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Summary

Our understanding of human type 1 natural killer T (NKT) cells has been
heavily dependent on studies of cells from peripheral blood. These have
identified two functionally distinct subsets defined by expression of CD4,
although it is widely believed that this underestimates the true number of
subsets. Two recent studies supporting this view have provided more detail
about diversity of the human NKT cells, but relied on analysis of NKT cells
from human blood that had been expanded in vitro prior to analysis. In this
study we extend those findings by assessing the heterogeneity of CD4+ and
CD4- human NKT cell subsets from peripheral blood, cord blood, thymus
and spleen without prior expansion ex vivo, and identifying for the first time
cytokines expressed by human NKT cells from spleen and thymus. Our com-
parative analysis reveals highly heterogeneous expression of surface antigens
by CD4+ and CD4- NKT cell subsets and identifies several antigens whose
differential expression correlates with the cytokine response. Collectively,
our findings reveal that the common classification of NKT cells into CD4+

and CD4- subsets fails to reflect the diversity of this lineage, and that more
studies are needed to establish the functional significance of the antigen
expression patterns and tissue residency of human NKT cells.
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Introduction

Type 1 natural killer T (NKT) cells (referred to hereafter as
NKT cells) are a regulatory lineage of T cells that express a
semi-invariant, CD1d-restricted T cell receptor (TCR) spe-
cific for glycolipid antigens [1]. Many immune activities are
attributed to NKT cells, although they are associated most
often with providing effective immunity against cancer,
infections and autoimmune diseases [2–4]. Given these
varied roles [5,6], it is surprising (and an issue of conjecture
[7,8]) that usually only the CD4+ and CD4- subsets of
mature human NKT cells are assayed when clinically assess-
ing the human NKT cell pool [9]. CD4+ NKT cells produce
cytokines associated with T helper type 0 (Th0) responses,
and CD4- NKT cells are associated with Th1 responses
[10,11]. The extent to which additional functionally distinct
human NKT cell subsets exist is not known, but others have
been defined in mice, and human NKT cells express differ-
entially several cell surface antigens used to define conven-
tional T cell subsets [8,10–13]. A recent study showed that
both the CD4+ and CD4- NKT cell subsets were highly het-

erogeneous in their expression of cell surface antigens and
cytokine production, which suggested that unidentified
functionally distinct subsets may exist within both these
subsets [14]. This was an important finding, however,
similar to earlier reports that examined the significance of
CD8 expression by human NKT cells [15,16], the study
used expanded NKT cell lines to obtain sufficient cell
numbers and it is uncertain whether or not the phenotype
of the expanded cells accurately reflected the in situ (i.e.
non-expanded) human NKT cell pool.

Like many other NKT cell studies, the analysis was con-
ducted using only NKT cells sourced from peripheral blood.
This is an important issue to consider because, although
analysis of blood is the dominant source of cells for assess-
ing patient immunity, NKT cell tissue location is an impor-
tant determinant of their function in mice [17]. Mouse
studies have also shown that the profile of blood NKT cells
often does not reflect NKT cells from other tissue sites [18].
It is not known whether this also applies to human NKT
cells, although NKT cells from human thymus are function-
ally unresponsive compared to blood-derived NKT cells
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[19] and liver NKT cells are distinct from blood NKT cells
in their expression of cell surface proteins [20].

In this study, we characterize the heterogeneity of the
human NKT cell pool by analysing cell surface antigen and
cytokine expression of the overall NKT cell pool and of the
CD4+ and CD4- subsets from different tissues, with an
emphasis on testing freshly isolated, rather than in-vitro-
expanded, NKT cells. We detail significant heterogeneity
within the established CD4+ and CD4- NKT cell subsets
from peripheral blood, thymus, spleen and cord blood and
identify several candidate antigens where differential
expression correlates with distinct patterns of cytokine pro-
duction by blood-derived NKT cells. Our findings provide a
platform for an improved understanding of the complex
organization of the normal human NKT cell pool.

