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The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capa-
ble of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible
small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing
transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo.
We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concen-
tration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest
that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that
broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials.

Thirty years after first reports of patients presenting with symp-
toms of human immunodeficiency virus (HIV) infection (1),

AIDS remains one of the leading global health problems (2).
While the RV144 trial demonstrated the modest efficacy of the
RV144 vaccine in a community risk vaccination setting (3, 4), a
highly protective vaccine remains elusive.

Recent studies have shown that antiretroviral therapy (ART) of
HIV type 1 (HIV-1)-infected patients can significantly reduce the rate
of HIV-1 transmission (5) and decrease the risk of infection when
used in seronegative probands (6–8). Other trials, however, failed to
demonstrate protective effects for antiretroviral medication, which
may be attributable to low drug adherence (9, 10), indicating the need
for further research on optimized administration strategies.

Broadly neutralizing antibodies (bnAbs) directed against the
envelope protein (Env) of HIV-1 may present an additional op-
tion for HIV-1 preexposure prophylaxis. Passive administration
of neutralizing antibodies to macaques can provide sterilizing im-
munity to simian-human immunodeficiency virus (SHIV) infec-
tion (11–15) and protect from HIV-1 infection in humanized ro-
dent models (16–20). Many of these studies were, however,
performed with earlier-generation neutralizing antibodies. Re-
cently introduced methods for isolation and cloning of monoclo-
nal antibodies have led to the production of human antibodies
with increased neutralizing breadth and potency (21–27), which
could prove beneficial for clinical use, including therapy (28).

A variety of small-animal models have been developed to study
different aspects of HIV-1 infection in vivo, including models with
several strains of immunodeficient mice reconstituted with com-
ponents of the human immune system (reviewed in references 29
to 31). These mice are susceptible to HIV-1 infection, and they can
recapitulate the viral life cycle and show long-term viremia. How-
ever, infections in individual mice vary, depending on the amount
of engraftment, and the mice lack a fully functional immune sys-
tem, showing only sporadic humoral immune responses to HIV-1
(32–34). The use of transgenic (35, 36) or adenovirus-mediated
(19) expression of HIV-1 entry factors represents an alternative
approach to rendering rodents susceptible to viral entry but not to
efficient replication (37, 38). Mice and rats expressing human

CD4 (hCD4) and human CCR5 (hCCR5) were infected with
HIV-1 after intravenous injection with HIV-1; however, this route
accounts for only a minority of infections in humans (39).

Here, we describe a transgenic reporter mouse expressing
hCD4 and hCCR5 under the control of the ubiquitin promoter,
allowing in vivo detection of HIV-1 pseudovirus infection after
intraperitoneal (i.p.) and intravaginal (i.vag.) application by
means of bioluminescence.

MATERIALS AND METHODS
Mice. Gt(ROSA)26Sortm1(Luc)Kael/J (ROSA-Stop-Luc) mice and
Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (ROSA-Stop-tdTomato) mice
were purchased from The Jackson Laboratory (Bar Harbor, ME). hCD4/
hCCR5 transgenic mice were generated by cloning the hCCR5-2A-hCD4
open reading frame (19) downstream of the human ubiquitin C promoter
(40) and injecting a linearized 4.5-kb fragment containing the transgene
into fertilized female C57BL/6J mouse pronuclei. A founder line was cho-
sen on the basis of surface expression of hCD4 and hCCR5 on peripheral
blood mononuclear cells (PBMCs), as determined by flow cytometry
(data not shown). HIV-LucTG mice were produced by breeding hCD4/
hCCR5 transgenic mice to ROSA-Stop-Luc mice and backcrossing to
ROSA-Stop-Luc mice to obtain mice homozygous for firefly luciferase
and were screened by PCR genotyping or were produced by breeding mice
homozygous for the transgene and luciferase to ROSA-Stop-Luc mice.
Mice homozygous for hCD4 and hCCR5 were obtained by breeding HIV-
LucTG mice and selected on the basis of surface expression levels, as de-
termined by flow cytometry. Transgene-negative littermates or ROSA-
Stop-Luc mice served as negative controls, as indicated. Mice were bred and
maintained at the Comparative Bioscience Center at The Rockefeller Univer-
sity according to guidelines established by the Institutional Animal Commit-
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tee. Experiments were performed with authorization from the Institutional
Review Board (IRB) and the IACUC at The Rockefeller University.

Pseudovirus production. HIV-1 pseudoviruses were prepared as de-
scribed previously (19). Briefly, pTripCre, HIV gag-pol, and pSVIIIenvYU-2

