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Abstract
An interaction energy decomposition analysis method based on the block-localized wavefunction
(BLW-ED) approach is described. The first main feature of the BLW-ED method is that it
combines concepts of valence bond and molecular orbital theories such that the intermediate and
physically intuitive electron-localized states are variationally optimized by self-consistent field
calculations. Furthermore, the block-localization scheme can be used both in wave function theory
and in density functional theory, providing a useful tool to gain insights on intermolecular
interactions that would otherwise be difficult to obtain using the delocalized Kohn–Sham DFT.
These features allow broad applications of the BLW method to energy decomposition (BLW-ED)
analysis for intermolecular interactions. In this perspective, we outline theoretical aspects of the
BLW-ED method, and illustrate its applications in hydrogen-bonding and π–cation intermolecular
interactions as well as metal–carbonyl complexes. Future prospects on the development of a
multistate density functional theory (MSDFT) are presented, making use of block-localized
electronic states as the basis configurations.

1. Introduction
Intermolecular interactions, particularly non-covalent interactions, play a key role in the
formation of novel materials and folded structures of biological macromolecules. Of great
interest is to use theoretical methods to decipher the individual energy components, which
cannot be individually measured experimentally, and to elucidate the physical principles
governing the overall intermolecular interactions. Although the specific definition of energy
terms is far from stringent, energy decomposition analyses (EDA) can nevertheless help to
provide a deeper understanding of intermolecular interactions, and to guide the development
of force fields in computer simulations of nano-materials and biological systems,1 and in the
rational design of inhibitors,2–5 and proteins with enhanced catalytic efficiency.6–9 In this
perspective, we highlight an interaction energy decomposition analysis based on a block-
localized wavefunction, called BLW-ED, and its extension to multistate density functional
theory (MSDFT), along with selected applications.

A variety of interaction energy decomposition schemes have been proposed in the literature,
most of which are based on a supermolecular model.10–21 Thus, if a supermolecular
complex is composed of k monomers, the total binding energy (ΔEb) can be defined as the
energy change from the infinitely separated monomers to the supermolecular complex:
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(1)

where  is the energy of monomer i, and ESuper is the total energy of the supermolecular
complex, including counterpoise (CP) correction22 to account for the basis set superposition
error (BSSE). The concept of interaction energy decomposition was developed on the basis
of the Hartree–Fock (HF) theory by Morokuma, who partitioned the total interaction energy
into electrostatic (ES), exchange repulsion (EX), polarization (PL), and charge transfer (CT)
components.10 In the subsequent Morokuma–Kitaura approach, which is different from and
should not be confused with the original Morokuma analysis,10 the energy components are
derived from the change in the total energy when certain interaction matrix elements in the
Fock and overlap matrices are zeroed. However, not all energy components are consistently
defined,11e.g., the polarization energy does not satisfy the Pauli exclusion principle,23

resulting in a residual energy term to compensate for the fact that the sum of energy
components is not exactly equal to the total interaction energy. To study intra-unit charge
polarization and inter-unit electron donation in transition metal complexes, Bagus et al.
proposed a constrained space orbital variations (CSOV) method which starts from the
occupied and virtual molecular orbitals (MOs) of two subunits and successively allows the
variation of the occupied MOs of one subunit into the virtual MOs of its own and the other
unit.14 The CSOV has been generalized to open-shell cases24 and extended to density
functional theory (DFT).25–27 Although the incorporation of electron correlation increases
the charge transfer energy, the physical mechanisms from the CSOV analyses at both HF
and DFT levels are essentially the same.25 Similarly, Stevens and Fink developed the
reduced variational space self-consistent-field (RVS SCF) method where the MOs of one
fragment are optimized in the field of the frozen orbitals of the other fragment.15 This
approach is similar but not identical to the methods presented here. Another useful method is
the natural energy decomposition analysis (NEDA),16 in which intermediate supermolecular
and fragmental wave functions are constructed using natural bond orbitals.28,29 The NEDA
method has also been extended to DFT.30 Focusing on the population instead of energetic
variations in the interactions, notably Dapprich and Frenking developed a charge
decomposition analysis in which the wave function of the complex is constructed in terms of
a linear combination of the donor and acceptor fragment orbitals.31

