were USA400 CA-MRSA, as evidenced by the de-
scription of children in the Upper Midwest who succumbed to
such infections and through characterization of many other infec-
tions associated with such strains (5, 154, 202). CA-MRSA
USA400 strains, as well as their methicillin-sensitive S. aureus
(MSSA) counterparts, are primarily causes of skin and soft tissue
infections, but these organisms cause a highly fatal TSS-like illness
when present in the lungs and bloodstream. Additionally, these
strains are common causes of all forms of nonmenstrual TSS (145,
200), accounting for up to 50% of cases.

Additional comments need to be made regarding TSS strains
associated with nonmenstrual illness. Nearly one-half of cases are
associated with TSST-1 production. In the United States, the ma-
jority, but not all, of these TSST-1-producing organisms are
MSSA. However, in other countries, TSST-1-positive MRSA
strains appear to be more common (203-205). Given their in-
creased presence on mucosal surfaces today as opposed to 1980
(160), it is possible that TSST-1-positive MRSA strains will con-
tinue to increase in numbers in the United States. USA400 strains
were the initially identified causes of CA-MRSA necrotizing
(hemorrhagic) pneumonia and sepsis. Pneumonia and sepsis do
not preclude the patients from also simultaneously having TSS,
the symptoms of which are usually present. USA400 strains were
more recently displaced in many, but not all, regions of the United
States by USA300 CA-MRSA with ability to cause necrotizing
pneumonia with TSS-like symptoms (206, 207). These strains
most often fail to produce TSST-1, SEB, or SEC (207, 208). How-
ever, the strains produce a newly recognized superantigen, SE-1X,
which has been linked to necrotizing pneumonia in rabbit model
studies (55). Additionally, these strains appear to produce a dele-
tion derivative of TSST-1, as associated with extreme pyrexia syn-
drome (156). The possible involvement of staphylococcal supe-
rantigens in pneumonia will be discussed further in a later section
of this review.

Streptococcal TSS

In 1987 (19) and in 1989 in the most definitive clinical study (20),
streptococcal TSS was described. This illness is most often associ-
ated with group A streptococcal infection associated with breaks
in the skin, such as minor cuts (19, 20, 91) or chicken pox lesions
in children (209, 210), but may be associated with nearly any type
of group A streptococcal infection. It may be important that in a
streptococcal TSS outbreak in southeastern Minnesota, as many
as 35% of children had pharyngitis caused by M3 streptococci,
whereas patients with streptococcal TSS caused by the same or-
ganism primarily had infections associated with breaks in the skin
(91). It remains unclear why this difference in infectious processes
occurs, but it may be related to reduced streptococcal superanti-
gen penetration of mucosal barriers (115).

Streptococcal TSS is defined by the following criteria: isolation
of group A streptococci (either from a sterile site, indicating a
definitive case, or from a nonsterile site, indicating a probable
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case), hypotension, and two or more of the conditions adult
respiratory distress syndrome, coagulopathy, erythematous mac-
ular rash, liver complications, renal dysfunction, and soft tissue
necrosis. These criteria are similar to those for staphylococcal TSS
(though simplified), except for three major differences: (i) strep-
tococcal TSS with necrotizing fasciitis and myositis is often seen
with accompanying bloodstream sepsis in which the causative or-
ganisms localize in deep tissue sites of preexistent damage, such as
bruises (19, 20, 211-214), whereas staphylococcal TSS is most
often associated with localized nonbloodstream infections/colo-
nizations such as of the vaginal mucosa in mTSS (86, 93, 141, 152);
(ii) streptococcal TSS with necrotizing fasciitis and myositis is
associated with severe pain of the primary site of localized infec-
tion (bruises or apparent muscle tears), and this may be masked by
use of nonsteroidal anti-inflammatory agents (20, 211-214); and
(iii) streptococcal TSS is typically associated with necrotizing fas-
ciitis and myositis, even though cases also occur in the absence of
necrotizing fasciitis and myositis, and as such streptococcal TSS
may have a case-fatality rate of 50 to 100% (20, 211-214). Until
recently, necrotizing fasciitis and myositis were not seen or were
uncommon with staphylococcal TSS; it is noteworthy that recent
studies now suggest that S. aureus also has acquired the ability to
cause TSS that includes necrotizing fasciitis and myositis (215,
216). Soon after the recognition of group A streptococcal TSS,
studies recognized that other beta-hemolytic streptococci could
cause the same illness, primarily group B, C, and G streptococci.

