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Lymph nodes (mandibular, mesenteric, mediastinal, and subiliac; n � 68) and fecal (n � 68) and hide (n � 35) samples were col-
lected from beef carcasses harvested in an abattoir in Mexico. Samples were analyzed for Salmonella, and presumptive colonies
were subjected to latex agglutination. Of the isolates recovered, a subset of 91 was characterized by serotyping, pulsed-field gel
electrophoresis (PFGE), and antimicrobial susceptibility phenotyping. Salmonella was isolated from 100% (hide), 94.1% (feces),
91.2% (mesenteric), 76.5% (subiliac), 55.9% (mandibular), and 7.4% (mediastinal) of samples. From the 87 typeable isolates,
eight Salmonella enterica serotypes, including Kentucky (32.2%), Anatum (29.9%), Reading (17.2%), Meleagridis (12.6%), Cerro
(4.6%), Muenster (1.1%), Give (1.1%), and Mbandaka (1.1%), were identified. S. Meleagridis was more likely (P � 0.03) to be
recovered from lymph nodes than from feces or hides, whereas S. Kentucky was more likely (P � 0.02) to be recovered from feces
and hides than from lymph nodes. The majority (59.3%) of the Salmonella isolates were pansusceptible; however, multidrug
resistance was observed in 13.2% of isolates. Typing by PFGE revealed that Salmonella strains generally clustered by serotype,
but some serotypes (Anatum, Kentucky, Meleagridis, and Reading) were comprised of multiple PFGE subtypes. Indistinguish-
able PFGE subtypes and, therefore, serotypes were isolated from multiple sample types, and multiple PFGE subtypes were com-
monly observed within an animal. Given the overrepresentation of some serotypes within lymph nodes, we hypothesize that cer-
tain Salmonella strains may be better at entering the bovine host than other Salmonella strains or that some may be better
adapted for survival within lymph nodes. Our data provide insight into the ecology of Salmonella within cohorts of cattle and
offer direction for intervention opportunities.

The food-borne pathogen Salmonella causes substantial mor-
bidity and mortality within the United States and elsewhere.

Moreover, the public health burden imposed by Salmonella, mea-
sured by the number of illnesses attributed to Salmonella, actually
increased between 2006 and 2008 (1) despite substantial efforts to
control this food-borne pathogen. Of the pathogens included in
FoodNet surveillance and detectable with laboratory procedures,
Salmonella was the most common laboratory-confirmed infec-
tious agent and accounted for 43.3% of infections, 53.9% of hos-
pitalizations, and 42.6% of deaths caused by an identified patho-
gen (1). Salmonella infections are also an economic burden, often
resulting in substantial medical costs and loss of productivity (2).
Because 95% of salmonellosis cases are attributed to a food-borne
route of infection (3–5), improved efforts to control this pathogen
in the food supply are warranted. However, control of Salmonella
in food is challenging given that it is ubiquitous in the environ-
ment (6) and associated with diverse food types (1). Furthermore,
numerous serotypes have been observed across a variety of animal
reservoirs (1), and many are commonly shed in the feces of seem-
ingly healthy animals (6).

Cattle are an important reservoir for Salmonella (6–11), and
consumption of ground beef has been linked to outbreaks of sal-
monellosis (7, 12–14). Moreover, Salmonella can be recovered
somewhat routinely from preevisceration beef carcasses in the
United States, although the reported recovery rate varied widely
from 3.0% to 50.2% (15–17). Interventions used in abattoirs are
highly efficacious at removing Salmonella from the carcass surface
in that it is very uncommon to recover Salmonella from the surface
of beef carcasses at the end of the slaughter process (15–18). Yet

despite effective control of Salmonella surface contamination on
beef carcasses, it is not altogether uncommon to isolate this patho-
gen from ground beef. Salmonella was recovered from 4.2% of
4,136 ground beef samples from commercial retailers across the
United States (7), and in 2011, the USDA Food Safety Inspection
Service recovered Salmonella from 2.4% of 13,517 25-gram
ground beef samples. From samples collected in Mexico, Salmo-
nella was detected in 8.0% of 262 ground beef samples purchased
from butcher shops, street vendors, city markets, and supermar-
kets in Mexico City, Monterrey, and Guadalajara (19).