(41) or pSVIIIenvJR-FL (42) plasmids were cotransfected in HEK293T cells
using X-tremeGENE 9 reagent (Roche) according to the manufacturer’s
instructions at a 1.42:1.00:1.68 ratio. Supernatants were harvested, cleared
of debris by centrifugation at 300 � g, filtered using a 0.45-�m-pore-size
filter (Thermo Scientific), concentrated by stirred-cell ultrafiltration us-
ing a 300,000-nominal-molecular-weight-limit membrane (Millipore),
and stored at �80°C. Viruses pseudotyped with the envelope protein G of
the vesicular stomatitis virus (VSVg) were prepared by cotransfection of
pTripCre, HIV gag-pol, and pVSVg (43) plasmids at a 3.18:2.24:1.00 ratio
either in HEK293T cells using X-tremeGENE 9 and adjusted to a final
concentration of 4 �g/ml Polybrene (Sigma) and 50 mM HEPES (Gibco)
after harvesting or in HEK293-6E cells using polyethyleneimine (PEI) at a
1.5:1.0 ratio of PEI/DNA and adding sodium butyrate to a final concen-
tration of 5 mM after 12 h. Supernatants were harvested, cleared of debris
by centrifugation at 300 � g, filtered using a 0.45-�m-pore-size filter, and
stored at �80°C. The p24 content was determined by enzyme-linked im-
munosorbent assay (ELISA; PerkinElmer) according to the manufactur-
er’s instructions. The 50% tissue culture infective dose (TCID50) was de-
termined using the mouse embryonic fibroblast (MEF)-based assay
described below and calculated according to the Reed-Muench method
(44). The mean luminescence of replicates of uninfected cells � 1.5 was
used as the negative cutoff.

Antibody production. Anti-VSVg antibodies were purified from su-
pernatants of the I1 hybridoma cell line (ATCC), maintained as per the
manufacturer’s instructions, using protein G-Sepharose 4 Fast Flow (GE
Healthcare). A mouse IgG2a antibody (clone UPC-10, Sigma) dialyzed
against phosphate-buffered saline (PBS) was used as an isotype control.
Anti-HIV-1 antibodies (24, 45) and the human IgG1 isotype control
mGO53 (46) were expressed in HEK293T cells and purified using protein
G-Sepharose 4 Fast Flow as described previously (19, 47). Purified anti-
bodies were dialyzed against PBS and sterile filtered through a 0.22-�m-
pore-size filter unit.

Cells. MEFs from HIV-LucTG and ROSA-Stop-Luc mice were pro-
duced by spontaneous immortalization. The placenta, head, and internal
organs were thoroughly removed from individual fetuses placed in ice-
cold PBS. Fetuses were minced, incubated in 0.025% trypsin-EDTA
(Gibco) at 37°C, homogenized by thorough pipetting, filtered using a cell
strainer, and washed twice, and cells were maintained in MEF medium
(RPMI 1640 supplemented with 1� antibiotic-antimycotic, 2 mM L-glu-
tamine, 10 mM HEPES, 1 mM sodium pyruvate, 55 �M �-mercaptoeth-
anol [all from Gibco], 10% fetal bovine serum [FBS; HyClone]). hCD4
and hCCR5 expression was confirmed by flow cytometry. HEK293T cells
were maintained in 293T medium (Dulbecco’s modified Eagle medium
[DMEM; Gibco] supplemented with 1 mM sodium pyruvate, 1� antibiotic-
antimycotic, and 10% FBS) and cultured in DMEM supplemented with 1
mM sodium pyruvate and 3% FBS after transfection for pseudovirus produc-
tion. HEK293-6E cells were maintained in FreeStyle expression medium sup-
plemented with 0.2� penicillin-streptomycin (both from Gibco) on an or-
bital shaker and cultured in FreeStyle medium without penicillin-
streptomycin after transfection. Human healthy control PBMCs were used in
accordance with the IRB protocols of The Rockefeller University.

Antiretrovirals. For use in in vivo experiments, clinical formulations
of maraviroc (Pfizer) and efavirenz (Bristol-Myers Squibb) were thor-
oughly ground using a mortar and pestle, resuspended in H2O, and stored
at �20°C. For use in in vitro experiments, maraviroc and efavirenz were
acquired through the NIH AIDS Research and Reference Reagent Pro-
gram, resuspended in dimethyl sulfoxide (DMSO), and stored at �20°C.
A clinical formulation of enfuvirtide (Roche) was resuspended in sterile
H2O, stored at �20°C, and used for in vivo and in vitro experiments.

Flow cytometry. Whole blood, healthy human PBMC controls, and
MEFs were used to assess expression of hCD4 and hCCR5. MEFs were

harvested using enzyme-free dissociation buffer (Gibco). The following
antibodies were used for stainings: anti-human CCR5-fluorescein iso-
thiocyanate (FITC) and CD4-allophycocyanin (APC) (BD Pharmingen).
Stainings were performed in the presence of mouse FcBlock (2.4G2; Bio X
Cell). To determine cells expressing tdTomato, peritoneal cells were ac-
quired by lavage with ice-cold PBS and stained with anti-mouse F4/80-
APC and B220-FITC (eBioscience) in the presence of FcBlock. Cells were
acquired on a BD LSRFortessa cell analyzer (BD Biosciences) and ana-
lyzed with FlowJo software (TreeStar).