Recent studies of streptococcal TSS indicate that multiple sub-
sets of illness may develop, with a continuum from mild scarlatina
to life-threatening illness. In the early 1900s, scarlet fever was rec-
ognized as a potentially life-threatening illness (217). Indeed,
many hospitals had isolation wings to sequester patients with the
illness. In the 1950s, severe scarlet fever was no longer a serious
health threat in the United States, with the illness taking on forms
of milder scarlet fever without hypotension and even milder scar-
latina. In the mid-1980s, severe scarlet fever returned with the
appearance of streptococcal TSS, described initially in patients
from the Rocky Mountain West and then becoming recognized
worldwide (19, 20). Today, we recognize that streptococcal TSS
may occur with or without necrotizing fasciitis and/or myositis,
but it is also recognized that severe invasive streptococcal disease
(for example, sepsis) may occur without hypotension but with or
without necrotizing fasciitis and/or myositis (148). A recent study
has shown that the spectrum of these acute streptococcal diseases
results in part from the degree of cytokine storm provoked by the
causative organisms, with stronger responses leading to TSS, in-
termediate responses leading to invasive diseases without TSS,
and mild responses leading to pharyngitis and mild scarlatinal
illnesses (199).

As with staphylococcal TSS, not all superantigens produced by
group A streptococci are equally associated with streptococcal
TSS. As originally described, streptococcal TSS was associated pri-
marily with M1 and M3 streptococci, and these two M types con-
tinue to dominate (19, 20, 91, 211, 213, 214, 218, 219). However,
other M types also are clearly associated, including M type 18
strains that are also highly associated with development of rheu-
matic fever (220-223).

Just as certain M types are highly associated with streptococcal
TSS, certain superantigens are more often associated than others.
Initially, SPE A was the leading superantigen associated because of
its production by causative M1, M3, and M18 strains (19, 20, 91,
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92,210, 214, 218, 219, 224). However, other major SPEs, such as
SPE C, and streptococcal mitogenic exotoxin Z are also associated
with cases (67, 92, 199, 220, 221, 224-226). Because SPE B (cys-
teine protease) is in the group A streptococcal core genome, this
exoprotein is also associated with streptococcal TSS, and particu-
larly its importance in M1 strains has been thoroughly investi-
gated (226, 227).

Although group A streptococcal TSS is often associated with
breaks in the skin, many cases have body site origins that are un-
known (148). Some of these are almost certain to originate from
mucosal surfaces where group A streptococci often cause diseases,
for example, pharyngitis. Outside signaling mechanisms similar to
those seen in mTSS may take place to induce streptococcal TSS. In
these cases, infection of the oral mucosa initiates a cascade of
events that allows penetration not only of the streptococcal supe-
rantigens but also of the bacteria, leading to sepsis (109, 181).
Proinflammatory cytokine/chemokine induction of human vagi-
nal epithelial cells and mucosal surface penetration studies (used
as models for the nonkeratinized, stratified squamous epithelium
of the oral mucosa) have also been done on SPE A and the group A
streptococcal cytolysin streptolysin O (SLO), with outcomes sim-
ilar to those obtained with S. aureus TSST-1 and alpha-toxin (109,
181). The major difference is that SLO directly damages the top
layers of the mucosal tissue without provoking as strong an in-
flammatory response as alpha-toxin. The effect is 2-fold: (i) it
allows penetration of SPEs and direct interaction with epithelial
cells to elicit production of proinflammatory mediators, immune
cell recruitment, and induction of TSS (analogous to the case for
TSST-1), and (ii) it enhances bacterial penetration and systemic
dissemination, which might explain the presence of the organisms
in the bloodstream during streptococcal TSS.

Animal Models of TSS

Superantigens clearly cause TSS. This statement is supported by
the association of superantigens and causative bacteria with hu-
man illnesses. Additionally, superantigens cause TSS symptoms in
animal models. For example, studies have shown that administra-
tion of staphylococcal and streptococcal superantigens in subcu-
taneously implanted miniosmotic pumps duplicates the symp-
toms of TSS in rabbits (228, 229). It is important to remember that
mice are highly resistant to superantigens unless the liver is dam-
aged first with D-galactosamine (230), which causes liver necrosis,
a feature not seen in cases of human TSS. Additionally, superan-
tigens cause lethal TSS in rabbits as applied intrapulmonarily
(231). Studies with the use of isogenic strains that differ only in
production of superantigens (232) and the use of active and pas-
sive immunization against specific superantigens to protect rab-
bits (44, 134, 231) conclusively establish that superantigens cause
TSS. Recent studies have begun using HLA humanized mice, but
the usefulness of these animals remains unclear (233, 234). The
studies do, however, demonstrate that HLA class II molecules
strongly control superantigenic responses. Finally, superantigens
directly injected into humans cause TSS symptoms (201).

Staphylococcal Superantigen Food Poisoning

We discussed the presence of the emetic loop in some superanti-
gens (SEs) in a previous section. Not all superantigens are emetic,
but SEs, including most commonly SEA, cause 24- to 48-h epi-
sodes of retching, vomiting, and diarrhea every 15 to 30 min,
without fever, after human or nonhuman primate ingestion of
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nanogram quantities of SEs (95, 96). The lack of fever with staph-
ylococcal food poisoning likely results from combinations of non-
pyrogenic quantities required to cause emesis and failure of SEs to
exhibit high mucosa penetration. Emetic activity has been shown
in studies to be independent of superantigenicity (51, 115).
Through their emetic activity, S. aureus SEs are primary causes of
toxin-mediated food-borne illness and the second leading cause of
food-borne illness overall (235). Domestic cats and nonhuman
primates have been used extensively in studies of the SE causation
of food poisoning; a house musk shrew model is a newly devel-
oped animal model used to investigate SE emetic activity (236,
237).