A recent but growing body of evidence demonstrates that cattle
lymph nodes commonly harbor Salmonella (20–23) and that,
when incorporated into ground beef, lymph nodes may contrib-
ute to the observed discrepancy between effective control on car-
cass surfaces and subsequent isolation from ground beef. A more
complete understanding of the ecology of cattle and Salmonella is
needed. In particular, important data gaps include an understand-

Received 10 April 2013 Accepted 28 May 2013

Published ahead of print 21 June 2013

Address correspondence to Sara E. Gragg, saragragg@k-state.edu.

* Present address: Sara E. Gragg, Department of Animal Science and Industry,
College of Agriculture, Kansas State University—Olathe, Olathe, Kansas, USA;
Jacob R. Elder, Department of Veterinary Microbiology and Pathology, College of
Veterinary Medicine, Washington State University, Pullman, Washington, USA.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AEM.01020-13

4744 aem.asm.org Applied and Environmental Microbiology p. 4744–4750 August 2013 Volume 79 Number 15

http://dx.doi.org/10.1128/AEM.01020-13
http://aem.asm.org


ing of the diversity of Salmonella within and among lymph nodes
of cattle, the routes by which Salmonella infects lymph nodes, and
whether certain Salmonella serotypes are overrepresented within
lymph nodes in comparison to other sites. Closing these knowl-
edge gaps will aid development and application of targeted inter-
ventions to reduce the incidence at which Salmonella enters lymph
nodes and/or the duration of survival within lymph nodes. The
objective of this study was, therefore, to evaluate the diversity of
Salmonella isolates recovered from lymph nodes, feces, and hide
swabs collected from healthy cattle at harvest in a commercial
abattoir.

MATERIALS AND METHODS
Sample collection. Samples were acquired from 68 beef cattle presented
for harvest at an abattoir in Mexico. From each beef carcass, lymph nodes
(mandibular, mesenteric, mediastinal, and subiliac) and feces were col-
lected. From a subset of these carcasses (n � 35), hide samples were also
collected. Feces were sampled from the rectocolon portion of the intesti-
nal tract of each beef carcass. An approximately 100-cm2 area of hide over
the foreshank was swabbed using a sterile sponge prehydrated with 10 ml
of buffered peptone water (World Bio Products, Mundelein, IL). All sam-
ples were stored on ice and transported to Texas Tech University for
processing. United States Department of Agriculture APHIS permits
(permit number 114031) were used to import the samples into the United
States.

Lymph node analysis. All lymph nodes were processed and analyzed
for the presence of Salmonella as previously described (21). Briefly, fat and
fascia were trimmed and lymph nodes were surface sterilized in boiling
water. A modified incubation in tryptic soy broth (TSB; EMD, Darmstadt,
Germany) at 42°C for 6 h was employed, and samples were subjected to
immunomagnetic separation (IMS). Recovered IMS beads were enriched
in Rappaport-Vasiliadis (RV; Remel, St. Louis, MO) broth and then
streaked onto xylose lysine desoxycholate (XLD; Remel, St. Louis, MO)
and brilliant green sulfa (BGS) agars. Salmonella latex agglutination kits
(Remel, Lenexa, KS) were used on presumptively positive colonies (colo-
nies with black centers, XLD; pink colonies, BGS). Colonies were trans-
ferred to 9 ml of TSB or brain heart infusion (BHI; BD Difco, Sparks, MD)
containing 10% glycerol (EMD, Darmstadt, Germany) prior to incuba-
tion at 37°C for 18 to 24 h. From each isolate tube, 1-ml aliquots were
frozen in duplicate at �80°C.

