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Abstract
Diabetic nephropathy (DN) represents a major burden to public health cost. Tight glycemic and
blood pressure control can dramatically slow but not halt the progression of the disease, and a
large number of patients progress towards end-stage renal disease despite the currently available
multifactorial interventions. An early and key event in the development of DN is the loss of
podocyte function (or glomerular visceral epithelial cells) from the kidney glomerulus, where they
contribute to the integrity of the glomerular filtration barrier. The recent evidence that podocyte
can be the direct target of circulating hormones, lipids and adipokynes that are affected in
diabetes, has prompted us to review the clinical and experimental evidence supporting novel
endocrine and metabolic pathways in the pathogenesis of podocyte malfunction and in the
development of DN.

Background
Diabetic nephropathy is a chronic progressive disease that affects 20–40% of patients with
diabetes mellitus. Clinical trials have demonstrated that multifactorial interventions can slow
but not halt the progression of DN (1) (2, 3), a medical condition that is associated with
increasing health care costs (4). An early and key event in the development of DN is the loss
of podocytes (or glomerular visceral epithelial cells) from the kidney glomerulus (5–9).
Podocytes and their foot processes make the outer layer of the kidney ultrafiltration barrier;
they are unique cells that form the glomerular slit diaphragm (SD), a complex cellular
structure that prevents the development of proteinuria (10, 11) in an actin cytoskeleton
dependent manner (12). Although the key elements that compose the SD have initially been
thought to be primarily structural molecules, it has become clear that most of them can
initiate a cascade of signaling events that affect podocyte function (13). The function and
integrity of the SD is affected by a multiplicity of factors, and the more recent evidence that
podocytes express receptors for many circulating hormones suggests that a more complex
cross talk between the kidney and other organs affected by diabetes may occur in health and
disease. The intention of this review article is to summarize the evidence that podocyte can
unexpectedly respond to a variety of hormones under physiological condition, and that such
responses may be altered in diabetes.
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Case vignette
The patient is a 60 year-old Hispanic man diagnosed with type 2 diabetes since age 40 who
presents to the nephrology office for the management of diabetic nephropathy. The patient
has been married for 42 years, and he has a 36-year-old daughter who is healthy. His 38-
year-old son, who was recently diagnosed with type 2 diabetes as well, accompanies him.
The patient has never smoked or used illicit drugs, and works as a bank teller. He also has
diabetic retinopathy, for which he had several sessions of laser surgeries to both eyes, and
diabetic neuropathy. His medications include short and long-acting insulin, an angiotensin
converting enzyme inhibitor, a beta-blocker, a loop diuretic, bicarbonate tablets, a phosphate
binder, a vitamin d analogue, iron tablets, aspirin, an HMG-CoA reductase inhibitor, and an
erythropiesis-stimulating agent. When diagnosed with type 2 diabetes some 20 years ago his
renal function had been normal, and a urine albumin-to-creatinine ratio showed an albumin
excretion of 22 mg/g. 5 years later microalbuminuria was detected, and his renal function
declined steadily over the ensuing years. His blood pressures over the years were
consistently around 125–135/75–85 mmHg, and his glycosylated hemoglobin values range
between 7.0 and 7.6%. The patient now has stage 4 chronic kidney disease with an estimated
glomerular filtration rate of 28 ml/min/1.73 m2 using the modification of diet in renal
disease formula, and proteinuria of 1550 mg per day. While the patient at this visit is most
interested in learning about transplantation, he and his son also inquire about new treatment
options that might prevent the occurrence or slow the progression of diabetic nephropathy.

Pathogenesis of Diabetic Nephropathy: a focus on podocyte
Diabetic nephropathy in humans is histopathologically characterized by glomerular and
tubular glomerular basement membrane (GBM) thickening, podocytopenia, mesangial
expansion, glomerular and arteriolar hyalinosis and Kimmelstiel-Wilson nodules. The
earliest clinical manifestation of DN is microalbuminuria (MA), a strong predictor of renal
and cardiovascular disease in both type 1 and type 2 diabetes (14–17). Although predictors
for the development of MA have been identified, such as insulin resistance (18–21), HbA1c
(22, 23), hypertension or weight gain (24), the identification of causative factors responsible
for MA may lead to the identification of novel specific biomarkers of disease initiation and
progression.

The study of podocytes and their role in the pathogenesis of diabetic nephropathy has been
the subject of intense investigation (25), and several studies have shown that decrease in
podocyte density and/or podocyte detachment occurs in diabetic nephropathy in
experimental animals and humans (5–9). Podocytepenia correlates with disease progression
(5, 26), is inversely related to the control of hypertension and diabetes (8), but can also occur
independently of blood pressure (27).