In vitro MEF assay. MEFs were harvested using enzyme-free dissoci-
ation buffer (Gibco) and plated in a 24-well plate at a density of 5 � 104

cells/well in MEF medium. Serial dilutions of pseudoviruses were added
after 8 to 12 h and incubated for 1 day at 37°C. Pseudoviral supernatants
were replaced by fresh MEF medium, and cells were incubated at 37°C for
another day. Medium was removed, cells were lysed in 100 �l ONE-Glo
luciferase assay reagent (Promega) and 100 �l MEF medium for 5 min, and
the lysates were thoroughly homogenized by pipetting. A volume of 150 �l of
each sample was transferred to a white 96-well plate, and luminescence was
measured using a FLUOstar Omega reader (BMG Labtech). Uninfected cells
served as background controls. In some experiments, serial dilutions of anti-
retroviral drugs were added at the step of pseudovirus infection and DMSO
carrier controls were performed (data not shown).

In vivo infections. For vaginal challenge, mice were pretreated by
subcutaneous (s.c.) injection of 3 mg of depot medroxyprogesterone ac-
etate (DMPA; Depo-Provera; Pfizer) 7 days prior to intravaginal applica-
tion of 40 �l of a commercially available 4.0% nonoxynol-9 (N-9) gel
formulation (Conceptrol) 6 h prior to the first viral challenge. A volume of
40 �l of pseudovirus was carefully pipetted into the vagina of isoflurane-
anesthetized mice, which were held in an inverted position for 5 min after
application to allow adsorption of virus. Pseudovirus application was re-
peated after 2 and 4 h. For peritoneal challenge, mice were injected in both
lower abdominal quadrants. Monoclonal antibodies were injected s.c. 1
day prior to virus challenge. For ART experiments, efavirenz and maravi-
roc were applied orally twice by gavaging 0.5 mg or 1.5 mg, respectively, 24
h prior to and at the time of viral challenge; a dose of 40 �g of enfuvirtide
was applied s.c. every 12 h, starting 24 h prior to vaginal challenge and
continuing to up to 12 h after viral challenge. For anti-VSVg experiments,
virus was preincubated on ice for 30 min with anti-VSVg antibody I1 or an
isotype control at a final concentration of 1 �g/ml each prior to injection.
Control medium for VSVg-Cre was DMEM supplemented with 4 �g/ml
Polybrene, 50 mM HEPES, and 3% FBS.

Serum antibody ELISA. The determination of the antibody concen-
trations in serum was performed as described previously (19). ELISA
plates (Corning) were coated with goat anti-human IgG (Jackson Immu-
noResearch Laboratories) at 2.5 �g/ml overnight. Plates were blocked
with 2 mM EDTA and 0.05% Tween 20 in PBS for 1 h at room tempera-
ture. Serial dilutions of mouse serum in PBS were incubated and detected
with a horseradish peroxidase-conjugated goat anti-human IgG (Jackson
ImmunoResearch Laboratories) at a 1:1,000 dilution in blocking buffer.
Samples were subsequently developed with ABTS [2,2=-azino-bis(3-eth-
ylbenzothiazoline-6-sulfonic acid); Invitrogen]. Purified human IgG was
included to generate the standard curve.

Animal luciferase assay. Mice were anesthetized using isoflurane. In
mice that received pseudovirus i.p., 150 �l of a 30-mg/ml solution of
D-luciferin potassium salt (Regis Technologies) was injected i.p., and peak
luminescence was acquired by serial measurements; in mice that received
pseudovirus i.vag., 20 �l of the D-luciferin reagent was carefully applied
i.vag., and luminescence was acquired immediately thereafter. Lumines-
cence was acquired using an IVIS Lumina II apparatus with an exposure
time of 60 s, and regions of interest (ROIs) were analyzed using Living
Image software (both from Caliper Life Sciences).

Ex vivo analysis. For analysis of omental tissues, mice were injected
i.p. with 4.5 mg D-luciferin reagent as described above. Mice were sacri-
ficed after 10 min, omenta were dissected and placed into a black 96-well
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plate, and luminescence was acquired using the IVIS Lumina II apparatus
with an exposure time of 120 s.

Statistical analysis. Statistical analysis was performed using Prism
(version 5) software for the Mac OS X operating system (GraphPad Soft-
ware). Percent infection was calculated using the arithmetic means of
non-log-transformed absolute photon counts per second. A two-tailed
Mann-Whitney U test was used to compare groups, and tests were not
adjusted for multiple comparisons. Data are presented as means � stan-
dard errors of the means (SEMs).

RESULTS

Mice carrying a conditionally transcribed firefly luciferase gene in
the ROSA26 locus, regulated by a loxP-flanked transcriptional
stop element (ROSA-Stop-Luc) (48), can be used to detect Cre
recombinase (Cre) activity by photon emission (48, 49). To test
whether ROSA-Stop-Luc mice can be used to measure viral infec-
tion by HIV-based viruses, we produced Cre-encoding replica-
tion-deficient viruses pseudotyped with the envelope protein G of
the vesicular stomatitis virus (VSVg-Cre). Viruses pseudotyped
with VSVg are pantropic and can infect a broad range of mamma-
lian target cells (50). Bioluminescence was readily detected in
ROSA-Stop-Luc mice after i.p. injection of VSVg-Cre (75 ng p24),
while control mice did not show any specific luciferase activity
(Fig. 1A and B). The signal in the peritoneal cavity showed a major
hot spot at the site of the omentum that peaked 6 days after injec-
tion and that had a signal of 1.5 orders of magnitude above that for
the control (Fig. 1B; P � 0.0159 at day 6). In addition, biolumi-
nescence could be detected in the mediastinal region, the site of
the primary draining lymph nodes of the peritoneal cavity (51);
however, the bioluminescence was at a much lower intensity and
had higher levels of variability than in the omentum (data not
shown). Cre activity results from viral entry mediated by VSVg, as
preincubation of VSVg-Cre with the neutralizing anti-VSVg anti-
body I1 (52) results in nearly complete blockage of infection (P �
0.001), while preincubation with an isotype control did not reduce
infection (P � 0.281) (Fig. 1C). In addition, these results were
reflected by bioluminescence in ex vivo tissue samples of the
omentum (Fig. 1C) and cells harvested by peritoneal lavage (data
not shown). We conclude that HIV-based pseudoviruses encod-
ing Cre can be used to detect viral infection in vivo and ex vivo.