Fecal and hide analysis. Fecal samples were enriched for Salmonella
by inoculating 1.0 g � 0.1 g into 9 ml each of tetrathionate (TT) broth
(Difco, Sparks, MD) and RV broth (EMD, Darmstadt, Germany). Hide
samples were homogenized (Seward model 400; Bohemia, NY) for 30 s,
and 1 ml was transferred to 9 ml each of TT and RV. All fecal and hide TT
and RV tubes were vortexed and then incubated at 42°C for 24 h. Follow-
ing incubation, TT and RV broths were streaked for isolation onto xylose
lysine tergitol-4 (XLT4; BD Difco, Sparks, MD) agar plates and incubated
at 37°C for 24 h. Salmonella latex agglutination kits were used on pre-
sumptively positive colonies. Colonies were transferred to 9 ml of TSB or
BHI containing 10% glycerol prior to incubation at 37°C for 18 to 24 h.
From each isolate tube, 1-ml aliquots were frozen in duplicate at �80°C.

PFGE. Carcasses (n � 18) harboring Salmonella within multiple (3 or
4 per carcass) lymph nodes, in feces, and/or on the hide were selected for
pulsed-field gel electrophoresis (PFGE) typing. A total of 91 isolates were
subjected to a PFGE protocol for Salmonella (24) using XbaI (Roche Ap-
plied Science, Indianapolis, IN) enzyme for restriction and electrophore-
sis (CHEF Mapper XA Chiller System; Bio-Rad Laboratories, Hercules,
CA). To optimize pattern images and improve band intensity, cell lysis of
agarose plugs was performed for up to 18 h and plug slices were allowed to
restrict for a maximum of 7 h. Banding patterns were inspected by visual
confirmation and then further analyzed and compared (BioNumerics 6.6;
Applied Maths, Austin, TX) to identify genetic similarities among sample
types both within an animal and among animals. The Dice similarity

coefficient (band based), with 2% band tolerance and relaxed doublet
matching options, was used to determine genetic similarity. Cluster anal-
yses were calculated, and dendrograms were produced based upon pair-
wise similarities by means of the unweighted-pair group method using
average linkages (UPGMA).

Salmonella serotyping. Isolates analyzed by PFGE were subjected to
molecular serotyping methods (25). Resulting genotypes were confirmed
by traditional slide agglutination (O typing) and tube agglutination (fla-
gellar H typing) methods using commercial antisera (Difco, BD Diagnos-
tic Systems, Sparks, MD) by following the manufacturer’s guidelines.

Antimicrobial susceptibility. Isolates were streaked onto tryptic soy
agar (TSA; EMD, Darmstadt, Germany) containing 5% defibrinated
sheep blood (bioMérieux, Inc., Durham, NC) and incubated at 37°C for
18 to 24 h. Broth microdilution (Sensititre CMV2AGNF test plates; TREK
Diagnostic Systems, Inc., Cleveland, OH) was used according to the man-
ufacturer’s guidelines. Salmonella isolates were classified as susceptible,
intermediate, or resistant to each antimicrobial agent based upon break-
points established by the Clinical and Laboratory Standards Institute
(CLSI) or the National Antimicrobial Resistance Monitoring System
(NARMS) (26, 27). Isolates exhibiting resistance to three or more classes
of antimicrobials were classified as multidrug resistant (MDR).

Statistical analysis. Data were analyzed as a binomial response distri-
bution to estimate Salmonella prevalence and 95% confidence limits (CL)
using commercially available software (SAS version 9.3; The SAS Institute,
Cary, NC).

RESULTS

Salmonella was recovered from every sample type evaluated.
Among lymph nodes, prevalence was 55.9% (95% CL, 43.7 to
67.4%), 91.2% (81.6 to 96.0%), 7.4% (3.1 to 16.2%), and 76.5%
(64.8 to 85.2%) for mandibular, mesenteric, mediastinal, and sub-
iliac nodes, respectively. Salmonella was recovered from 94.1%
(95% CL, 85.3 to 97.8%) and 100.0% (90.1 to 100%) of fecal and
hide samples, respectively.