Beside the standard components of the SD that are modulated in diabetes (28, 29), several
metabolic and endocrine factors have been recently shown to affect podocyte function
(Figure 1). Among them angiotensin II has been the most studied and will not be extensively
reviewed herein (30–32). Podocytes have been more recently showed to be the direct target
of less traditional components of the renin angiotensin system (RAS), among which
aldosterone (33, 34) and prorenin (35, 36). Furthermore, insulin (37, 38), adiponectin (39),
sex hormones (40), growth hormone (41–43), and Vitamin D (44) have also been involved
in the direct modulation of podocyte function. Here, we propose that an altered hormonal
melieu and/or an altered podocytes hormones receptor expression contributes to the
podocytopathy observed in DN. We will review the clinical and experimental evidence that
hormonal derangements that characterize diabetes may be associated with the severity of
MA, which may be caused by a change in the ability of podocytes to respond to circulating
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hormones. We will focus our attention on hormones for which both podocyte receptor
expression and clinical relevance have been suggested. We will solely mention other
hormones/parahormones that are most likely additional important modulator of podocytes
function, such as free fatty acids (FFA) (45), lipoproteins (46, 47), adrenocorticotropic
hormone (ACTH) (48), growth hormone releasing hormone (GHRH) (49), and thyroid
hormone (50), as we believe more studies are needed to support their specific function in
DN.

Recent Advances
Rening Angiotensin-system

Renin-angiotensin system (RAS) blockade has widely established antiproteinuric effects in
DN as well as other proteinuric kidney diseases, and it is behind the scope of this study to
review the clinical studies supporting the widespread utilization of RAS blockade for
renoprotection in DN (1). Although many of the effects of these agents can be attributed to
their blood-pressure lowering effects, recent studies have provided valuable insight into the
non-hemodynamic actions of Angiotensin II and other components of the RAS in the
progression of kidney disease. The renin-angiotensin system plays a key role extracellular
matrix (ECM) remodeling (51, 52), podocyte apoptosis (53), local inflammatory response
(32, 54) and cell depolarization (55). The presence of a local podocyte specific RAS
modulated by glucose has been recently described (30), and RAS blockade may lead to
modulation of relevant SD proteins such as nephrin (56, 57) and TRPC6 (58). The
importance of the local RAS in the development of proteinuria comes from a mouse model
overexpressing Ang II type 1 receptor (AT1R) in podocytes (31). It is interesting to note that
RAS blockade may also affect podoycte function through the systemic modulation of
adipokines and insulin sensitivity (59). Angiotensin converting enzyme 2 (ACE2), an
homologous protease of ACE that negatively regulates RAS, has been localized to
podocytes, and in db/db diabetic mice glomerular expression of ACE2 is reduced,
suggesting its utility as a potential target for therapeutic interventions to reduce proteinuria
and the progression of glomerular disease in DN (60). Therefore, it is likely that both
systemic and local effect of RAS blockade contributes to amelioration of podocyte function
in DN.

In the past few years, clinical and experimental evidence has been generated on the
renoprotection of selective aldosterone blockers (61–63). Because aldosterone has
pleiotropic functions, both systemic and local effects may be involved. Interestingly,
podocytes express mineralocorticoid receptor (MR), and MT activation in podocytes alters
the filtration barrier and results in proteinuria (33). Even more interesting, aldosterone
independent MR ligands that are relevant to podocyte function, such as the small GTPase
Rac1, have been identified, underlying the complexity of podocyte signaling in DN (34).

Among other components of the RAS, circulating prorenin is higher in diabetic patients with
microvascular complications when compared to well matched diabetic patients without
complications (64). Increased prorenin may indeed precede the onset of MA in patients with
type 1 diabetes (65). Interestingly, a decoy peptide corresponding to the “handle” region for
non proteolitic activation of prorenin inhibits experimental DN (35). The recent evidence
that podocytes express the prorenin receptor (66), suggests a direct modulation of podocyte
function by prorenin. However, the direct renin inhibitor aliskerin may offer additional
renoprotection in patients treated with Ang II type 1 receptor blocker, suggesting that
aliskiren may have another effect other than blockade of the traditional renin-angiotensin
system (RAS) (67). Indeed aliskerin has been recently shown to block podocyte production
of Ang II in a way that is independent of traditional prorenin receptor signaling through
extracellular signal-related protein kinase (ERK) (36).