To overcome host restriction for HIV-1 entry, we produced
transgenic mice that carry human CD4 (hCD4), the primary re-
ceptor for HIV-1 (53, 54), and human CCR5 (hCCR5), the most
commonly used coreceptor in initial HIV-1 infection (55–57).
Coexpression of hCCR5 and hCD4 was achieved by linking them on
a single polyprotein transcript separated by a ribosomal skip 2A pep-
tide sequence (19, 58) driven by the human ubiquitin C promoter
(pUP-R plasmid [40]) (Fig. 2A). A founder line was chosen on the
basis of cell surface expression of hCCR5 and hCD4 and bred to
ROSA-Stop-Luc mice to obtain hCCR5� hCD4� ROSA26Luc/Luc

mice (termed HIV-LucTG mice). While expression was considerably
lower than that on human control PBMCs, hCCR5 and hCD4 could
be readily detected on HIV-LucTG bulk PBMCs (Fig. 2B) and on
subsets of splenocytes, including T and B cells, dendritic cells, and
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FIG 1 Intraperitoneal injection of VSVg-Cre (75 ng p24) into ROSA-Stop-Luc
mice results in bioluminescence in the omentum. (A) Representative lumines-
cence 6 days after i.p. injection of control medium or VSVg-Cre. The unmarked
signal in lower left abdomen depicts one site of injection. (B) Time course of
photon flux per second for omental ROI in mice i.p. injected with VSVg-Cre (n �
5) or control medium (n � 4). †, off-scale value (3.27). (C) (Left) Preincubation
with anti-VSVg antibody I1 (total n � 7) blocks VSVg-Cre infection measured 4
days (d4) after i.p. injection by an omental ROI compared to the result for isotype
control mice (total n � 8) and untreated mice (total n � 7), used to define 100%
infection (I1 and isotype controls, respectively; final concentration, 1 �g/ml). Data
were pooled from two experiments. For each experiment, 0% infection was de-
fined by luminescence of uninfected mice (n � 1 to 2). Symbols depict different
individual experiments. (Right) Photon flux per second for omenta dissected after
i.p. injection of D-luciferin 6 days (d6) after VSVg-Cre injection (n � 4 per group).
Dashed line, mean of naive mice; †, negative off-scale values (for I1 mice, �944.7;
for naive mice; �6,075); p/s/cm2/sr, photon flux per second per square centimeter
per steradian; Ab, antibody.

FIG 2 HIV-LucTG mice express hCCR5 and hCD4. (A) Construct used to produce transgenic mice expressing hCCR5 and hCD4 under the control of the human
ubiquitin C (UbC) promoter. SV40, simian virus 40; BGH, bovine growth hormone. (B) Representative fluorescence-activated cell sorter analysis of hCCR5 and
hCD4 expression on PBMCs of an HIV-LucTG mouse, a transgene-negative littermate, and a human healthy control.
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monocytes/macrophages, as well as on subsets of peritoneal cells, in-
cluding B cells and macrophages (data not shown).

Replication-deficient pseudoviruses are frequently used to as-
say viral infection and antibody neutralization in vitro. For exam-
ple, the single-round-infection TZM-bl assay (59) measures lucif-
erase or �-galactosidase activity driven by the viral Tat protein
expressed after infection of target cells. To facilitate quantification
of infectious particles of HIV-1-enveloped and Cre-encoding but
tat-negative pseudoviruses (19), we produced MEFs expressing
hCCR5 and hCD4 from HIV-LucTG mice (Fig. 3A). Infection with
VSVg-Cre, as quantified by luciferase activity, was readily detected
in MEFs generated from both ROSA-Stop-Luc and HIV-LucTG

mice (Fig. 3B). In contrast, viruses pseudotyped with the HIV-1
envelope protein gp160 of YU2, a clade B and difficult-to-neutral-
ize tier 2 HIV-1 strain (YU2-Cre) (60), were able to infect only
HIV-LucTG MEFs (Fig. 3B). Antiretroviral drugs, which interfere
with distinct steps of the viral life cycle, are the cornerstone of HIV
therapy (61, 62). They include efavirenz, a nonnucleoside reverse
transcriptase inhibitor (NNRTI) (63); maraviroc, an hCCR5 an-
tagonist (64); and enfuvirtide, a peptide fusion inhibitor (65). As
expected, infection with YU2-Cre was inhibited in the presence of
all three antiretrovirals tested in our MEF-based in vitro assay,
with 50% inhibitory concentrations (IC50s) being in the nanomolar
range (IC50 of efavirenz, 1.101 nM; IC50 of maraviroc, 0.662 nM; IC50

of enfuvirtide, 5.004 nM), while VSVg-Cre infection was inhibited
only by the NNRTI efavirenz (Fig. 3C). We conclude that HIV-LucTG

MEFs resemble TZM-bl cells, in that they can be used to titrate viral
preparations of Cre-encoding HIV-1 pseudoviruses in vitro, and that

the HIV-LucTG MEF assay can be used to assess the effects of antiret-
roviral drugs on HIV-1 pseudovirus infection in vitro.