Employing density functional theory, Ziegler and coworkers developed the extended
transition state (ETS) scheme which divides the total interaction energy into electrostatic
interaction, Pauli interaction, and orbital interaction energies.13,32,33 In contrast to other
EDA approaches which deal with non-covalent (thus relatively weak) intermolecular
interactions, the ETS energy decomposition method allows a chemical bond to be broken
into fragments with unpaired electrons to explore chemical bonding interactions within a
molecule.34–36 A further combination of the ETS method with the natural orbitals for
chemical valence (NOCV) theory37 provided the capability of decomposing electron
deformation density and bond energy into various components with chemical bonding
characters such as σ, π, δ etc. bonds.38 In another variant, Wu et al.20 proposed a density-
based EDA scheme using a constrained DFT formalism.39 Similarly, an EDA based on
fragment-localized Kohn–Sham orbitals was developed by Reinhardt et al.19 Additional
approaches focus on energy decomposition into contributions from molecular fragments or
even atoms such as the molecular energy decomposition for atoms in a molecule.40–44

The second route to decomposing interaction energies is based on perturbation theory.45–48

One of the most popular schemes in this category is the symmetry-adapted perturbation
theory (SAPT), which has been derived using both wave function theory and density
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functional theory.49–53 The SAPT method divides the total Hamiltonian into monomer Fock
operators, monomer Møller–Plesset fluctuation operators and the intermolecular interaction
operator. The first-order polarization and exchange corrections are usually interpreted as the
electrostatic and exchange energy terms, respectively, while the second-order corrections
consist of induction and dispersion contributions. Conceptually, the induction energy, as
illustrated in the orbital interaction energy term of the ETS approach,13,32,33 contains both
polarization and charge transfer contributions, but a major interest in energy decomposition
analysis is in fact to elucidate the relative effects of polarization and charge transfer in a
molecular complex. For many-body systems, within perturbation theories, the interaction
energy can be decomposed into two-body, three-body, etc. contributions using many-body
analysis.54,55 While two-body interaction energies make the largest contribution to the
overall energy of a supermolecular complex, an understanding of many-body contributions
is of great interest.

Alternatively, a plausible strategy for interaction energy decomposition analysis can be
formulated based on valence bond (VB) theory56–58 by examining the individually localized
states where electron transfer between different monomers is quenched. In fact,
contemporary concepts of chemical bonding are greatly influenced by the Lewis electron
pairing theory,56,59,60 which was later developed into valence bond (VB) theory.61,62

Usually, a molecule can be adequately represented by a single Lewis structure where
electrons are localized on bonds or atoms. However, when such a Lewis structure is
insufficient to describe the physical and chemical properties of a molecule, such as the
resonance effect in benzene, additional Lewis structures can be included. The energy
difference between the ground state of the mixed Lewis resonance states and a single
primary Lewis structure highlights charge transfer (CT) effects (or resonance delocalization
in conjugated systems). Indeed, many EDA methods follow this strategy, but the differences
lie in the way that the wavefunction of the localized intermediate state is derived.

Starting from the ab initio VB theory,63–65 we have developed a block-localized
wavefunction (BLW) method, in which the wavefunction for an intermediate, electron-
localized state can be variationally optimized.66,67 The initial purpose of the BLW method
was to probe the electron delocalization effects (resonance and hyperconjugation) within a
single molecule.68–71 In 2000, the BLW method was used to formulate the BLW-ED
approach to investigate the origin of intermolecular interactions.72–74 Subsequently, the
BLW method was extended to density functional theory in 2007, called BLW-DFT75 (in
short, BLDFT),76 and the method has been used in multistate density functional theory
(MSDFT) to define diabatic VB configurations.75–78 Note that the BLW-ED method was
recently reformulated by Khaliullin et al.,79 which was called the absolutely localized
molecular orbitals energy decomposition analysis (ALMO-EDA). In the following, we
highlight the theory of the BLW-ED method, along with a number of selected applications.
We emphasize that although the formalisms are given in wave function theory (WFT) for
convenience, they are equally applicable to the Kohn–Sham density functional theory—all
that is needed is to replace the exchange integral in WFT by the exchange-correlation
potential in DFT. We conclude this perspective with a summary of future prospects of the
BLW-ED method.

2. Theory
In this section, we first summarize the basic concepts of valence bond theory relevant to
energy decomposition analysis. Then, we introduce the block-localized wavefunction
(BLW) theory and its counter part using the Kohn–Sham density functional theory along
with its connection to constrained DFT. This is followed by the description of the BLW-ED
method and its computational procedure.

