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T-20EK is a novel fusion inhibitor designed to have enhanced �-helicity over T-20 (enfuvirtide) through engineered electrostatic
interactions between glutamic acid (E) and lysine (K) substitutions. T-20EK efficiently suppresses wild-type and T-20-resistant
variants. Here, we selected T-20EK-resistant variants. A combination of L33S and N43K substitutions in gp41 were required for
high resistance to T-20EK. While these substitutions also caused resistance to T-20, they did not cause cross-resistance to other
known fusion inhibitors.

Enfuvirtide (T-20), a 36-amino-acid peptide derived from the
C-terminal heptad repeat (C-HR) of HIV-1 gp41, has been

approved as the first fusion inhibitor of HIV-1 entry. T-20 inhibits
HIV-1 replication by interfering with the formation of the fusion
intermediate six-helix bundle, which is composed of three N-ter-
minal heptad repeats (N-HRs) and three C-HRs arranged in an
antiparallel orientation (1). Because of its unique mechanism of
action, T-20 effectively suppresses replication of HIV-1 resistant
to inhibitors targeting the reverse transcriptase and protease (2,
3). However, long-term therapy with a T-20-containing regimen
can result in the emergence of T-20-resistant strains (4, 5). These
strains contain substitutions at the N-HR region of gp41, includ-
ing G36D, V38A, and N43K/D, both in vitro and in vivo, and
exhibit reduced susceptibility to T-20 through decreased binding
of T-20 to the mutated N-HR (6–14). To suppress replication of
such variants and obtain durable efficacy in HIV-1-infected pa-
tients, new fusion inhibitors are needed.

To date, several novel fusion inhibitors have been developed,
including tifuvirtide (T-1249) (15), sifuvirtide (SFT) (16), and
T-2635 (TRI-1144) (17), that potently suppress replication of
T-20-resistant variants (Fig. 1A), as well as D-peptide-based (18)
or small-molecule inhibitors (19). We recently developed the elec-
trostatically constrained fusion inhibitors SC35EK and its 29-res-
idue shorter form, SC29EK, which also inhibit replication of T-20-
resistant HIV-1 (20, 21). These are peptides with electrostatic
interactions between glutamic acid (E) and lysine (K) substitu-
tions placed at the i and i � 4 positions in the solvent-interacting
site (EK motif) and are designed to enhance the �-helicity of the
peptides (22). The enhancement in �-helicity correlates well with
an enhancement in binding affinity for the targeted region and
appears to be a key determinant for inhibition of T-20-resistant
HIV-1. In addition to C34 (Fig. 1A), we have also applied the EK
modification to T-20, termed T-20EK, that shows sustained activ-
ity to T-20-resistant variants and HIV-2 strains (23). Moreover,
T-20EK showed activity in an animal model (24). To address the
mechanism of HIV-1 resistance to T-20EK in vitro, we selected
T-20EK-resistant HIV-1 strains by using a dose escalation
method, identified the primary substitutions that caused resis-

tance to this inhibitor, and evaluated susceptibility of the T-20EK-
resistant strains to other fusion inhibitors.

Selection passages were carried out in MT-2 cells using HIV-
1NL4-3 as the starting wild-type virus (25, 26). The first HIV-1
mutants with enhanced susceptibility to T-20EK emerged at pas-
sage 22 (P-22) and were A314T in gp120 and D36G in gp41 (Fig.
1B). The D36G substitution has been widely observed in HIV-1
strains and is thought to contribute to efficient replication rather
than causing resistance by decreasing binding to the inhibitor (10,
27, 28). At P-44, we observed the K63N change and a mixture of
asparagine and lysine at residue 43 (N43N/K) in gp41. Substitu-
tions in gp120 (see Fig. S1 in the supplemental material) appear to
be polymorphisms, because these substitutions were not directly
involved in resistance (see Table S1 in the supplemental material).
Moreover, S128N and S162N are reported as polymorphisms in
the Los Alamos Database (Los Alamos National Library, HIV Se-
quence Database; http://www.hiv.lanl.gov) and are observed as
mixed viruses over a relatively long period of time. We (21, 25, 26)
and others (29) have previously reported that substitutions in
gp120 can enhance fusion kinetics (30, 31) but do not significantly
affect susceptibility to fusion inhibitors. Finally, HIV-1 acquired
L33S, N43K, and cytoplasmic tail (CT) substitutions, resulting in
viruses that replicated efficiently even in the presence of 1,000 nM
T-20EK.