Materials and methods

Tissue origin and isolation of lymphocytes

Peripheral blood mononuclear cells (PBMCs) were isolated
from anti-coagulated blood of healthy donors (Australian
Red Cross Blood Bank Service, Melbourne, Australia) and
from cord blood from the Royal Children’s Hospital (Mel-
bourne, Australia). Thymus tissue was obtained from
cardiac surgery patients at the Royal Children’s Hospital
(Melbourne, Australia). Our group’s analysis of human
NKT cells is part of an ongoing study and, as such, a pro-
portion of the collective thymus and adult blood samples
represented in this study was represented in collective data
that formed part of earlier independent studies published
by our group. Spleen was obtained from organ donor
subjects (Melbourne, Australia). Informed consent was
obtained from all donors or their legal guardians. The
research was approved by one or more of the Health Sci-
ences Human Ethics Committee (University of Melbourne),
the Ethics in Human Research Committee (Royal Children’s
Hospital), the Human Research Ethics Committee (Royal
Melbourne Hospital) and the Human Research Ethics
Committee (Walter and Eliza Hall Institute of Medical
Research).

PBMCs were isolated by gradient centrifugation using
Histopaque (density 1·077 g/ml; Sigma-Aldrich, St Louis,
MO, USA). Thymus tissue was pushed through a stainless
steel sieve into complete media (RPMI-1640 medium; Invit-
rogen Life Technologies, Carlsbad, CA, USA) supplemented
with 10% heat-inactivated fetal bovine serum (JRH Bio-
sciences, Lenexa, KA, USA), 15 mM HEPES (Invitrogen Life
Technologies), 0·1 mM non-essential amino acids (Invitro-
gen Life Technologies), 100 U/ml penicillin (Invitrogen Life
Technologies), 100 mg/ml streptomycin (Invitrogen Life
Technologies), 2 mM glutamax (Invitrogen Life Technolo-
gies), 1 mM sodium pyruvate (Invitrogen Life Technolo-
gies) and 50 mM 2-mercaptoethanol (Sigma-Aldrich).

Spleen was digested in RPMI-1640 medium supple-
mented with 10 mM HEPES, 2 mg/ml collagenase and
0·5 mg/ml DNase at room temperature for 20 min with fre-
quent pipetting; 20 mM ethylenediamine tetraacetic acid
(EDTA) was added to stop digestion and undigested frag-
ments were filtered through a stainless steel sieve. Spleno-
cytes were then overlayed on Ficoll and lymphocytes were
isolated by gradient centrifugation. PBMCs and splenocytes
were usually cryopreserved initially at -80°C [in 10%
dimethylsulphoxide (DMSO), 90% fetal bovine serum]
before transfer to liquid nitrogen storage. Viability of
thawed cells was typically > 90%.

NKT cells were isolated from PBMCs by magnetic bead-
mediated enrichment and/or fluorescence-activated cell
sorting. For magnetic bead enrichment, phycoerythrin
(PE)-conjugated, alpha-galactosylceramide (aGalCer)-
loaded CD1d tetramer-labelled PBMCs were incubated
with anti-PE microbeads (Miltenyi Biotech, Bergisch Glad-
bach, Germany) and passed through an LS column
(Miltenyi Biotech) on a MACS Separator (Miltenyi Biotech)
according to the manufacturer’s instructions. PBMCs were
eluted subsequently into complete media and prepared for
cell sorting on a fluorescence activated cell sorter (FAC-
S)Aria (BD Biosciences).