Mo et al. Page 3

Phys Chem Chem Phys. Author manuscript; available in PMC 2013 July 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1 Valence bond (VB) theory
Whereas charge transfer is closely associated with the change in chemical bonding,
polarization effect reflects the response of the molecular wavefunction to the external field.
In view of the current interest in developing polarizable force fields,1,80–88 it is desirable to
be able to obtain quantitative estimates of polarization and charge transfer energies using
electronic structural methods. The valence bond theory provides an ideal framework to
analyze specific energy terms, although we emphasize that a strict discrimination between
polarization and charge transfer effects is not possible, which depends on the definition of
the intermediate electron-localized states, or resonance states in VB terminology.

In VB theory, a resonance state (here we assume a closed-shell of 2n electrons for clarity in
the discussion and the method can easily be generalized to open-shell systems) can be
expressed by a Heitler–London–Slater–Pauling (HLSP) wave function:61,62

(2)

where ML is the normalization constant,  is the anti-symmetrization operator, and φ2i−1,2i
is a function corresponding to the covalent bond between atomic orbitals φ2i−1 and φ2i (or a
lone pair in which φ2i–1 = φ2i):

(3)

Consequently, a HLSP valence bond wave function, corresponding to a Lewis structure in
which electron pairs are localized on bonds of orbitals φ2i–1 and φ2i, comprises 2n Slater
determinants where n is the number of electron pairs. The overall many-electron wave
function for an adiabatic state is a linear combination of all VB functions, which is typically
approximated by a small number of VB configurations that make the greatest contributions.
In recent years, the number of applications using the ab initio VB theory has been steadily
increasing thanks to the development of several fast programs, including the Xiamen
Valence Bond (XMVB) package.89–100 Extensive studies have demonstrated that ab initio
VB methods can be extremely useful in the understanding of chemical reactivity and
reaction mechanisms. In comparison with molecular orbital methods and the Kohn–Sham
DFT, the computational efficiency of VB methods still requires further improvements, but
its benefit is to gain further insights into intermolecular interactions that are not revealed in
delocalized theories.

In molecular orbital (MO) theory, the bond function of two Slater determinants given in eqn
(3) is written simply as one Slater determinant:

(4)

where the primed molecular orbitals  are orthogonal and delocalized over the entire
molecule, in contrast to {φi} in VB which are localized on atomic centers and are
nonorthogonal. The combination of eqn (3) and (4) in eqn (2) leads to the formulation of the
generalized valence bond (GVB) method,101,102 which retains the VB form for one or a few
focused bonds (perfect-pairs) but accommodates the remaining electrons with orthogonal
and doubly occupied MOs.

2.2 Block-localized wavefunction (BLW) and block-localized density functional theory
An alternative combination of the VB and MO theories is to represent bond orbitals with
nonorthogonal doubly occupied orbitals that are fragment-localized (or group
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functions).103,104–115 In line with the conventional VB ideas, we have developed a block-
localized wave function (BLW) method where each BLW corresponds to a unique Lewis
structure, or an electron-localized diabatic state.66,67,72,75 The fundamental assumption in
the BLW method is that the total electrons and primitive basis functions can be divided into
subgroups called blocks or fragments. In the present context of interaction energy
decomposition analysis, each subgroup corresponds to a monomer in a supermolecular
complex.

Let mi be the number of basis functions {χiμ, μ = 1,2,…,mi} and ni the number of electrons
in monomer i. The electron density localized within each monomer is represented by block-
localized molecular orbitals that are constructed as linear combinations of the atomic orbital
basis functions on atoms in that monomer only:

(5)

where  are the orbital coefficients for monomer i. Then, the block-localized molecular
wave function for the supermolecular complex is approximated by a single Slater
determinant as follows:

(6)

Clearly, the difference between a block-localized wavefunction and that of the Hartree–Fock
theory is that the molecular orbitals in the latter approach are expanded over basis functions
of the entire complex, whereas they are constrained within each monomer block only in the
BLW approach. Furthermore, we note that orbitals in the same subspace (block) are subject
to the orthogonality constraint, which retains computational efficiency of molecular orbital
theory, but orbitals belonging to different subspaces are nonorthogonal, which is a
characteristic feature in valence bond theory. Thus, the BLW method combines the
advantages of both MO and VB methods. Note that in eqn (6), k is the number of monomers
in the supermolecular complex.