Next, we sought to determine whether HIV-LucTG mice can be
used to detect HIV-1 pseudovirus infection in vivo after i.p. injec-
tion. Omental luciferase activity after i.p. injection of 585 TCID50s
of YU2-Cre increased longitudinally in HIV-LucTG mice, peaking
at between days 5 and 8 after injection with a mean signal of 	0.7
to 0.8 order of magnitude (arithmetic and geometric mean) above
that for the hCCR5-negative (hCCR5�)/hCD4-negative (hCD4�)
littermates, which remained unaffected (Fig. 4A and B). To deter-
mine which cells become infected after i.p. injection of HIV-1
pseudoviruses, we bred HIV-LucTG mice to mice harboring a
loxP-flanked tdTomato gene in the ROSA26 locus (66). Peritoneal
lavage performed 6 days after injection of YU2-Cre revealed infec-
tion to be relatively inefficient, with nearly all of the infected cells
being of a macrophage-like phenotype (F4/80-positive B220-neg-
ative), as determined by flow cytometry (Fig. 4C). To test whether
HIV-LucTG mice can be used as a model for preexposure prophy-
laxis, mice were pretreated with antiretroviral drugs or the broadly
neutralizing anti-CD4-binding-site antibody 3BNC117 (24), and
dissected omenta were analyzed 8 (YU2-Cre) or 6 (VSVg-Cre)
days after i.p. injection of the respective virus. Pretreatment with
efavirenz (0.5 mg twice per os [p.o.]), maraviroc (1.5 mg twice
p.o.), or enfuvirtide (40 �g four times s.c.), starting 1 day prior to
viral challenge, significantly reduced infection with YU2-Cre (585
TCID50s; P � 0.0159), while only the NNRTI efavirenz showed a
significant effect on VSVg-Cre infection (2,190 TCID50s; P �
0.0286) (Fig. 4D). In addition, while s.c. injection of 20 �g

FIG 3 MEFs produced from HIV-LucTG mice can be used for in vitro analysis of HIV-1 pseudovirus infection. (A) hCCR5 and hCD4 expression on MEFs from
an HIV-LucTG mouse (solid line) and a ROSA-Stop-Luc mouse (tinted region) determined by flow cytometry. (B) Luminescence after infection of HIV-LucTG

and ROSA-Stop-Luc MEFs with serial dilutions of preparations of YU2-Cre or VSVg-Cre. Infection of HIV-LucTG MEFs was performed in quadruplicate;
infection of ROSA-Stop-Luc MEFs was performed in duplicate. Results of a representative experiment for different viral preparations are presented. (C)
Luminescence after infection of HIV-LucTG MEFs with YU2-Cre (13 TCID50s; red) or VSVg-Cre (35 TCID50s; blue) in the presence of different antiretrovirals.
Dashed lines, luminescence in the absence of antiretrovirals (red, YU2-Cre; blue, VSVg-Cre) and for uninfected MEFs (black, YU2-Cre experiments; gray,
VSVg-Cre experiments). Infections were performed in duplicate. IC50s were calculated using a nonlinear regression curve. n.a., not applicable.
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3BNC117 1 day prior to challenge with YU2-Cre failed to show
protection (P � 0.6905), injection of 200 �g 3BNC117, while not
reaching a level of statistical significance, showed clear protective
effects in three of five treated mice compared to the effect of the
isotype control mGO53 (46) (P � 0.0952) (Fig. 4E). We conclude

that HIV-LucTG mice can serve as a tool to rapidly monitor HIV-1
entry after i.p. injection, primarily by infection of macrophage-
like cells, and that infection can be blocked by antiretrovirals and
neutralizing antibodies.