Antibodies and flow cytometry

Antibodies included: PE-conjugated anti-leucocyte-
associated immunoglobulin-like receptor 1 (LAIR-1)
(DX26), PE-cyanin 7 (Cy7)-conjugated anti-CD3 (SK7) and
anti-CCR7, Pacific Blue-conjugated anti-CD4 (RPA-T4)
and anti-CD3 (UCHT), fluorescein isothiocyanate (FITC)-
conjugated anti-CD25 (M-A251), anti-CD45RA (HI100),
anti-CD62L (Dreg 56), anti-CD16 (3G8), anti-CD127
(hIL-7R-M21), anti-interferon (IFN)-g (B27) and anti-
immunoglobulin (Ig)G1, allophycocyanin (APC)-H7-
conjugated anti-CD8 (SK1), APC-conjugated anti-CD94
(HP-3D9), anti-CD56 (N-CAM), anti-IFN-g (B27), anti-
IL-4 (MP4-25D2), anti-IgG1, AlexaFluor 700-conjugated
anti-tumour necrosis factor (TNF) (MAb11) used for FACs
staining were all purchased from BD Biosciences (San
Diego, CA, USA). APC-conjugated anti-CD161 was pur-
chased from Miltenyi Biotech. PE-conjugated CD84 was a
generous gift from Dr Stuart Tangye (Sydney, Australia).
APC-conjugated CD154 (24–31) was purchased from Biole-
gend. The generation of PE-conjugated aGalCer-loaded
and unloaded CD1d tetramer has been described previ-
ously. PE-conjugated aGalCer-loaded CD1d tetramer is
produced in-house from a construct provided originally by
Professor M. Kronenberg. The aGalCer (PBS44) was
derived either from Alexis Biochemicals, Lausanne, Switzer-
land or from Dr Paul Savage (C24:1 PBS-44 analogue;
Brigham Young University, UT, USA). Intracellular staining
for cytokines was performed using a BD Cytofix/Cytoperm
Plus Kit (BD Biosciences), as per the manufacturer’s
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instructions. Flow cytometry data was acquired using a
LSRII or FACScanto flow cytometer (BD) and analysed
using FlowJo software (TreeStar, Ashland, OR, USA). Analy-
sis excluded autofluorescent cells, doublets and non-viable
cells on the basis of forward-/side-scatter and staining by
7-aminoactinomycin D (7AAD) (Invitrogen Life Technolo-
gies) and vehicle-loaded CD1d tetramer [21].

Cell culture

For in-vitro stimulation of PBMCs, a minimum of 4 million
cells were cultured in 12-well plates in 2 ml cell culture

medium containing 10 ng/ml phorbol 12-myristate
13-acetate (PMA) (Sigma-Aldrich), 1 mg/ml ionomycin
(Sigma-Aldrich) and 2 mM monensin (Golgistop; BD Bio-
sciences) for 4 h. Cells were then prepared for flow cytomet-
ric analysis of intracellular IFN-g, TNF and IL-4 using the
Cytofix/Cytoperm staining kit (BD Biosciences). Sorted
NKT cell subsets were cultured in 96 well v-bottomed plates
in a maximum of 50 ml of complete media containing
10 ng/ml PMA (Sigma-Aldrich) and 1 mg/ml ionomycin
(Sigma-Aldrich) for 16 h. Supernatants were subsequently
removed, frozen and stored at -80°C for cytometric bead
array analysis (CBA).
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Fig. 1. Human natural killer T (NKT) cell frequency and CD4+ and CD4- subset distribution. (a) Frequency of total NKT cells expressed as a

percentage of CD3+ cells in thymus (n = 11), spleen (n = 18), cord blood (n = 25) and peripheral blood (n = 89) from adults. Representative

distribution of T cells (b) and NKT cell subsets (c) defined by expression of CD4 and CD8. Right-hand graphs show collective results. Statistical

analysis using Kruskal–Wallis with Dunn’s multiple comparisons post-test (b,c).
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CBA

Cytokines produced by sorted and stimulated NKT cell
subsets were quantified using the CBA assay (BD Bio-
sciences). Capture and detection antibodies for human IL-2,
IL-4, IL-13, IL-17, IFN-g, TNF, regulated upon activation
normal T cell expressed and secreted (RANTES) and
granulocyte–macrophage colony-stimulating factor (GM-
CSF) were used and detected by flow cytometry. CBA data
was analysed using fcap Array software (BD Biosciences).