The energy of the block-localized wave function is determined as the expectation value of
the Hamiltonian H,

(7)

where h and F are, respectively, the usual one-electron and Fock matrices, and the density
matrix D is given by D = C(CTSC)−1CT with S being the overlap matrix of the basis
functions and C the matrix of occupied orbital coefficients. The use of nonorthogonal
fragmental orbitals, firstly in the form of hybrid atomic orbitals, has been described a long
time ago by a number of researchers.106,107,110–115 The optimization of orbitals in BLW can
be accomplished using successive Jacobi rotation66 or an algorithm presented by Gianinetti
et al.,113–116 similar to that of Stoll and coworkers. The latter generates coupled Roothaan-
like equations and each equation corresponds to a block.75,76

Analytical gradients of the BLW energy with respect to nuclear coordinates {qi} can be
easily determined in exactly the same fashion as in the conventional HF theory:113
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(8)

where hμν, dμν, and Sμν are the corresponding matrix elements, and Wμν is a Lagrangian
variable. Though analytical second-order derivatives can be formulated and implemented,
for the time being they are computed numerically. As such, the geometry of the primary
Lewis structure can be optimized.67 The geometry optimization capability of the BLW
strategy allows us to probe the impact of electron transfer effect both on energy and
structure. Note that the optimal Lewis structure corresponds to a hypothetical van der Waals
complex.

Due to the low computational cost and incorporation of electron correlation,32,117–119 DFT
has become a method of choice for studying potential energy surfaces, dynamics, various
response functions and spectroscopy, and excited states.120,121 In DFT, the self-consistent
Kohn–Sham (KS) procedure is analogous to the Hartree–Fock–Roothaan SCF method,
except that the HF exchange integral is replaced by a DFT exchange-correlation (XC)
potential in the Fock matrix

(9)

where the elements of the exchange-correlation matrix KXCα of the α spin electron can be
evaluated by a one-electron integral involving the local electron spin densities (LSD
methods), or by an integral involving electron densities and their gradients (GGA methods).
The block-localized DFT method (BLW-DFT) was established in 2007,75,76 which has been
shown to be a strictly constrained density functional theory (CDFT)39 in that the total
electron density can be rigorously partitioned into the sum of fragment densities:75,76

(10)

where the integration of the fragmental density for monomer i satisfies the charge constraint
by construction of the non-orthogonal block-localized Kohn-Sham orbitals:

(11)

In contrast, the electronic constraint in other CDFT approaches relies on the definition of an
arbitrarily chosen reference integration region, or on densities that neglect the overlap
contributions.122,123 It is clear from eqn (11) that the electron density for the electron-
localized state of a given fragment in the bath of all other monomers, derived from an
antisymmetric wave function, consists of both orthogonal and nonorthogonal contributions,
a feature distinct from other applications of CDFT reported in the literature,122,123 but of
characteristic to VB theory.63–65

2.3 Energy decomposition analysis based on the BLW method
With the definition of the intermediate or block-localized states using BLW where electron
transfer among monomers is quenched, we now can decompose the intermolecular
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interaction energy into a series of five successive but hypothetical steps, characteristic of the
electronic reorganization among the interacting monomers. The concept of energy terms in
the BLW-ED analysis is analogous to the Morokuma energy decomposition scheme, but our
method for evaluating polarization and charge transfer terms is different. There are
similarities with the CSOV14 and RVS SCF15 models, although the BLW-ED method yields
variationally optimized block-localized states that satisfy the Pauli Principle.

In the first step, we define a monomer structural deformation energy, corresponding to the
energy cost for geometrical changes of all monomers in going from their equilibrium

configuration of the isolated species  into the distorted geometries,

{Ri}, in the optimal structure of the supermolecule , where R denotes
the molecular geometry and the superscript “o” specifies that the molecular wave function or
geometry is optimized in the absence of other monomers. Necessarily, the deformation
energy ΔEdef is destabilizing or zero, which is given below:

(12)

where  and  are, respectively, the energy of monomer i at the
geometry in the complex and in isolation, both of which are computed in the absence of all
other monomers. The rest of the computational steps utilize the monomer geometries in the
complex {Ri}. Thus, for clarity of notation, the symbol specifying molecular geometries is
omitted.