Cervicovaginal exposure accounts for the majority of global
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FIG 4 HIV-LucTG mice become infected with HIV-1 pseudovirus after i.p. injection. (A) Representative luminescence 8 days after i.p. injection. (B) Time course
of changes in photon flux per second for an omental ROI for HIV-LucTG mice and transgene-negative littermates injected i.p. with YU2-Cre (585 TCID50s)
compared to the luminescence of uninjected mice (left) and photon flux per second 8 days after injection (right). Pooled data from two experiments depicted by
individual symbols are presented (total n starting on day 3, 7 to 8 [one mouse died during the course of the experiment] for HIV-LucTG mice, 8 for negative mice,
and 2 for uninjected mice). (C) Detection of tdTomato-positive (tdTomato�) cells in peritoneal lavage fluid obtained 6 days after i.p. injection of YU2-Cre (585
TCID50s) in hCCR5� hCD4� ROSA26tdTomato/Luc mice or transgene-negative littermates. Representative tdTomato expression found in different cellular subsets
of an hCCR5�/hCD4� mouse is shown. (Left) Gating strategy for cells pregated on the basis of forward scatter and sideward scatter (SSC); (right) mean frequency
(n � 3 per group) of tdTomato-positive cells in cellular subsets of hCCR5�/hCD4� mice and negative littermates. (D) Ex vivo luminescence analysis of dissected
omenta after i.p. D-luciferin injection. Analysis was performed 8 days after i.p. YU2-Cre injection (585 TCID50s) in HIV-LucTG mice (left) and 6 days after i.p.
VSVg-Cre injection (2,190 TCID50s) in ROSA-Stop-Luc mice (right). Mice were pretreated with antiretroviral compounds starting 24 h prior to viral challenge
(efavirenz, 0.5 mg twice p.o.; maraviroc, 1.5 mg twice p.o.; enfuvirtide, 40 �g four times s.c.) or untreated. The log differences in the arithmetic means of photon
flux per second defining 0% and 100% infection are 1.2 (YU2) and 3.0 (VSVg). (E) Ex vivo luminescence analysis of dissected omenta after i.p. D-luciferin
injection. Analysis was performed 8 days after i.p. YU2-Cre (585 TCID50s) injection in HIV-LucTG mice. Mice were s.c. pretreated with 3BNC117 or 200 �g
mGO53 24 h prior to viral challenge. The log difference in the arithmetic mean of photon flux per second defining 0% and 100% infection is 0.74. For panels D
and E, untreated or isotype-treated mice were used to define 100% infection, respectively, and naive mice were used to define 0% infection (n � 4 for
virus-injected groups, n � 2 to 3 for naive mice).
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HIV-1 infections (39). To establish whether HIV-LucTG mice can
be used to monitor genital mucosal infection, we adapted proto-
cols used in macaques and mice and pretreated mice with 3 mg of
DMPA (13, 14, 67–70). Seven days later, a volume of 40 �l of a 4%
N-9 gel formulation (71, 72) was applied to the vagina, 6 h prior to
three vaginal challenges with 160 TCID50s of YU2-Cre every 2 h.
In vivo imaging revealed a luminescent signal in HIV-LucTG mice
that was not seen in controls, peaking at an 	0.7 order of magni-
tude (arithmetic and geometric means) above that for the controls
at between 3 and 5 days after application, and that was not affected
by pretreatment with mGO53 24 h prior to viral challenge (Fig. 5A
and B). Similar results were obtained when mice homozygous for
hCCR5 and hCD4 were i.vag. subjected to viruses pseudotyped
with the JR-FL gp160 (MEF titer, 
1:270), an additional clade B
tier 2 isolate (73), highlighting the flexibility of the system for
infection by different HIV-1 Env pseudotypes (Fig. 5C). To deter-
mine whether HIV-LucTG mice can be used to examine antiretro-
virals or anti-HIV-1 antibodies for prophylaxis, we administered
maraviroc, 3BNC117, or the broadly neutralizing antibody

3BC176, which targets a not yet precisely defined conformational
Env epitope (45), before viral challenge. Pretreatment with mara-
viroc (1.5 mg twice p.o.) nearly completely blocked infection with
YU2-Cre (P � 0.0286), while infection with VSVg-Cre (three
challenges with 175 TCID50s) was not significantly reduced (P �
0.8182) (Fig. 5D). Subcutaneous injection of 3BNC117 1 day prior
to virus application led to a dose-dependent reduction of the level
of YU2-Cre infection compared to that after injection of mGO53
(Fig. 5E). While an injected dose of 2 �g of 3BNC117 failed to
prevent YU2-Cre infection (P � 0.3706), a dose of 20 �g reduced
infection by a mean of 49% (P � 0.025) or 75%, when one unpro-
tected outlier is excluded, and a dose of 200 �g led to complete pro-
tection (�95% reduction of infection) (P � 0.0002). Compared to
the infection in PBS-treated mice, we found a reduction of YU2-Cre
infection by a mean of 71% after s.c. pretreatment with as little as 2 �g
of 3BC176 1 day prior to viral challenge (P � 0.0286), corresponding
to a serum concentration of 0.5 �g/ml at the time of viral challenge,
and complete protection (�96% reduction of infection) after pre-
treatment with 200 �g (P � 0.0286) (Fig. 5F). We conclude that