While much of the mechanism of the ability of SEs to induce
food poisoning remains unknown, recent studies to examine the
effects of SEA on human intestinal epithelial cells demonstrated
that SEA induces increases in the intracellular calcium concentra-
tion of these cells (238). Using the house musk shrew model, Hu et
al. demonstrated that SEA induces the release of serotonin in the
intestine to cause emesis (239). Other work suggests that the vagus
nerve is involved, where SEs stimulate the vagus nerve, thereby
activating the sympathetic nervous system (240). For further in-
formation on mechanisms and outbreaks of staphylococcal food
poisoning, readers are referred to other reviews (4, 241).

Staphylococcal food poisoning is a self-limiting illness that is
rarely if ever fatal. However, this incapacitating activity of SEs may
have been primarily responsible for SEs, such as SEB, being listed
as select agents of bioterrorism. It is noteworthy that during the
1950s and 1960s, the United States stockpiled tons of SEB yearly as
its major bioweapon. Additionally, because it is difficult to dena-
ture superantigens and unnecessary to weaponize them for them
to be taken orally or intrapulmonarily, SEs pose a significant haz-
ard by these two routes. Likewise, there is no evidence to indicate
that humans can be vaccinated against this activity.

Staphylococcal Pneumonia and Superantigens

There are an estimated 70,000 cases of S. aureus pneumonia in the
United States each year. Because all pathogenic S. aureus strains
produce high levels of superantigens, these toxins contribute to
severe pneumonia, as demonstrated in animal models of human
disease (44, 134, 231). Even though pneumonia is an illness that
describes the primary infection site, the illness does not exclude
pneumonia-associated staphylococcal TSS, since TSS is defined as
a collection of symptoms rather than a body site of infection.

In 1987, MacDonald et al. (152) described postinfluenza TSS
associated with the superantigens TSST-1 and SEB. The illness
does not require influenza virus infection, in that cases of pneu-
monia-associated TSS occur in association with many other upper
respiratory viral infections and even asthma. This illness occurs
each year, usually during the winter months, throughout the
world. Some investigators propose that postinfluenza TSS is the
same as Thucydides syndrome, recognized as the plague of Athens
in 430 BC (242). In the study by MacDonald et al., there was a 90%
case-fatality rate in children, all associated with TSST-1-produc-
ing USA200 strains. One strain from the sole surviving child was a
USA400 strain producing SEB. One of us (P.M.S.) has tested large
numbers of other strains from children with postinfluenza TSS,
and the majority of the S. aureus strains belonged to the USA200
clonal group and produced TSST-1.

In 1999, the CDC and colleagues published a report on four
fatal cases of S. aureus necrotizing (hemorrhagic) pneumonia in
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children associated with the recently emergent USA400 clonal
group of CA-MRSA (5). Two of these isolates produced SEB and
two produced SEC, the expected superantigens produced by
USA400 strains. Subsequent studies have shown that these two
superantigens are nearly always present in USA400 CA-MRSA
strains (202).

More recently, investigators have studied the ability of the
USA300 clonal group of CA-MRSA to cause necrotizing pneumo-
nia (206, 243-246). Studies performed in mice have suggested a
leading role for alpha-toxin (166, 243—-246). This toxin is highly
inflammatory, leading to significant lung congestion. However,
these prior studies have not evaluated the role of superantigens,
since mice are not susceptible to the lethal effects of superantigens
(191).

A rabbit model of necrotizing pneumonia conclusively showed
that superantigens are critical for the development of lethal pul-
monary illness associated with staphylococcal infection (231). Pu-
rified SEB and SEC, when installed intrapulmonarily, induce
hemorrhagic lung tissue, respiratory distress, and lethal TSS (231).
Intrabroncheal administration of CA-MRSA strains of the
USA200 (TSST-1-positive) and USA400 (SEB- and SEC-positive)
clonal types in rabbits induces lung pathology and lethality similar
to those seen with individual administration of superantigens
(231). The newly discovered SE-like protein serotype X superan-
tigen (55), encoded by at least USA300, and as well USA100 and
USA400 clonal types, appears to be critical for the development of
necrotizing pneumonia and lethal TSS in rabbits. Furthermore,
vaccination against TSST-1, SEB, or SEC provides complete pro-
tection against highly lethal doses of S. aureus strains producing
the respective superantigens (231). While cytolysins contribute to
lung pathology in rabbits, evidence suggests that they are not the
cause of the fatal outcomes associated with staphylococcal pneu-
monia. Vaccination against alpha-toxin alone does not protect
rabbits from lethal pulmonary illness, and CA-MRSA USA200
strains that do not produce alpha-toxin still cause fatal disease
(134).