Secondly, we bring the distorted monomers together to form the supermolecule with fixed
monomer geometries and electron densities. The only contribution to the interaction energy
among the monomers in this process is electrostatic in nature, and we express this
“Coulomb” state by a Hartree product Θ of the monomer wavefunctions:

(13)

The energy variation in this step is thus defined as the electrostatic (or coulombic) energy

(14)

In the third stage, we enforce the antisymmetry requirement for the molecular wavefunction,
but still we keep the monomer orbitals (and thus the monomer electron density) unchanged
as that in isolation. This results in the initial unpolarized block-localized wave function as
follows:

(15)

The energy difference between the antisymmetrized BLW and the Hartree product
coulombic state corresponds to the Pauli exchange repulsion energy, which is given by

(16)
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In our BLW-ED analysis, both definitions of the electrostatic and exchange energies are
identical to that in the Morokuma–Kitaura approach11 as well as other energy decomposition
schemes such as the ETS-EDA implemented in ADF,32,124,125 and the approach described
by Gordon and Chen implemented in GAMESS.17 The exchange correlation interaction is a
quantum mechanical effect and strongly repulsive as the electron densities of two molecules
are in close proximity. The exchange energy is typically represented by an exponential term
or an r−12 term as in the Lennard-Jones potential. Since the “pure” electrostatic energy is
described by a Hartree product function (eqn (14)) that does not satisfy the Pauli Principle,
we often combine the electrostatic and exchange interaction energies into a single term,
called the Heitler–London energy ΔEHL

(17)

The fourth step corresponds to the response of the electron density within each monomer
fragment due to the external field imposed by the other monomers. The polarization of the
molecular wave function is an energy-lowering process for the complex, but there is no
mutual penetration of electron densities between different monomers within the basis set
approximation. The block-localized wavefunction at this stage is variationally optimized
(eqn (6)), and the corresponding energy change is defined as the polarization energy ΔEpol

(18)

By restricting the relaxation of block-localized MOs in only one monomer, we can further
define the individual polarization energies for the monomers as well. In this case, the sum of
individual polarization energies will not be exactly equal to the total polarization energy
ΔEpol in eqn (18) since polarization interactions are many-body effects. The polarization
energy can be further decomposed into an electronic distortion term and the gain in
interaction energy as a result of the reorganization of molecular wave function, and this
analysis has been used in combined quantum mechanical and molecular mechanical
simulations to understand solvation effects and protein–ligand interactions.126–130

Finally, in the fifth step, we extend the electron distribution from block-localized orbitals
into the basis space of the whole supermolecule. This process may be characterized as
electronic delocalization or simply charge transfer, which further lowers the total energy of
the complex relative to the block-localized state. We note that although there is a distinction
between intramolecular electron delocalization effects and intermolecular charge transfer,
they are not further distinguished in the present context. In addition, as the initial block-
localized MOs are now replaced by MOs which expand in the whole basis space of the
supermolecule, the BSSE is introduced. Consequently, we assign the BSSE correction to the
charge transfer energy term:

(19)

At this stage, the BLW-ED method is described both at the HF and DFT levels, where
electron correlation is either completely or partially ignored. This can be remedied by
performing high-level quantum mechanical calculations that include both dynamic and static
correlation effects and the change in interaction energy over that from HF calculations can
be designated as the dispersion energy ΔEdisp due to the overall electron correlation. In such
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a way, we decompose the overall intermolecular interaction energy into a set of physically
meaningful contributions that can be expressed by the corresponding wave functions as

(20)

The block-localized wavefunction and block-localized density functional theory along with
the BLW-ED method have been implemented into the GAMESS software,131 and all
computations were carried out using GAMESS at the HF and DFT (B3LYP) levels.

3. Applications
3.1 Hydrogen-bonding systems

Hydrogen bonding interactions play critical roles in essentially all processes in condensed
phase chemistry and biology, and the study of these interactions has been a focus of early
applications of EDA methods.12 The magnitude of hydrogen-bonding interaction energies
ranges from a few to tens of kilojoules per mole, and there have been extensive experimental
and computational investigations.23,132,133 Although the origin of hydrogen bonding
interactions has been debated in the past, i.e., either purely electrostatic61,132,133 or partially
covalent nature,134–137 the current consensus is that it is predominantly electrostatic origin,
with minor contributions of covalent character.138 In recent years, several strong hydrogen
bonding interactions, including charge assisted hydrogen bonds (CAHBs),139,140 low barrier
hydrogen bonds (LBHBs),141–143 dihydrogen bonds (DHBs)136,144–147 and resonance-
assisted hydrogen bonds (RAHBs),139,148–151 have also been recognized.