Diez-Sampedro et al. Page 3

Am J Kidney Dis. Author manuscript; available in PMC 2013 July 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Insulin
Microalbuminuria is a strong predictor of renal disease and cardiovascular outcome in
diabetic and non diabetic patients. Altered insulin-signaling correlates with the development
of MA in diabetic patients with both type 1 or type 2 diabetes (19, 20, 68, 69), their siblings
(18, 70) and non diabetic individuals (71). Furthermore, insulin sensitizing agents of the
class of thiazolinideniones (TZD) have been shown to offer a degree of renoprotection that
is superior to other agents in patients with diabetes and diabetic nephropathy (DN) (72) as
well as in insulinopenic experimental animal models of diabetes and DN (73).

Several studies have correlated insulin signaling pathways with podocytes function (21).
Coward et al. showed that podocytes are insulin responsive cells (37), and this
responsiveness occurs through their ability to modulated the function of glucose transporters
GLUT1 and GLUT4 expressed in podocyte foot processes and regulated by insulin
sensitizers (74). We have also demonstrated in the experimental db/db mouse model of DN
that the phosphorlylation of AKT, a rate limiting enzyme in the insulin signaling pathway,
was lower in glomeruli from diabetic mice when compared to controls, and podocytes
isolated from db/db mice prior to the onset of MA are unable to phosphorylate AKT in
response to insulin (38). This inability to signal through AKT was associated with an
increased susceptibility to cell death. More recently, elegant studies have demonstrated that
insulin signaling in podocytes is essential for the preservation of the integrity of the
glomerular filtration barrier, as mice with a podocyte specific deletion of insulin receptor
demonstrated a glomerular lesion resembling diabetic nephropathy, even in the absence of
hyperglycemia (75). Further studies will be needed to understand if podocyte function is
dependent on basal and insulin stimulated glucose uptake.

While the clinical and experimental evidence linking podocyte malfunction and insulin
resistance in DN is being established, we can not exclude a direct effect of insulin per se on
podocyte function, as insulin infusions in normal as well as diabetic individuals have been
shown to lead to transient proteinuria (76, 77), and insulin may be inferior to other
hypoglycemic agents for the prevention of DN (78). The effect of insulin per se on podocyte
function in the setting of preserved insulin signaling warrants further investigation.

Estrogens
Estrogens may provide a protective effect against the development and progression of DN
that is lost after menopause (79–81). More recently, the calculated free estradiol was found
to be an independent predictor of the progression from MA to ESRD in men with type 1 DM
and DN (82).

Podocytes express estrogen receptors, and 17-β estradiol treatment of podocytes can
increase ER-β expression (40). Since ER-β is involved in cell survival, it would be
intriguing to test if the podocytepenia that characterizes early DN is related to altered
signaling of estrogen through ER-β. The estrogen receptor modulator tamoxifen may modify
the Erα-Erβ ratio, which in turn may affect the expression of TGF-β, the synthesis of the
matrix metalloproteinases and the pathways involved in apoptotic and anti-inflammatory
signaling (40). In fact, experimental studies suggested that therapy with 17-β estradiol can
affect positively the renal function in DN (83, 84).

Adipocytokines
Recent investigations have focused on the cross talk between adipose tissue and organs
affected by macrovascular and microvascular complications of diabetes. Among the various
cytokine-like hormones secreted by adipose tissue, also referred to as adipokines,
adiponectin is the most abundant (85). Adiponectin is a 30- kDA protein primarily produced
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by differentiated adypocytes. Adiponectin may circulate as a high molecular weight and a
more bioactive low molecular weight form. In humans, adiponectin levels are low in obese
subjects and are associated with increased cardiovascular mortality (86–88) and a
polymorphism in the adiponectin promoter affecting gene expression has been linked to
diabetes and its complications (89).

It is likely that in patients with chronic kidney disease an impaired clearance of adiponectin
may occur, as the levels of adiponectin increase in concordance with decreasing renal
function (90). High adiponectin levels are also associated with progression to end stage renal
disease and with mortality in Type 1 diabetic patients (91–93).

Interestingly, podocytes express both adiponectin receptor 1 and 2 (AR1 and AR2) (39).
Adiponectin null mice develop severe proteinuria and podocyte damage through impaired
AMPK signaling, which can be reversed by the administration of recombinant adiponectin,
which modulates podocyte oxidative stress through an AMPK dependent modulation of the
NADPH oxidase Nox 4 in podocytes. We believe this represent a hallmark study, as it
establishes a cause-effect relationship between adiponectin and albuminuria, a marker of
both insulin resistance and early DN (39). Whether a similar mechanism may be at play in
patients with DN remains to be seen. It is possible that modulation of adiponectin production
by RAS blockade may provide a unifying explanation for the metabolic, cardiovascular, and
renal protection afforded by ACEi and ARB (59).