All beef carcasses (n � 68) harbored Salmonella within at least
one sample type collected. Eighteen carcasses harbored Salmonella
in five different sample types, and these isolates were selected for
further characterization by PFGE subtyping, serotyping, and an-
timicrobial susceptibility testing (one isolate per sample type
where available, for a total of 90 isolates). One hide isolate was
found to be a mixed culture consisting of two different serotypes,
and each serotype was treated as a separate isolate, for a total of 17
hide isolates and an overall total of 91 isolates. Of the 91 isolates
subjected to serotyping, 87 isolates were typeable and 8 serotypes
were identified (Table 1), including Salmonella enterica serovar
Kentucky (32.2%), S. enterica serovar Anatum (29.9%), S. enterica
serovar Reading (17.2%), S. enterica serovar Meleagridis (12.6%),
S. enterica serovar Cerro (4.6%), S. enterica serovar Muenster
(1.1%), S. enterica serovar Give (1.1%), and S. enterica serovar
Mbandaka (1.1%). Four isolates (4.4%) were nontypeable given
the methods employed. S. Reading was the only serotype isolated
from all sample types. Salmonella Kentucky and S. Anatum were
isolated from all sample types with the exception of the mediasti-
nal lymph nodes. Salmonella Meleagridis was not recovered from
mediastinal lymph nodes or hides; it was, however, recovered
from feces and mandibular, mesenteric, and subiliac lymph
nodes. Salmonella Give and S. Mbandaka were isolated from one
mesenteric lymph node each, while S. Muenster was recovered
from one mandibular lymph node. Salmonella Cerro was not re-
covered from hides or within the mesenteric and subiliac lymph
nodes. Nontypeable isolates were recovered from feces, hides, and
one mesenteric lymph node. In general, PFGE subtypes clustered
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by Salmonella serotype (Fig. 1 and Table 2). Salmonella Cerro was
the only serotype with indistinguishable banding patterns among
all isolates analyzed (n � 4). Salmonella Give, S. Mbandaka, and S.
Muenster were each comprised of a single isolate that produced a
banding pattern unique from all others. The remaining serotypes
(S. Anatum, S. Kentucky, S. Meleagridis, and nontypeable) were
represented by both indistinguishable and dissimilar (difference
of 1 or more bands) subtypes (Fig. 1 and Table 2).

Dendrograms were constructed to examine the similarity of
Salmonella strains isolated from samples collected from the same
animal. Within a single beef carcass, indistinguishable subtypes

were often found in two or more sample types throughout the
carcass (Fig. 1 and 2 and Table 2). Three beef carcasses harbored a
unique PFGE subtype within each sample type that was analyzed
(Fig. 1 and 2 and Table 2).

Serotype-level comparisons suggest the possibility that certain
serotypes may be better adapted for particular sample types. S.
Meleagridis was significantly more likely to be recovered from
lymph nodes than from feces or hides (P � 0.03). Conversely, S.
Kentucky was more likely to be recovered from feces and hides
than from lymph nodes (P � 0.02). While S. Reading appeared to
be more commonly isolated from lymph nodes than from feces or
hides, this relationship was not statistically significant (P � 0.20).

The majority (n � 54; 59.3%) of isolates were susceptible to all
antibiotics (Table 3). Tetracycline resistance was observed in
22.0% (n � 20) of Salmonella strains. Multidrug resistance was
observed for 13.2% (n � 12) of isolates. Of the isolates recovered
from lymph nodes (n � 56), feces (n � 18), and hide samples (n �
17), 30 (53.6%), 3 (16.7%), and 4 (23.5%) exhibited resistance to
one or more drugs, respectively. Antimicrobial susceptibility phe-
notypes generally clustered together with indistinguishable or
similar PFGE subtypes and, therefore, serotypes (Fig. 1 and Table
2). Salmonella Reading, S. Meleagridis, and S. Anatum were the
most commonly resistant serotypes.