Statistical analysis

Statistical analyses were performed with GraphPad Prism
software (Graphpad Software, Inc., La Jolla, CA, USA). Sig-
nificance was determined using Kruskal–Wallis analysis
with Dunn’s multiple comparisons post-test and Wilcoxon
tests.

Results

Human NKT cells from peripheral blood, thymus,
spleen and cord blood

We analysed NKT cells isolated from fresh human thymus,
spleen, cord blood and adult peripheral blood. The mean
NKT cell frequency of donor tissues were similar for
peripheral blood (0·1 (mean) � 0·02 [standard error of the
mean (s.e.m.)], cord blood (0·06 � 0·01) and spleen
(0·08 � 0·03), but significantly lower in thymus
(0·007 � 0·001). Most (> 90%) thymus and cord blood
NKT cells were CD4+, with CD4- NKT cells seen mainly in
peripheral blood and spleen (Fig. 1). In contrast to find-
ings in mice that blood NKT cells provide a poor measure
of NKT cell frequency in spleen [18], we found that
human spleen and blood had similar mean frequencies of
NKT cells and of CD4+ and CD4- NKT cell subsets,
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Fig. 2. Heterogeneous cell surface antigen

expression within CD4+ (white squares) and

CD4- (black squares) natural killer T (NKT)

cell compartments. (a) CD161 (thymus: n = 10;
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although this applies to group analysis, rather than to each
individual donor.

Differential cell surface antigen expression by CD4+

and CD4- NKT cells

A recent publication identified diversity within CD4+, CD4-

and CD8+ NKT cell subsets, but these cells had been
expanded prior to analysis. We analysed cell surface antigen
expression by CD4+ and CD4- NKT cell subsets without
in-vitro expansion and compared blood-derived NKT cells
to those from cord blood, thymus and spleen (Fig. 2). Many
antigens were expressed differentially by the CD4+ and
CD4- NKT cell subsets (Fig. 2a–j), including CD56 and
CD161 (confirming these as ineffective surrogate markers
for human NKT cells), with CD161 expressed more highly
in peripheral blood and spleen than cord blood or thymus.
This confirms CD161’s status as a marker of NKT cell
maturity [19,22,23]. Interestingly, CD161 was expressed by
more CD4- than CD4+ NKT cells (Fig. 2a), which supports
the hypothesis that comparatively immature precursors of
CD4- NKT cells are present within the CD4+ subset [22]
[19,23].

Our analysis did not identify any preferential surface
antigen expression by either of the CD4+ or CD4 NKT cell
subsets. CD8, CD45RA and CD94 were expressed typically
by more CD4- NKT cells (Fig. 2i,j and data not shown),
whereas CD62L, CD127 and LAIR-1 (Fig. 2c,d,b) were
expressed by a higher proportion of CD4+ NKT cells. CD25,
CD56, CD16, CD45RO, CD84, CCR7 and signalling lym-
phocyte activation molecule (SLAM) were expressed differ-
entially by both CD4+ and CD4- NKT cell subsets, but the
pattern of expression was similar for each subset (Fig. 2a–j
and data not shown). NKT cells from thymus, cord blood,
peripheral blood and spleen expressed similar levels of most
antigens, although there were exceptions: CD4 was
expressed by more NKT cells in thymus and cord blood,
CD161 was higher in peripheral blood, CCR7 expression
was lowest in peripheral blood and CD25 was highest in
cord blood.