We believe that the outside-in signaling mechanism also applies
for TSS developed from lung infections. However, during pneu-
monia, superantigens encounter only a single cell layer, typically
the bronchial epithelium. Primary human bronchial epithelial
cells stimulated with TSST-1 express high levels of the proinflam-
matory molecules TNF-a and IL-8 (247). The simplicity of these
tissues, compared to the stratified structure of vaginal mucosal
surfaces, would allow for penetration of superantigens that usually
do not exhibit great mucosal penetration, which is consistent with
the association of S. aureus SEB and SEC with one-half of non-
menstrual TSS cases associated with the organism. Furthermore,
direct superantigen cytotoxic effects on the pulmonary endothe-
lial cells could contribute to pulmonary edema, necrosis, and re-
spiratory distress (139).

Collectively, the above data indicate there are two pathways to
fatal pneumonia, one in which alpha-toxin (and likely other cyto-
lysins) causes high-level intrapulmonary inflammation and one in
which superantigens cause pneumonia TSS (Fig. 3). It is likely that
both mechanisms contribute.

Staphylococcal Infective Endocarditis and Superantigens

Infective endocarditis is a serious, life-threatening infection of the
heart endothelium characterized by the formation on heart valves
of “cauliflower-like” vegetations composed of microorganisms
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FIG 3 Model for S. aureus production of pneumonia. The presence of S.
aureus in the lungs leads to inflammation due to alpha-toxin and superanti-
gens and to TSS due to superantigens, both leading to anoxia, hypotension,
and possibly death.

and host factors (248). S. aureus is a major cause of infective en-
docarditis worldwide (249). Infective endocarditis occurs most
often at sites of preexisting heart damage, usually involving valves.
Damaged sites become coated with platelets and other host fac-

A

Damage to endothelium

followed by deposition of
platelets, fibrinogen, fibrin
and other host factors

tors, such that in regions of turbulence, S. aureus can adhere and
grow. As many as 50% of infective endocarditis patients may suc-
cumb, and up to one-half of the patients may develop strokes and
metastatic abscesses. Valve failure, strokes, and sepsis associated
with metastatic abscesses may lead to death in patients.

Recent studies have shown that as many as 90% of infective
endocarditis isolates of S. aureus belong to the USA200 clonal
group, all of which produce TSST-1, among other virulence fac-
tors (11, 250). Pragman et al. showed that TSST-1 is critical for
development of infective endocarditis as tested in rabbits with the
use of isogenic strains, one strain positive for TSST-1 and the other
strain negative for TSST-1 (251). Only one rabbit administered
the TSST-1-negative strain developed a vegetation, which con-
tained only 100 CFU. In contrast, the TSST-1-positive strain
caused nearly 7 logs more CFU in cardiac vegetations. In a recent
study with the use of passive neutralization of SEC in CA-MRSA
USA400 strain MW2, administration of VB-TCRs specific for SEC
prevented development of cardiac vegetations (252). Finally, ac-
tive immunization studies targeting superantigens and cytolysins
effectively prevented USA200 S. aureus infective endocarditis
(134).

There are multiple possible explanations for superantigen roles
in infective endocarditis (Fig. 4). Staphylococci initially colonize
damaged endothelium to initiate infective endocarditis (Fig. 4A).
Staphylococcal superantigens (Fig. 4B) may then interact with
host cells to prevent endothelium wound healing through direct
effects on endothelial cells (139). Studies have shown that TSST-1
is toxic to porcine aortic endothelial cells (139). Superantigens
may also systemically dysregulate the immune system and prevent
clearance of the growing S. aureus valve infections. Finally, supe-
rantigens cause mild or major capillary leakage dependent on su-
perantigen concentration. Fluid and electrolyte replacement can
be used in humans and rabbit models (189) to prevent the lethal
effects of capillary leakage. It is possible that mild hypotension or
mild capillary leakage not even manifested as hypotension can

S.aureus in bloodstream

|
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Capillary leak and Maintenance of Immune
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FIG 4 Model of possible roles of S. aureus superantigens in infective endocarditis. S. aureus may colonize damaged endothelium of heart valves (A) and, through
combinations of superantigenicity (immune dysfunction), superantigen-induced failure of endothelium healing (maintenance of endothelial damage), and

induction of capillary leakage, may facilitate vegetation formation (B).
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alter blood flow in sites of preexisting heart damage to enhance
vegetation formation.

Staphylococcal Sepsis and Superantigens

Both staphylococcal pneumonia and infective endocarditis pa-
tients develop sepsis as a consequence of their infections, and sig-
nificant numbers of patients develop sepsis following surgery. It is
likely that many systemic effects in these patients result from su-
perantigen activities on the host, since the infecting strains are
likely to produce the toxins. Investigators have shown that cer-
tain superantigens, notably SEA, TSST-1, and SEC, are overrepre-
sented in sepsis cases compared to nonsepsis cases (253-255).
However, it is unlikely that superantigens are directly produced in
the bloodstream of patients, since hemoglobin peptides inhibit
superantigen production (147). It is more likely that superanti-
gens are produced in focal sites of infection protected from hemo-
globin peptides and then secreted into the bloodstream.