FIG 5 HIV-LucTG mice become infected with HIV-1 pseudoviruses after intravaginal application. (A) Representative luminescence in HIV-LucTG mice and transgene-
negative littermates 5 days after i.vag. YU2-Cre application (three times with 160 TCID50s). (B) Timeline for experiments (left; d, day; Tx, treatment) and time course of
photon flux per second for vaginal ROI after i.vag. application of YU2-Cre (three times with 160 TCID50s each time) (middle) in PBS-treated HIV-LucTG (n � 6) mice
and transgene-negative littermates (n � 4). Dashed line, luminescence 5 days after application in ROSA-Stop-Luc mice (n � 3). (Right) Pooled luminescence 5 days (d5)
after infection for PBS-treated (total n � 17) or mGO53-treated (200 �g s.c., total n � 10) HIV-LucTG mice and transgene-negative littermates (total n � 6). Symbols
depict individual experiments (n � 7). (C) Photon flux per second 5 days after i.vag. application of JR-FL-Cre (MEF titer 
 1:270; three times with 40 �l each time) and
YU2-Cre (three times with 160 TCID50s each time) in mice homozygous for hCCR5 and hCD4 compared to transgene-negative littermates. Pooled data from two
experiments are presented (total n for hCCR5�/hCD4� mice, �5; total n for negative mice, 2). (D) Infection in mice pretreated with maraviroc (1.5 mg twice p.o.) or
controls 5 days after i.vag. application of pseudovirus. (Left) YU2-Cre infection (three times with 160 TCID50s each time) in HIV-LucTG mice (n � 4). mGO53-
pretreated mice (200 �g s.c., n � 4) (red bar) and ROSA-Stop-Luc mice (n � 3; see panel B) from the same experiment were used to define 100% and 0% infection,
respectively. (Right) Total photon flux per second in ROSA-Stop-Luc mice after VSVg-Cre application (three times with 175 TCID50s each time). Pooled data from two
individual experiments are presented (total n � 6 per group). (E) Infection 5 days after intravaginal application of YU2-Cre (three times with 160 TCID50s each time) in
HIV-LucTG mice s.c. pretreated with 3BNC117 (for 2 �g, total n � 3; for 20 �g, total n � 7; for 200 �g, total n � 6) or 200 �g mGO53 (total n � 10; see panel B) 24 h
prior to viral challenge. Pooled mGO53-treated mice and pooled transgene-negative littermates (total n � 6; see panel B) were used to define 100% and 0% infection,
respectively. Pooled data from a total of five experiments depicted by individual symbols are presented. (F) Infection 5 days after intravaginal application of YU2-Cre
(three times with 160 TCID50s each time) in HIV-LucTG mice s.c. pretreated with 3BC176 or PBS (n � 4 per group) 24 h prior to viral challenge. PBS-treated mice and
pooled transgene-negative littermates (total n�6; see panel B) were used to define 100% and 0% infection, respectively. Numbers show human IgG serum concentration
(n � 5 per group) in �g/ml at the time of viral challenge, and SEMs are in parentheses.

Gruell et al.

8540 jvi.asm.org Journal of Virology

http://jvi.asm.org


HIV-LucTG mice can be used to assay cervicovaginal infection of
HIV-1 pseudoviruses in vivo and to measure prophylaxis mediated by
antiretroviral drugs and neutralizing antibodies.

DISCUSSION

Although significant progress in HIV-1 prevention has been
made, further research is required to establish an efficient vaccine
or optimized pharmaceutical prevention strategies. While studies
in nonhuman primates are the current “gold standard” for late-
stage preclinical studies, the limited number of animals available
and the cost of these experiments make them unsuitable for large-
scale early preclinical studies.

Several small-animal models have been developed to allow as-
sessment of HIV-1 infection. Humanized mice partially reconsti-
tuted with cellular components of the human immune system
allow HIV-1 infection, including mucosal transmission, viral rep-
lication, and long-term viremia resembling the clinical situation
(29–31). However, these mice fail to mount a robust immune
response to HIV-1, rendering them unsuitable for vaccination
studies. In addition, the need for reconstitution can lead to differ-
ences between individual mice. Immunocompetent transgenic ro-
dent models have been established, but to date their use has been
restricted to extramucosal routes of infection (35, 36, 74), which
account for a minority of human HIV-1 infections (39).

HIV-LucTG mice and cells obtained from these mice allow
rapid in vivo and in vitro detection of infection with HIV-1 pseu-
doviruses. These mice differ from humanized mice, in that they
should be immunologically intact and could potentially be used
for vaccine studies. They also differ from previously reported
transgenic models, in that they can be used to assay infection by
mucosal exposure. We have shown that HIV-LucTG mice can be
used to detect infection and prophylaxis mediated by antiretrovi-
rals and anti-HIV-1 antibodies after both intraperitoneal and cer-
vicovaginal application of HIV-1 pseudoviruses.

In this study, we show that passive transfer of neutralizing anti-
HIV-1 antibodies can protect HIV-LucTG mice from cervicovagi-
nal infection with HIV-1 pseudoviruses. In previous experiments,
we have determined an in vitro IC50 of 0.054 �g/ml for the highly
active agonistic anti-CD4-binding-site antibody (HAAD)
3BNC117 against YU2 (24) and measured the 3BNC117 serum
concentration in ROSA-Stop-Luc mice 1 day after subcutaneous
injection (2-�g dose, 0.4 � 0.03 �g/ml; 20-�g dose, 5.0 � 0.6
�g/ml; 200-�g dose, 24.3 � 1.8 �g/ml [mean � SEM, n � 3])
(19). Here, 3BNC117 reduces intravaginal infection by 	50 to
75% after administration of 20 �g, corresponding to a serum con-
centration of 	5 �g/ml at the time of viral challenge (19), which is
roughly 100-fold higher than the in vitro IC50 determined by the
TZM-bl assay. These results are in good agreement with those of
previous macaque studies of vaginal SHIV challenge, indicating
that 50% protection in vivo requires serum antibody concentra-
tions to be 100-fold or more of those needed for 50% neutraliza-
tion in vitro (14, 69, 75). Pretreatment with 3BC176, targeting a
conformational epitope found on cell surface-expressed gp160
(45), led to an 	85% reduction of infection at a serum concen-
tration of 	6.8 �g/ml, only 23-fold higher than the IC50 against
YU2 determined in vitro (0.29 �g/ml) (45). Interestingly, a signif-
icantly reduced infection (	70%) could also be detected in the
presence of a serum concentration of as little as 0.53 �g/ml of
3BC176. These results are consistent with those of work in ma-
caques showing that antibody-mediated protection from vaginal