DISCUSSION

The data reported herein demonstrate that Salmonella can be re-
covered from various lymph nodes that are disseminated widely
throughout the animal. Because lymph nodes are commonly in-
cluded in beef trimmings intended for further manufacturing,
such as grinding, lymph nodes may be an important source of
Salmonella in ground beef. Koohmaraie et al. (28) concluded that
cattle lymph nodes and hides are likely the sources of ground beef
contamination upon comparison of Salmonella PFGE subtypes
obtained from hides, prescapular lymph nodes, trim, and ground
beef of 100 dairy cattle at slaughter. Similar to prescapular lymph
nodes, the subiliac is positioned in fat trim such that it is com-
monly included in ground beef. Because Salmonella isolates
within lymph nodes are protected from interventions employed
by commercial abattoirs, current approaches to Salmonella con-
trol within abattoirs may need further exploration and develop-
ment. One approach may be removal of certain lymph nodes dur-
ing carcass disassembly. However, given the extensive number of

TABLE 1 Salmonella enterica subspecies enterica serotypes isolated from lymph nodes, feces, and hides of beef cattle presented for harvest at an
abattoir in Mexico

Serotype

No. of each sample type with each serotype

Total no.
(n � 91a,b) Overall %

Mandibular
(n � 18)

Mesenteric
(n � 18)

Mediastinal
(n � 2)

Subiliac
(n � 18)

Feces
(n � 18)

Hide
(n � 17a)

Kentucky 2 5 0 5 12 4 28 30.8
Anatum 9 2 0 5 3 7 26 28.6
Reading 5 2 2 3 1 2 15 16.5
Meleagridis 1 5 0 4 1 0 11 12.1
Cerro 0 1 0 1 0 2 4 4.4
Muenster 1 0 0 0 0 0 1 1.1
Give 0 1 0 0 0 0 1 1.1
Mbandaka 0 1 0 0 0 0 1 1.1
Nontypeable 0 1 0 0 1 2 4 4.4
a One hide isolate was identified as a mixed culture of two serotypes, thereby increasing the number of hide isolates to 17 and the total isolate number to 91.
b Only those isolates analyzed by PFGE were serotyped.

FIG 1 Partial dendrogram representing the distribution of Salmonella enterica
subspecies enterica pulsed-field gel electrophoresis subtypes among the lymph
nodes, feces, and hides of cattle presented for harvest at a Mexico slaughter
facility.
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lymph nodes throughout the body, complete removal of these
tissues prior to ground beef production is not a feasible solution.
Guo and colleagues (29) adopted the Hald Salmonella Bayesian
model to evaluate food source attribution of human salmonellosis
in the United States and estimated that ground beef contributes to
28% of infections. Recognizing that lymph nodes are likely a con-
tributing factor to ground beef contamination, identification of
effective interventions is necessary to mitigate the potential risk to
public health.

In the data reported herein, we recovered Salmonella from
76.5% of the subiliac lymph nodes. Haneklaus and colleagues (23)
reported similar rates of recovery in that Salmonella was detected
in 88.2% (n � 85) of the subiliac and prescapular lymph nodes
collected from cattle from one feedlot. In contrast, Arthur et al.
(20) recovered Salmonella from 1.6% of subiliac and prescapular
lymph nodes (n � 1,140) collected from cull and feedlot cattle in
the United States. However, Salmonella prevalence appears to be
seasonal among cattle, with reduced prevalence throughout
colder months; thus, sample season may have contributed to this
low prevalence. More-recent findings suggest a distinct regional
and seasonal effect on Salmonella prevalence in bovine peripheral
lymph nodes, with the highest prevalence occurring among feed-
lot cattle sampled throughout the summer and fall months in the
southern United States (21). The present study supports these
findings with an elevated prevalence of 76.5% for subiliac lymph
nodes. Given the early fall sampling period and southern proxim-
ity of Mexico to the United States, our data provide additional
evidence of the seasonal and regional trends previously described
for Salmonella contamination in bovine lymph nodes.