Superantigens in Atopic Dermatitis

Atopic dermatitis (AD), is a chronic relapsing, highly pruritic,
inflammatory skin disease that is often the prelude to develop-
ment of food allergy, asthma, and allergic rhinitis (256, 257). S.
aureus skin infections exacerbate skin disease in patients with AD
and modify the host response to environmental allergens and viral
pathogens (258, 259). Recent studies suggest that host-pathogen
interactions stemming from the production of S. aureus-derived
virulence factors, such as superantigens and alpha-toxin, contrib-
ute greatly to the skin inflammation seen in AD (260, 261).

Pathobiology Underlying AD

AD patients have various systemic and skin immune abnormali-
ties, including elevated total serum IgE and sensitization to aller-
gens, elevated T helper (Th2)-type cytokine expression in acute
lesions, and increased numbers of T cells expressing the skin hom-
ing receptor cutaneous lymphocyte-associated antigen (256, 257).
These patients also have a defect in terminal differentiation of
their keratinocytes leading to reduced expression of barrier pro-
teins such as filaggrin, as well as decreased expression of epidermal
antimicrobial peptides needed for innate immune responses
against invading bacteria and viruses (262, 263). The reduction in
barrier proteins may be due to a combination of mutations in
genes encoding skin barrier proteins such as filaggrin (264, 265),
as well as downregulation of epithelial differentiation protein lev-
els by Th2-type cytokines and IL-22 (266, 267). A critical link
between the barrier defect in AD patients with filaggrin gene
(FLG) mutations and Th2 polarization could be explained in part
by enhanced allergen penetration through damaged epidermis ac-
companied by increased production of thymic stromal lympho-
poietin (TSLP) by keratinocytes, leading to a Th2-type milieu
(268, 269). Loss of filaggrin has been linked to enhanced antigen
penetration into the skin and increased S. aureus and viral growth
in the skin, as well as susceptibility to the cytotoxic effects of staph-
ylococcal toxins, e.g., alpha-toxin (270-272). AD patients with
more polarized Th2-type disease with allergies and asthma and
increased biomarkers, including serum IgE and TSLP, have been
reported to have more severe skin disease complicated by micro-
bial infections (273). These observations suggest that FLG muta-
tions and Th2 responses enhance S. aureus colonization and create
a niche for S. aureus infection in AD skin. Once S. aureus has
colonized AD skin, it perpetuates its survival by increasing Th2-
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mediated responses that suppress antimicrobial responses in
atopic skin (274).

Mechanisms by Which Superantigens Drive AD
Inflammation

The mechanisms by which S. aureus induces skin inflammation in
AD are under active investigation. A number of staphylococcal
products, including superantigens, alpha-toxin, peptidoglycan,
and lipoteichoic acid have been observed to activate cells involved
in the pathogenesis of AD (10). Due to their highly potent immu-
nostimulatory activity, much of the focus has been on the role of
superantigens in the pathogenesis of AD (105). Support for a role
of superantigens in AD includes the following. (i) The severity of
AD correlates with the number of superantigen-secreting S. au-
reus organisms colonizing the skin (275). Utilizing a murine
model of skin inflammation, S. aureus superantigens plus aller-
gens have been shown to have an additive effect in driving cuta-
neous inflammation (276). (ii) Most AD patients make IgE anti-
bodies directed against superantigens found on their skin (277),
and the presence of these IgE antibodies to superantigens corre-
lates with skin disease severity (278). Basophils and skin mast cells
from patients with antisuperantigen IgE release histamine upon
exposure to the relevant superantigen but not in response to su-
perantigens to which they have no specific IgE. (iii) The superan-
tigen SEB, applied to the skin, can induce eczematoid skin changes
(260). The ability of superantigens to induce eczema is likely re-
lated to their capacities to bind to MHC II molecules on APCs or
to stimulate T cells to produce proinflammatory cytokines (105).
(iv) We have demonstrated that superantigens induce T cell ex-
pression of the skin homing receptor via stimulation of IL-12 pro-
duction (279). (v) After stimulation by the superantigen SEB, T
regulatory cells lose their immunosuppressive activity, suggesting
a novel mechanism by which superantigens could augment T cell
activation in patients with AD (280). (vi) Superantigens induce
corticosteroid resistance, suggesting that several mechanisms exist
by which superantigens increase AD severity (281). Interestingly,
superantigens also selectively induce T cells to secrete IL-31, a
highly pruritogenic cytokine that regulates filaggrin expression
and is produced by Th2 cells (282). Thus, superantigens may con-
tribute to the pathogenesis of AD via multiple immune pathways
leading to skin inflammation.