More recently, increased local production of visfatin by podocytes and proximal tubular
cells have been demonstrated in early experimental diabetic nephropathy {Kang, #904}.
Interestingly, plasma visfatin levels were significantly increased in early stages of diabetic
nephropathy and correlates positively with microalbuminuria, suggesting an important
paracrine role in the development of DN {Kang, #904}.

Vitamin D
Low level of Vitamin D are associated with progression of CKD and mortality (94), and Vit
D treatment not solely reduces cardiovascular mortality (95–97), but also reduces clinical
proteinuria (95–97). Furthermore, vitamin D reduces experimental podocyte loss (98) and
acts synergistically to AT1 receptor blockers in reducing proteinuria in experimental DN
(99, 100) (101), raising the interesting possibility of podocytes being a direct target of
Vitamin D. In fact, podocytes express Vitamin D receptor (44), and Vitamin D can act as a
strong modulator of the local RAS (102–104), suggesting again that there is a complex
interconnection between these hormonal pathways involved in the pathogenesis of DN.

Growth Hormone
Altered Growth Hormone (GH)/Insulin-like Growth Factor (IGF)-1 axis have been
described in diabetes and diabetic nephropathy (105). Several studies have suggested a
direct relationship between the activity of the GH/IGF-1 axis and certain feature of DN, such
as hyperfiltration and MA (106), and somatostatin analogue may be renoprotective in
diabetes (107). In experimental models, overexpression of GH results in severe
glomerulosclerosis (108), and inhibition of GH action through different mechanisms may
improve DN (42, 43, 109). Interestingly, podocytes express GH Receptor (GRH), and
signaling through GHR in podocytes affects oxidative stress and actin remodeling, two
important features of podocyte biology (41). Taken all together, this solid experimental data
suggests that medications targeting the GHR or the GH signaling cascade may represent a
novel approach to prevent and/or treat DN. We would also like to mention that a high
expression of GHRH has been detected in the kidney (49), but a specific function of GHRH
in the kidney remains to be established.
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Others players on the pipeline
Few others endocrine derangements that may deserve further investigation as they might
contribute to the initiation and progression of DN. In particular, the ability of podocytes to
uptake oxidized- Low density lipoprotein (LDL) (46, 47) warrants further investigation, as it
has been shown that LDL removal by apheresis in patients with proteinuric DN improves
not only the lipid profile but also decreases proteinuria and reduced the loss of podocytes in
the urine (110). The role of free fatty acid in the development of MA in DN also remains to
be established, as FFA utilization by podocytes has been described (111, 112) and may
contribute to the development of podocyte specific insulin resistance (45). The evidence that
ACTH deficiency may cause FSGS like lesions (113), together with the evidence that
ACTH has been shown to have antiproteinuric properties in membranous nephropathy (114)
suggests that further investigation on the role of ACTH axis in DN is needed. Finally,
subclinical hypothyroidism is an independent risk factor for DN (115), and levothyroxine
treatment in a diabetic patient with renal insufficiency and hypothyroidism prevented
progressive renal failure (116), suggesting that further investigation on the kidney as a direct
target of thyroid hormone action is warranted.

Summary
Although most of the strategies utilized for the treatment and prevention of DN are currently
related to targeting the RAS and improving hyperglycemia, we have reviewed herein
additional systemic and local hormonal derangement that characterizes DN and that may
lead to novel drug discoveries. We have selected some of the multiple studies suggesting
that DN may result from the hormonal derangement that characterizes diabetes. We find this
topic of particular interest, as it strongly suggests that a cross talk between distant tissues
and organs affected by diabetes may occur. We hope this review will stimulate the reader to
initiate novel experimental and clinical research aimed at finding new targets for the
treatment of DN.
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Figure 1. Podocyte is the target of several hormones
Podocyte injury can result from multiple local or systemic endocrine derangements that
characterize diabetes, see text for details. Solid arrows represent pathways that promote
podoyte injury, while dashed lines indicate protection from podocyte damage. p27: Cyclin-
dependent kinase inhibitor 1B; p38: p38 mitogen-activated protein kinase; PI3:
Phosphatidylinositol 3-kinase; AKT: Protein kinase B; ERK: Extracellular-signal-regulated
kinases; ERβ: Estrogen receptor beta; HSP27: Heat shock 27kDa protein 1; ADIPOR1:
Adiponectin receptor 1; GHR: Growth hormone receptor; IGFR: Insulin-like growth factor
receptor; IR: Insulin receptor; MR: Mineralocorticoid receptor; AT1: Angiotensin II
receptor type 1; (P)RR: (Pro) renin receptor
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