NKT cell subset cytokine profiling

To determine whether the heterogeneity of human NKT cell
antigen expression reflected functional differences between
subpopulations, we analysed cytokine production by NKT
cells from human adult blood after short-term in-vitro
stimulation. Intracellular cytokine staining for IFN-g, TNF
and IL-4 confirmed Th0 (IFN-g+, TNF+ and IL-4+) and Th1
(IFN-g+, TNF+ and IL-4low) cytokine profiles for CD4+ and
CD4- NKT cells, respectively (Fig. 3). More extensive
cytokine analysis was conducted using CBA to analyse
supernatants from cultures of FACS-sorted NKT cell popu-
lations stimulated with PMA and ionomycin for 16 h to
maximize cytokine output (Fig. 4). A striking finding was

that CD4+ NKT cells produced higher cytokine concentra-
tions of IFN-g, TNF, IL-4, IL-13, GM-CSF and IL-2, despite
intracellular flow cytometry analysis showing similar pro-
portions of IFN-g+ and TNF+ cells in CD4+ and CD4- NKT
cell cultures after 4 h stimulation. We did not detect NKT
cell production of IL-17 or IL-10 (data not shown). Our
data suggest that CD4+ NKT cells exhibit a more prolonged
cytokine production than CD4- NKT cells.

Functional significance of CD62L and CD161
expression by CD4+ and CD4- NKT cells

Having identified differential cell surface antigen expression
within the CD4+ and CD4- NKT cell subsets, we examined
whether this reflected unreported functional heterogeneity.
We focused on two antigens (CD161 and CD62L) known to
be significant for classifying conventional T cell subsets.
Analysis of FACS-sorted subpopulations showed that more
CD161+ NKT cells were IFN-g+ or TNF+ after 4 h stimula-
tion than CD161- cells (Fig. 5a). This was broadly consist-
ent with CBA analysis of supernatants after 16 h of in-vitro
stimulation (Fig. 5b). Differences were seen in cytokine pro-
duction of sorted CD4+ and CD4- NKT cell subsets sepa-
rated on the basis of CD161; however, these were
inconsistent and the trend varied between cytokine types
(Fig. 5b).
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NKT cell subsets defined by CD62L and CD4 expression
provided more consistent trends. CD62L expression is lost
transiently after stimulation, which prevented intracellular
flow cytometry of unsorted NKT cell cultures, but CBA
analysis of supernatants from sorted cells revealed striking
differences in the cytokine profiles at 16 h (Fig. 6). As
expected, cultures of CD4+ NKT cells had the highest
cytokine concentrations, but differential CD62L expression
correlated well with cytokine production within each
subset. For example, CD62L-CD4+ NKT cells were the most
potent producers of IL-4 and IL-13 (with a similar trend for
many other cytokines (Fig. 6), whereas the lower cytokine
production by CD62L+ NKT cells was similar to CD4- NKT

cells (CD4-CD62L+ and CD4-CD62L-). IFN-g was an excep-
tion, with a similar concentration of IFN-g detected in cul-
tures of all four subsets defined by CD62L and CD4
expression.

Cytokine analysis of NKT cells from thymus, cord
blood and spleen

Most human NKT cell studies have involved cells derived
exclusively from peripheral blood. A small number of
studies have analysed NKT cells from thymus [19,22,23],
liver [20], bone marrow [24] and lung NKT cells [25,26],
although these have been mainly in association with
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distinct natural killer T (NKT) cells within

established subsets. Representative fluorescence

activated cell sorter (FACS) plots show

interferon (IFN)-g and tumour necrosis factor

(TNF) production by CD4+ and CD4- NKT

cells from adult human blood after 4 h

PMA/ionomycin stimulation. Graphs show the
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diseases such as cancer or asthma. We are unaware of any
published study where NKT cells from human spleen have
been characterised.