Management of AD

The treatment of AD requires a multipronged approach that in-
cludes improvement in skin barrier function, reduction of the skin
inflammatory response, and control of S. aureus infection with
judicious use of antibiotics (283). Overuse of antibiotics in man-
aging AD can result in MRSA infection with organisms that com-
plicate control of skin disease. Given the key role that superanti-
gens and alpha-toxin play in contributing to skin inflammation in
AD, the development of vaccines directed against these staphylo-
coccal toxins would be a welcome addition to the treatment arma-
mentarium for these patients.

Streptococcal Superantigens and Delayed Sequelae

Group A streptococci are well recognized for the ability to cause
delayed-sequela autoimmune diseases. We will provide a brief dis-
cussion of the possible association of streptococcal superantigens
with three autoimmune diseases. In addition to causing TSS and
related illnesses, streptococcal superantigens are associated with
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the autoimmune disease guttate psoriasis (23, 284). This illness
follows group A streptococcal illnesses, with susceptible patients
developing characteristic lesions at 7 to 15 days postinfection. Pa-
tients exhibit T cell receptor skewing that is typical of the super-
antigen SPE C; T cell skewing is caused by superantigen overacti-
vation of selected VB-containing T cells such that these cells are
overrepresented (skewed). The mechanism of superantigen in-
volvement in guttate and possibly other forms of psoriasis merits
further study.

Throughout history, M18 group A streptococci have caused
rheumatic fever. In the United States today, these M 18 strains are
the most common causes of this autoimmune disease (222, 223).
Features of rheumatic fever include evidence of multiple prior
group A streptococcal infections, fever, heart abnormalities, ar-
thritis, and Sydenham’s chorea (222). There is a clear association
of rheumatic fever with immunologic cross-reactivity to strepto-
coccal antigens, with M protein most often cited (21). Studies have
shown that all rheumatogenic streptococci produce the superan-
tigen SPE C, including all M18 strains (67, 88, 221). Additionally,
ithas been shown that SPE C has the ability to penetrate the blood-
brain barrier, with possible central nervous system effects resem-
bling Sydenham’s chorea (285). Although not definitively estab-
lished, it has been suggested that SPE C and other M18-associated
superantigens may enhance immune cross-reactivity to M proteins
and in this way be associated with the autoimmune disease (67, 285)
and even other illnesses such as pediatric autoimmune neuropsychi-
atric disorders associated with streptococci (PANDAS) (286). It
has also been demonstrated that superantigens have the ability to
induce arthritis in an animal model of rheumatoid arthritis (287).

In 1979, Schlievert et al. (88) noted the association of SPE B
(cysteine protease) production by group A streptococcal strains
and the development of acute glomerulonephritis. Recent studies
have shown that SPE B localizes in kidney deposits associated with
the illness (288-290). Our unpublished studies with animals indi-
cate that systemic treatment of rabbits with purified SPE B leads to
proteinuria and hematuria, clinical features of acute glomerulo-
nephritis. The role of other superantigens in this autoimmune
disease is unknown.

MECHANISMS TO INTERFERE WITH SUPERANTIGEN
ACTIONS AND PRODUCTION

There are multiple ways to interfere with superantigen-associated
illnesses. These include (i) treatment of infections with antibiotics
and supportive care to allow clearance of bacteria and kidney
elimination of superantigens, (ii) preventing superantigen pro-
duction by mucosal microbicides added to tampons and surfaces,
(iii) passive immunization against superantigens, and (iv) active
vaccination against S. aureus and superantigens.

Treatment of Infections with Antibiotics and Supportive
Care To Allow Clearance of Bacteria and Kidney Elimination
of Superantigens

The standard of care for treatment of superantigen illnesses begins
with initial evaluation for potential sources of infection. For ex-
ample, it is necessary to perform a vaginal and throat examination,
remove tampons or other devices (such as contraceptive dia-
phragms or nasal packing following surgery), and culture for S.
aureus and beta-hemolytic streptococci, most often group A.
Wounds should be evaluated for infection, noting that many
times these infection sites may be difficult to find, as TSS microbes
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often do not cause significant inflammation (90-92, 291). For
example, we are aware of postsurgical TSS cases where the incision
sites have completely healed over, without signs of infection, yet
having abscesses of nearly 300 ml. These abscesses, although often
thought to be anaerobic, are not; instead they have 60% of the
oxygen content of air. Thus, they serve as excellent potential sites
for superantigen production. Thorough examination of skin and
soft tissues should be performed, paying special attention to pain-
ful areas such as bruises. Cultures of blood and other sites should
be obtained. Early surgical intervention is extremely important,
particularly in cases of streptococcal TSS (20, 45, 91, 92, 211, 213,
219, 292) and cases of staphylococcal necrotizing fasciitis (215,
216). Magnetic resonance imaging (MRI) may be useful to iden-
tify deep soft tissue damage and instruct on surgical procedures.
Supportive care for hypotension is also of major importance. Pa-
tients may require large amounts of intravenous fluids, vasopres-
sors, and management of acute renal failure, acute respiratory
distress syndrome, disseminated intravascular coagulation, or
myocardial suppression. It is of critical importance to maintain
kidney function, since this appears to be the major way for hu-
mans to eliminate superantigens.