Salmonella was isolated from the mandibular lymph node of
over half (55.9%) of the beef carcasses sampled, a finding which is
not necessarily surprising given that the mouth in particular, or
head area in general, is a point of entry for Salmonella. It seems
plausible, although it is not evaluated here, that other lymph
nodes of the head and neck occasionally harbor Salmonella. If so,
incision of these nodes at slaughter, during postslaughter govern-
ment inspection, for example, may be a source of cross-contami-
nation of Salmonella, both within a carcass and between carcasses,
to other tissues, such as the Masseter muscle, which also is fre-
quently incised during inspection. This route of cross-contamina-
tion might be an additional avenue by which Salmonella of lymph
node origin may enter the food supply.

All serotypes recovered from lymph nodes in this study, with
the possible exception of S. Give, have been previously isolated
from ground beef (30). Additionally, given that each serotype
identified in this study has been linked to laboratory-confirmed
human illnesses (though none ranked among the top 20 serotypes
associated with human illness in 2009 [31]), the potential impact
of Salmonella carriage in lymph nodes on human health must be
considered. The serotypes noted for causing the majority of labo-
ratory-confirmed Salmonella outbreaks are commonly associated
with chicken, eggs, and pork and include S. enterica serovar En-
teritidis, S. enterica serovar Typhimurium, and S. enterica serovar
Heidelberg (32); however, S. Typhimurium (33, 34) and S. Enter-
itidis (35) have also been implicated in ground beef outbreaks.

In general, PFGE subtypes clustered based upon serotype, with
multiple PFGE patterns observed for S. Anatum, S. Kentucky, S.
Meleagridis, and S. Reading. While serotypes were recovered

TABLE 2 Salmonella isolate characterization by PFGE subtype, serotype, and antimicrobial susceptibility phenotype