We employed intracellular cytokine staining and CBA
analysis to first analyse cytokine production by FACS-sorted
thymus NKT cells. Thymus NKT cells (and NKT cells from
cord blood) are mainly CD4+ and are reported to be func-
tionally immature cells that do not produce cytokines when
stimulated [19]. Curiously, most thymus NKT cells from
mice are very strong cytokine producers [27], with mature,
functionally competent thymus-resident NKT cells identi-
fied alongside developing NKT cells [28]. In contrast to the
earlier study, we detected TNF and IFN-g using intracellular
cytokine staining of human thymus NKT cells (Fig. 7a), and
IL-2, IFN-g, IL-4 and TNF were all detected in culture
supernatants of thymic NKT cells stimulated for 16 h

(Fig. 7b). Human cord blood NKT cells also produced
cytokines. These cells had a similar surface antigen expres-
sion to NKT cells from thymus (i.e. predominantly CD4+);
however, their cytokine profile was more reminiscent of
CD4- NKT cells from peripheral blood [IFN-g, TNF and
IL-2, but little IL-4 (IFN-g and TNF shown)] (Fig. 7b). Cell
numbers and tissue availability restricted our analysis of
spleen NKT cells, although cytokine profiles were broadly
similar to NKT cells from blood (Fig. 9 and data not
shown). Analysis of matched blood and spleen NKT cells
from a single donor revealed similar cytokine profiles for
IFN-g, TNF and IL-4 (Fig. 9).

Discussion

There is guarded optimism that human NKT cells could
become important clinical tools, but an incomplete under-
standing of the subsets that make up the NKT cell pool has
hampered progress and contributed to a lack of consensus
about the importance of NKT cells (and NKT cell defects)
in different patient groups. We were especially interested
to determine the extent of heterogeneity within freshly
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isolated CD4+ and CD4- NKT cell subsets from a range of
human tissues. We found both subsets to be diverse in their
expression of antigens and cytokines, consistent with the
possibility that each may contain functionally distinct sub-
populations. We used NKT cells from blood to confirm that
cytokine expression by human NKT cells correlates with the
expression of CD4, but we also found correlations with
expression of CD62L and CD161, indicating that differen-
tial antigen expression may be a useful way to identify new
candidate NKT cell subsets. We also demonstrated that
analysis of cytokines secreted by NKT cells over an extended
time may not correlate with the snapshot view afforded by
flow cytometry analysis. This has important implications
for analysing how NKT cells contribute to different areas of
immunity through release of cytokines, and for predicting
the impact of new treatments that seek to stimulate NKT
cell subsets selectively.

We analysed cytokine production by NKT cells from
tissues other than blood, including thymus, cord blood and
spleen. A previous study found that human thymus (and
cord blood) NKT cells did not produce cytokines after
stimulation unless they had been expanded for up to
3 weeks [19], which differs sharply from results using
thymic NKT cells from mice [17]. We confirmed that
thymus NKT cells in humans were predominantly CD4+,
but found that they were capable of significant cytokine
production, including IFN-g, TNF and IL-4. Strong
cytokine staining was also observed using NKT cells from
cord blood, illustrating that many CD4+ NKT cells in
thymus and cord blood are functionally competent,
although the pattern of cytokine expression was distinct

from CD4+ NKT cells isolated from peripheral blood
(Fig. 8). It also raises the question of whether or not there is
a similar resident mature NKT cell population in the
human thymus to that identified recently in mice [28]. We
also performed the first analysis of NKT cells from human
spleen. Fewer surface antigens were analysed for spleen
NKT cells, but these appeared to be similarly heterogeneous
in expression of cell surface antigens to blood-derived NKT
cells, and were similar in their overall frequency and
cytokine profile (IFN-g, TNF and IL-4). This supports the
analysis of blood NKT cells as a representative source of
systemic NKT cells, at least relative to spleen, although
more work is needed to confirm this, including comparative
functional analysis of NKT cells from peripheral blood and
from other peripheral tissues, such as liver and lymph
nodes.

Our data clearly support the concept that heterogeneity
within the NKT cell pool extends well beyond the CD4+ and
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CD4- subsets. More investigations are needed to define the
functional diversity that exists within the human NKT cell
compartment and to correlate this with patterns of antigen
expression and tissue residency, but it appears likely that
that the diverse activities attributed to human NKT cells
relies on an equally diverse array of subsets.
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