The standard of care for treatment of all superantigen diseases
also includes the use of antibiotics to treat acute infections and
reduce the incidence of recurrences. Nearly all S. aureus strains in
the United States are resistant to penicillin and ampicillin, but
many strains (MSSA) are susceptible to most other 3-lactam an-
tibiotics as well as other antibiotics. The antibiotic clindamycin
has been shown to reduce production of superantigens by S. au-
reus and group A streptococci at antibiotic concentrations below
those necessary to kill the pathogens (293-296). The percentages
of methicillin-resistant S. aureus (MRSA) strains are increasing,
and we now recognize both hospital-associated MRSA (HA-
MRSA) and CA-MRSA, though the boundary between these
groups is blurring. HA-MRSA strains typically exhibit broad an-
timicrobial resistance based on the presence of a large DNA ele-
ment, referred to as staphylococcal cassette chromosome mec type
IT (SCCmec IT), which encodes methicillin and other resistances.
In contrast, CA-MRSA strains, as originally described, contain
smaller SCCrmec DNAs, such as SCCmec IV. CA-MRSA strains,
although resistant to 3-lactam antibiotics, are often susceptible to
other antibiotics. Small numbers of vancomycin-resistant S. au-
reus strains have been identified (297).

It is important in mTSS cases, particularly, to remind patients
that they will not develop neutralizing antibodies upon recovery
from illness (165). Thus, they remain susceptible to recurrences;
we know of women who have had six recurrent, severe mTSS
episodes. These recurrences most often occur in women who con-
tinue to use tampons, but they also occur in milder forms in
women who discontinue tampon use (86). To reduce the inci-
dence of mTSS recurrence, patients should be advised not to use
tampons. It should be recognized that approximately 1% of men-
struating women have group A streptococci vaginally, and thus
these individuals are at risk of streptococcal TSS from that infec-
tion site. Such cases are not tampon associated, since group A
streptococci grow independent of oxygen. It is interesting to note
that some women develop mTSS prior to the appearance of men-
strual blood yet within the two-day window of time to be classified
as mTSS. Tests of tampons indicate that their vaginal pH has al-
ready risen to near neutrality, suggesting that the role of hormone
changes may be to bring mucosal pH to the neutrality required for
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superantigen production. Pregnant women appear to be at risk of
streptococcal TSS as well, with a high case-fatality rate for both
mother and fetus (292). All persons should be advised to receive
yearly influenza vaccination to prevent the highly fatal postinflu-
enza TSS.

Preventing Superantigen Production by Mucosal
Microbicides Added to Tampons and Surfaces

With the occurrence of the mTSS epidemic in the 1980s, there
have been many efforts made to develop tampons and other de-
vices used on mucosal surfaces that prevent production of supe-
rantigens, particularly TSST-1. For example, Kotex tampons con-
tain a surfactant, cetiol, that reduces TSST-1 production (298). In
1992, Schlievert et al. published that the potential tampon additive
glycerol monolaurate (GML) reduces TSST-1 production at con-
centrations that do not inhibit bacterial growth but kills S. aureus
and most other vaginal pathogens at higher concentrations (299).
These studies resulted in additional work that demonstrates that
GML inhibits TSST-1 production through interference with bac-
terial signal transduction (300), reduces S. aureus and group B
streptococci vaginally while selecting for the normal flora lactoba-
cilli, and reduces vaginal inflammation as measured by reductions
in IL-8 production (301); IL-8 is a chemokine that specifically
attracts neutrophils to infection sites. In more recent studies, it has
been shown that GML stabilizes and is anti-inflammatory to mu-
cosal epithelial cells as well as other immune cells (302, 303). The
studies suggest that GML, in addition to preventing TSST-1 pro-
duction, stabilize the host mucosa to prevent outside-in signaling
(109). GML is safe as used vaginally in 5% (50-mg/ml) gels for
periods of up to 6 months, as tested in rhesus macaques (304).
Studies suggest that GML can also be used to reduce simultane-
ously bacterial vaginosis pathogens and Candida infections vagi-
nally (305). GML has been used effectively to prevent SIV trans-
mission with a high-dose challenge in a rhesus macaque model
(183). Finally, it appears that GML both interferes with bacterial
signal transduction to prevent exotoxin production and dissipates
the potential across plasma membranes to kill pathogens (167);
the reason for the resistance of lactobacilli to GML appears to be
that they use GML as a cross-reactive quorum-sensing mechanism
that actually stimulates growth (167). Collectively, these and other
studies have led to GML being incorporated into o.b. optiBalance
tampons in Europe. Other molecules that could be applied to
mucosal surfaces and devices to reduce the risk of staphylococcal
and streptococcal illnesses have also been identified (306-309),
including agents that prevent superantigen production and those
that stabilize mucosal surfaces.