We prepared HIV-1 recombinant clones with the substitutions
discovered during our passages and determined the antiviral ac-
tivities of T-20EK and other peptides against the T-20EK-resistant
variants (Fig. 1B) and clones by using a MAGI (multinuclear ac-
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tivation of a �-galactosidase indicator) assay (10, 25, 26). Our data
revealed that L33S and N43K are major primary substitutions for
T-20EK resistance (Table 1). Substitutions in the CT domain
weakly enhanced the resistance induced by L33S/N43K. We pre-
viously showed that the S138A substitution in T-20 (T-20S138A)
leads to substantial inhibition of the T-20-resistant variant HIV-
1L33S/N43K (10, 14, 23). Interestingly, T-20EKS138A, a variant of
T-20EK that is expected to exert strong activity to resistant vari-
ants, did not inhibit efficiently HIV-1L33S/N43K (Table 1). We
found cross-resistance between T-20EK and other T-20-based fu-
sion inhibitors, except for T1249, which has an amino acid se-
quence that overlaps with T-20 (Fig. 1A). In contrast, C34 and its
derivatives maintained their activity to T-20EK-resistant variants.
These results indicated that T-20EK may show cross-resistance
only with T-20-derived peptides and that the mechanisms of re-
sistance to T-20 and C34 derivatives are different.

During the selection, we observed one substitution in the gp41
transmembrane domain, V190I, and two in the cytoplasmic do-
main (intravirion), I270S and A281T (Fig. 1B). These three sub-
stitutions are also observed in T-20-naive isolates (Los Alamos
National Library, HIV Sequence Database; http://www.hiv.lanl
.gov). Although these substitutions contributed little to the resis-
tance (Table 1), I270S/A281T substitutions in gp41 cytoplasmic
tail restored significantly reduced replication kinetics by substitu-
tions in the ectodomain and transmembrane domain (see Fig. S2
in the supplemental material). Other substitutions, K63N, D153Y,
Q199P, P203S, I266V, and S293I, were transiently observed but
later disappeared during the selection (see Fig. S1 in the supple-
mental material). K63N is located adjacent to Q64, which was
previously shown to be a resistance-associated substitution (32).
The synonymous change in V72 (GTG to GTA) may influence the
RRE structural stability, as we have previously described (28).

FIG 1 (A) Amino acid sequences of fusion-inhibitory peptides used in this study. The HIV-1 C-HR amino acid sequence is shown in the first row. Electrostatic
interactions are indicated in pink and light blue for acidic (glutamic acid [E]) and basic (lysine [K]) residues, respectively. Modified amino acids are indicated in
orange. A resistance-associated substitution, S138A, is indicated in red. Amino acids for the interactive site are shaded gray. (B) The dose escalation method for
selection of T-20EK resistance through passage in MT-2 cells. Induction of resistant HIV-1 was performed over a total of 70 passages from 0.1 nM T-20EK. At
the indicated passage, proviral DNAs were sequenced, and the 50% effective concentrations (EC50s) of the HIV-1 variants were determined in a MAGI assay. All
substitutions shown in boxes were observed in combination.
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With the exception of D153Y, Q199P, and P203S in gp41, all sub-
stitutions were observed in the vast majority of T-20-naive pa-
tients, indicating that they are natural polymorphisms. P203S was
also selected as a low-level SC34EK resistance-associated substitu-
tion (26). This is consistent with our data showing that combina-
tions of CT substitutions only enhance resistance by 2- to 3-fold
(Table 1). Moreover, most substitutions coexisted with variants
containing the wild-type sequence, strongly indicating that they,
as well as those in gp120, exerted only a modest effect on resis-
tance.

We previously demonstrated that T-20EK inhibited T-20-re-
sistant variants harboring G36D, V38A, or N43D/K substitutions
(28) and that it maintains its strong antiviral effect against HIV-2
(23). T-20EK-resistant variants showed very limited cross-resis-
tance to other novel fusion inhibitors, with the exception of T-20-
based peptides, indicating that the combination of T-20EK with
other new fusion inhibitors may be suitable for therapy. The en-
hanced hydrophilicity of T-20EK by the engineered hydrophilic
amino acids (Glu and Lys) is a favorable property for solubility,
which is expected to reduce some of the adverse effects of T-20,
such as skin reactions at the injection site (33). Interestingly, our
experiments did not result in the selection of any secondary sub-
stitutions in the C-HR, such as N126K and S138A, that are fre-
quently observed in variants that are resistant to novel fusion in-
hibitors (26, 34, 35). In contrast, one of the primary substitutions
was L33S, a substitution at a site outside the N-HR. Notably, the
replication kinetics of L33S are comparable to those of wild-type
HIV-1 (unpublished data). Therefore, L33S seems to be a T-20-
specific substitution that does not require the presence of second-
ary substitutions. Importantly, use of T-20EK does not lead to the
appearance of substitutions that confer cross-resistance to other
novel fusion inhibitors. Thus, our study establishes that T-20EK
can become an efficient new fusion inhibitor.
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