PFGE
subtype

No. of
isolates

No. of
animals Serotype Antimicrobial susceptibilitya

No. of isolates of each sample type with each subtype

Mandibular Mesenteric Mediastinal Subiliac Fecal Hide

A 11 8 Kentucky Pansusceptible 1 2 0 1 5 2
B 1 1 Kentucky Pansusceptible 0 0 0 1 0 0
C 14 9 Kentucky Pansusceptible 1 1 0 3 7 2
D 1 1 Anatum (F), (C), Su 0 0 0 0 0 1
E 1 1 Kentucky Pansusceptible 0 0 0 0 0 1
F 1 1 Anatum Am, Ap, F, Su, Te, TS 1 0 0 0 0 0
G 21 13 Anatum Pansusceptible; Te 8 1 0 4 3 5
H 2 2 Anatum Pansusceptible; S, Su, Te 0 1 0 0 0 1
I 1 1 Anatum Am, NA, Su, Te, TS 0 0 0 1 0 0
J 1 1 Kentucky Te 0 1 0 0 0 0
K 2 1 Nontypeable Pansusceptible; Ap, Su, Te, TS 0 1 0 0 1 0
L 2 2 Nontypeable Pansusceptible 0 0 0 0 0 2
M 10 8 Reading Te 5 1 0 2 1 1
N 2 2 Reading Te 0 0 2 0 0 0
O 1 1 Reading Te 0 1 0 0 0 0
P 1 1 Reading Te 0 0 0 1 0 0
Q 1 1 Give S, Te 0 1 0 0 0 0
R 1 1 Kentucky Pansusceptible 0 1 0 0 0 0
S 1 1 Mbandaka Pansusceptible 0 1 0 0 0 0
T 6 5 Meleagridis S, Su, Te; Su, Te 0 4 0 2 0 0
U 2 2 Meleagridis S, Su, Te 0 0 0 1 1 0
V 2 2 Meleagridis Pansusceptible 1 0 0 1 0 0
W 1 1 Meleagridis Am, Ap, F, S, Su, Te 0 1 0 0 0 0
X 4 3 Cerro Pansusceptible; (F), (Te) 0 1 0 1 0 2
Y 1 1 Muenster NA 1 0 0 0 0 0
a Am, amoxicillin-clavulanic acid; Ap, ampicillin; F, cefoxitin; C, chloramphenicol; NA, nalidixic acid; S, streptomycin; Su, sulfisoxazole; Te, tetracycline; TS, trimethoprim-
sulfamethoxazole. Parentheses indicate intermediate resistance.
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across multiple sample types, we found evidence of sample type
dependency among S. Meleagridis and S. Kentucky, a finding
which may suggest a genetic adaptation associated with preferen-
tial colonization or improved survivability in the lymph node,
fecal, or hide environments. Conversely, serotype Anatum was
common in this study but lacked sample type dependency (P �
0.91). It is worth highlighting that different enrichment and iso-
lation techniques were employed for fecal and hide samples than
for lymph nodes, a result which may have contributed to the ob-
served variability in serotypes and PFGE subtypes among the sam-
ple types. For example, if the IMS beads differ in terms of their
affinity to various serotypes, it may explain the observed disparity
in some serotypes between matrices because IMS beads were used
in isolation of Salmonella from lymph nodes but not from feces or
hides. In other words, the different culture methods may favor
recovery of certain serotypes over others. Further, it is possible
that the duration of infection varies between different sites (i.e.,
lymph nodes versus within the gastrointestinal tract [GIT]). If so,
then the serotype recovered may be more a reflection of this du-
ration of infection than a consequence of tissue tropism. Addi-
tionally, only one isolate per sample was characterized, and if
mixed cultures were present, the probability of selection is related
to the serotype abundance within the site. If, for example, S. Me-
leagridis were present in feces but at lower concentrations than S.
Kentucky, it would be less likely to be selected. Thus, this finding
of differences among some serotypes recovered from various ma-
trices should be interpreted with caution. We believe, however,
that this observation warrants further investigation to explore po-
tential genetic adaptations that might contribute to tissue tropism
and, therefore, the site of colonization.

Given the ubiquity of Salmonella in feedlot environments, iso-
lation of diverse serotypes from fecal and hide samples is not sur-
prising (36). It is generally believed that Salmonella enters the

FIG 2 Animal-level distribution of Salmonella enterica subspecies enterica serotypes and pulsed-field gel electrophoresis subtypes among the lymph nodes, feces,
and hides of 3 cattle presented for harvest at a Mexico slaughter facility.

TABLE 3 Salmonella serotypes and observed antimicrobial resistance
phenotypes recovered from lymph nodes (mandibular, mesenteric,
mediastinal, and subiliac), feces, and hides of beef cattle at harvest in a
Mexico slaughter facility

Sample type
(no. of isolates) Serotype

Antimicrobial resistance
phenotypea

No. of
samples

Mandibular (18) Reading Te 5
Anatum Te 1
Muenster NA 1
Anatum Am, Ap, F, Su, Te, TS 1

Mediastinal (2) Reading Te 2

Mesenteric (18) Reading Te 2
Kentucky Te 1
Anatum Te 1
Meleagridis Su, Te 1
Give S, Te 1
Meleagridis S, Su, Te 3
Meleagridis Am, Ap, F, S, Su, Te 1

Subiliac (18) Anatum Te 2
Reading Te 3
Cerro (F), (Te) 1
Meleagridis S, Su, Te 3
Anatum Am, NA, Su, Te, TS 1