Passive Vaccination against Superantigens

It has been known for many years that intravenous immunoglob-
ulin (IVIG) preparations usually have antibodies against all staph-
ylococcal and streptococcal superantigens (310, 311). This has
been confirmed by numerous investigators (45, 312, 313). A de-
finitive study performed by Kaul et al. (45) demonstrated a highly
significant reduction in the case-fatality rate of streptococcal TSS
with use of IVIG. A similar study has not been performed for
treating staphylococcal TSS with IVIG, but there are many exam-
ples reported to P.M.S. of individual patients responding to such
therapy. It is now standard practice in some hospitals to adminis-
ter vancomycin and IVIG to children with S. aureus pneumonia. A
note of caution in regard to the use of IVIG is merited. We are
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aware of a case of streptococcal TSS where the patient was treated
with IVIG and responded so quickly that the decision was made to
discontinue additional IVIG treatment. The patient immediately
relapsed, and IVIG treatment was reinstated. In calculations of the
relative amounts of antibodies in IVIG against major superanti-
gens, knowing that enzyme-linked immunosorbent assay (ELISA)
antibody titers of =40 in humans appear to be required for pro-
tection from superantigens and knowing the blood volume of hu-
mans, it appears that IVIG has just sufficient antibodies to supe-
rantigens to provide protection. Because of the high cost of IVIG
and the occasional shortages that have occurred, there is a need to
develop additional antibody and T cell receptor-based therapies.

Studies have been initiated to develop monoclonal antibodies
against certain superantigens that can be humanized (314, 315).
These studies are in their infancy, but it is expected that in the
future such antibody cocktails may replace the need for the costly
IVIG. Multiple studies have also been performed that show that
engineered high-affinity (picomolar affinity) VB-TCRs, which are
uniquely specific to binding and inactivating superantigens, pre-
vent fever and lethality due to concurrent treatment or pretreat-
ment with superantigens or staphylococci and streptococci that
produce them, as tested in rabbit models (44, 231, 252, 316, 317).
These reagents have also been shown in multiple rabbit studies to
be important in preventing lethality due to staphylococcal pneu-
monia (231) and in preventing vegetation formation in infective
endocarditis (252).

Active Vaccination against S. aureus and Superantigens
There have been multiple trials of human vaccines against S. au-
reus, and all of these have failed. The primary antigens used for
vaccination have been staphylococcal cell surface antigens. Our
recent study suggests that organisms such as those causing infec-
tive endocarditis aggregate to facilitate disease causation (318,
319). The same studies suggest that antibodies against cell surface
antigens of the organisms further aggregate the organisms and
may facilitate their abilities to cause disease (318, 319). Thus, it is
possible that continued emphasis on development of cell surface-
based vaccines will result in continued failures. We have recently
taken a different approach, noting that our prior studies (231)
indicate that combinations of secreted superantigens and alpha-
toxin are required for S. aureus to cause illnesses as tested in rab-
bits. With that in mind, we have prepared vaccine toxoids and
shown that immunization of rabbits protects against high-dose S.
aureus intrapulmonary and intravenous challenge in an infective
endocarditis model (134). The data suggest that S. aureus requires
its secreted virulence factors to initiate diseases and may require
them for colonization.

Similar studies suggest that toxoid vaccines may be produced to
vaccinate against group A streptococcal superantigens (320, 321).
However, major studies to vaccinate against group A streptococci,
like for S. aureus, are directed against surface antigens, particularly
M protein (322-324) and C5a peptidase (325). These studies are
also in their infancy.

FOR THE FUTURE

As noted above, we continue each year to identify new superanti-
gen-associated illnesses. For example, we have just identified cases
of desquamative inflammatory vaginitis that are associated with
superantigen production by S. aureus (326). It appears likely that
the full extent of superantigen-associated illnesses will be recog-
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nized only when effective vaccines against S. aureus and group A
streptococci are developed and with their use we observe what
illnesses disappear. With the recognition that rabbits can be com-
pletely protected from challenge with all major PFGE clonal
groups of S. aureus by superantigen and cytolysin toxoids, we may
have a path now to develop a safe vaccine for human use. Toxoids
are expected to stimulate neutralizing antibodies that prevent se-
rious diseases without concerns about microbial aggregation.
These studies should continue.

Additionally, it is useful to develop novel strategies to neutral-
ize superantigens or prevent their formation. It is clear that IVIG
can reduce the case-fatality rate of streptococcal TSS and likely
staphylococcal TSS. If less expensive reagents such as monoclonal
antibodies and V3-TCRs that are effective and inexpensive can be
developed, they may be applicable to diseases, including nonseri-
ous illnesses.

Finally, although many superantigen-associated illnesses are
linked with superantigenicity, there are many symptoms of TSS
and other illnesses, where the mechanisms of toxicity remain un-
clear. These should be explored in detail.
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