SHIV challenge can be achieved at relatively low titers (76, 77).
However, it stands in contrast to the findings of antibody therapy
experiments in YU2-infected humanized mice, where 3BC176 was
ineffective at a serum concentration of up to more than 100 �g/ml
(28). Thus, the requirements for prevention and therapy of HIV-1
infection by antibodies may differ significantly.

Establishing infection with HIV-1 pseudoviruses after vaginal
application required pretreatment with both DMPA and N-9,
which may alter the mucosal epithelia and milieu in a way that
does not reflect the human cervicovaginal anatomy and its role in
HIV-1 transmission. Progesterone is frequently used in vaginal
infection models to synchronize estrous cycles and to increase
susceptibility by thinning out the vaginal layer, including models
of simian immunodeficiency virus/SHIV infection in nonhuman
primates (13, 14, 67, 69, 70, 78) and mouse models of HIV-1 (68,
79), human papillomavirus (HPV) (80), and herpes simplex virus
2 (HSV-2) (81) infection. Increased susceptibility to viral infec-
tion after mucosal N-9 application has been described in models
of HPV infection (80) and both vaginal and rectal HSV-2 infection
(72, 82, 83). In addition, an increased frequency of HIV-1 infec-
tion has been found in female sex workers after application of high
doses of N-9 (84). Lesions in cervical and vaginal epithelia de-
scribed after application of N-9 are one likely contributor to these
observations (71, 72), and induction of proinflammatory condi-
tions with an influx of inflammatory cells may increase the num-
ber of potential target cells for HIV-1 infection (72, 85). While the
hCCR5 antagonist maraviroc, which shows only minor inhibitory
activity against murine CCR5 (86), may have reduced a murine
chemokine-mediated influx of cells possibly targeted by pseudo-
viruses in our mouse model (87), in contrast to infection with
YU2-Cre, infection with VSVg-Cre was not markedly reduced in
the presence of maraviroc.

Expression of hCCR5 and hCD4 in HIV-LucTG mice is driven
by the ubiquitin promoter, rendering virtually all murine cell
types potential target cells for HIV-1 pseudoviruses. While both
entry factors could be detected on a number of splenocyte and
peritoneal cell subsets, different cell types may show different sus-
ceptibilities to both pseudovirus infection and protection medi-
ated by antiretroviral compounds and antibodies. In addition,
expression of entry factors in HIV-LucTG mice is markedly lower
than that on human CD4� and CCR5� cells, likely leading to
lower rates of entry factor-dependent infection in HIV-LucTG

mice (88). Fluorescent analysis of individual cells revealed that
murine macrophage-like cells are the main target of HIV-1 pseu-
doviruses after intraperitoneal challenge. While hCCR5-express-
ing macrophages are considered to be among the target cells for
primary HIV-1 infection of R5-tropic HIV-1 in humans, it re-
mains unclear how murine macrophages compare to their human
counterpart. Further studies will be required to determine
whether specific cells are targeted after vaginal application of
HIV-1 pseudoviruses in HIV-LucTG mice and if they can serve as a
model system for rectal transmission of HIV-1. With a signal ap-
proximately 0.7 order of magnitude above that for the controls for
both i.p. and i.vag. infection, the dynamic range of our system is
relatively narrow, and there is some considerable variation in the
amount of infection between individual animals, which may result in
limited sensitivity for the detection of minor differences between in-
dividual antibodies or doses. More importantly, while our study fo-
cused on the use of passively transferred, broadly neutralizing, and
highly potent antibodies for antibody-mediated protection, vaccina-
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tion strategies so far have not resulted in the generation of antibodies
with comparable breadth and potency, and the dynamic range of our
system may not be sufficient to detect the protective effects of anti-
bodies with more limited potency.

While protection in macaque or humanized mouse studies is
usually defined by the absence of viral RNA in peripheral blood,
HIV-LucTG mice do not support efficient viral replication (35,
37), and therefore, this model is limited to studies involving the
entry phase of the viral life cycle. Despite these caveats, HIV-LucTG

mice can serve as a valuable tool for preclinical assessment of
preexposure prophylaxis in HIV-1 infection. They should be suit-
able for vaccination studies, and, as shown in this study, they can
be readily used to assess and compare the protective effects of both
small-molecule antiretroviral drugs and potent anti-HIV-1 neu-
tralizing antibodies.
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