Fecal (18) Reading Te 1
Meleagridis S, Su, Te 1
Nontypeable Ap, Su, Te, TS 1

Hide (17) Reading Te 1
Anatum Te 1
Anatum S, Su, Te 1
Anatum (F), (C), Su 1

a Am, amoxicillin-clavulanic acid; Ap, ampicillin; F, cefoxitin; C, chloramphenicol; NA,
nalidixic acid; S, streptomycin; Su, sulfisoxazole; Te, tetracycline; TS, trimethoprim-
sulfamethoxazole. Parentheses indicate intermediate resistance.
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body from the gastrointestinal tract (GIT) and may disseminate
systemically via the cardiovascular system (i.e., subsequent to bac-
teremia or septicemia). While this is distinctly possible, our data
warrant exploration of an alternative hypothesis for other, non-
GIT routes of entry into the animal. If, for instance, Salmonella
disseminates systemically via the vasculature, then it would be
expected that Salmonella would be recovered from multiple
nodes. In other words, statistical dependency would be observed
for the likelihood of recovering Salmonella among lymph nodes
within an animal. This was, however, not observed in the data
described herein. Of the 68 animals from which lymph node and
fecal samples were collected, Salmonella was recovered from all
four nodes as well as feces from 2.9% (n � 2) of animals. The joint
probability that all of these samples would be positive is 2.7% (i.e.,
almost identical to that observed). Saliently, joint probability as-
sumes statistical independence in terms of the outcome (Salmo-
nella recovery) among the various samples within a carcass. These
data, therefore, suggest that Salmonella entered the lymph nodes
(within an animal) following different and independent events.
Furthermore, different serotypes and PFGE subtypes were rou-
tinely isolated within a single carcass. If so, these different and
independent events may include multiple translocations from the
GIT or translocations across various points of the integument and
capture by regionally draining lymph nodes. Given these observa-
tions, we hypothesize that Salmonella recovered from peripheral
lymph nodes—at least the subiliac lymph node—may have en-
tered the body transdermally and then drained to the regional
peripheral lymph node. For example, Salmonella may be intro-
duced transdermally from the hide on the ventral abdomen by
biting flies, which can harbor Salmonella (37), or skin abrasions
and then enter the lymphatic vessels from the interstitial spaces
and ultimately end up in the subiliac lymph node. If so, the ecol-
ogy of Salmonella within cattle populations may be far more com-
plex than that implied by a simple fecal-oral route of transmission
and may require a different approach for the identification and
evaluation of control strategies. Further research is warranted to
evaluate this alternative route of transmission hypothesis.

Our data illustrate the frequent isolation of Salmonella from
lymph nodes destined for ground beef production. Antimicrobial
resistance phenotypes were observed among 40.7% (n � 37) of
the 91 Salmonella isolates characterized, 13.2% of which exhibited
MDR phenotypes. These data are not overly dissimilar from data
reported elsewhere in that other investigators reported that 14%
(n � 266) of feedlot and cull cattle subiliac lymph nodes harbored
antimicrobial-resistant Salmonella and 8.3% harbored MDR Sal-
monella (21). Arthur and colleagues (20) isolated Salmonella (n �
18) from subiliac and superficial cervical lymph nodes and re-
ported resistance among 22.2% (n � 4) of isolates, with 16.7%
(n � 3) demonstrating MDR phenotypes. Salmonella antimicro-
bial resistance poses a challenge to human medicine, as ceftriax-
one, an extended-spectrum cephalosporin, is a common choice
for treating salmonellosis in children (38). Adult salmonellosis is
often treated with nalidixic acid and ciprofloxacin, a quinolone
and fluoroquinolone, respectively (38). In our study, one subiliac
lymph node exhibited resistance to nalidixic acid while resistance
to ceftriaxone or ciprofloxacin was not observed. Thus, based
upon these data, we conclude that the consequence to public
health is likely low at present time.

Conclusions. Salmonella isolates were frequently recovered
from a variety of lymph nodes collected from animals presented

for harvest in a Mexico abattoir. Salmonella strains harbored
within peripheral lymph nodes are frequently included in beef
trimmings that are processed into ground beef. We hypothesize
that Salmonella may enter the body transdermally through skin
abrasions or biting insects and then drain to the regional lymph
node. If so, this route of entry provides insight into control of
Salmonella within preharvest environments.
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