Experimentally, hydrogen bonds can be characterized by NMR chemical shifts and
vibrational spectroscopy. Although the strength of hydrogen bonding interactions
predominantly originates from electrostatic factors, the minor energetic contribution from
charge-transfer effects can have a significant impact on the molecular structure.12,152 Charge
transfer from a hydrogen-bond acceptor Y to the antibonding orbital of a donor bond σXH*
gives rise to an increase in the X–H bond distance and a decrease in the bond order.
Consequently, the formation of a hydrogen bond X–H…Y is typically accompanied by a
decrease in the X–H stretch frequency (red shift). However, in the case of nonconventional
hydrogen bonds,133,153 including C–H…O154 and C–H…π complexes, where the proton
donor is a C–H group, the vibrational frequency is blue-shifted, accompanied by a
contraction of the C–H bond.155–157 The correlation between vibrational frequency shifts
and the amount of charge transfer was investigated by Thompson and Hynes based on an
empirical two-state VB model,158 whereas the cause for blue-shifts has been proposed to be
due to Pauli repulsions on the basis that the vibrational frequency change can be adequately
reproduced at the HF level of theory.156,159 Joseph and Jemmis proposed a unified
explanation for all types of vibrational spectral shifts in hydrogen bonded systems.160 The
BLW method, as we illustrate below, can provide a unique, direct and robust tool to
quantitatively explore the origins of stretching frequency shift.

The present non-orthogonal, block-localized wavefunction (BLW) and density functional
theory (BLDFT) provide the ability to derive electronically localized states that are
variationally optimized, allowing us not only to differentiate energetic contributions from
electrostatic and covalent interactions to a hydrogen bond, but also to probe the significance
of other electronic structural effects such as resonance within the bonding monomers. For
example, the elucidation of the cooperative effects between the π-electron delocalization
and hydrogen bonding interaction in situations where the hydrogen bond donor and acceptor
atoms are connected through π-conjugated double bonds is especially important in the

Mo et al. Page 9

Phys Chem Chem Phys. Author manuscript; available in PMC 2013 July 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



understanding of the resonance-assisted hydrogen bond in DNA base-pairing and proton-
coupled electron transfer. The BLW-ED has been applied to a variety of systems to
investigate the mechanism of synergistic interplay between π delocalization and hydrogen-
bonding interactions, including DNA base pairs, a variety of homodimers of formic acid,
formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxy-
cyclopenta-2,4-dien-1-one, and a model system for β-diketone enols.161,162 The BLW-ED
computational results show that the enhanced interactions mostly originate from classical
dipole–dipole (i.e., electrostatic) attraction as resonance redistribution of the electron density
increases the dipole moments of the individual monomers, whereas there is little change in
covalency of the hydrogen bond. Here, we make use of the double hydrogen-bonded system,
namely the formic acid dimer, as an example to illustrate the component analysis using
BLW-ED.

Following the sequence of physical processes introduced in Section 2.3 with well-defined
intermediate wave functions that constrain specific types of electronic interactions in BLW-
ED analysis, we consider two key steps as depicted in Fig. 1. The first involves the approach
of two formic acid monomers to form a Coulomb complex by localizing molecular orbitals
(or Kohn–Sham orbitals in DFT) within each monomer; in this process, there is no electron
transfer taking place (Fig. 1), but contributions both from electrostatic (including Pauli
exchange repulsion) and from polarization interactions are included. Since only the latter
affects the molecular wave function, the computed vibrational frequency change in this step
can be attributed to polarization effects. The second step corresponds to the expansion of the
block-localized molecular orbitals into the basis space of the entire complex, which is
accomplished by optimizing the dimer geometry and wave function of the fully delocalized
system. Such an electronic delocalization effect is designated as charge transfer energy, and
the additional vibrational frequency shifts are due to electron transfer between the two
monomers.

Computed energetic and geometrical results using the BLW-ED method with the hybrid
B3LYP DFT are given in Tables 1 and 2, in which three different basis sets were used to
examine the dependence of the energy decomposition results on the size of basis functions.
The three basis sets are denoted as BS1 for 6-31G(d), BS2 for 6-311+G(d,p), and BS3 for
cc-pVTZ. Table 2 shows that there is a small basis set dependence on the optimized donor
and acceptor distances, which also contributes to the energy difference with different basis
functions in Table 1. Overall, the effect of basis functions on the energy components is small
for the formic acid dimer as that found in other complexes.68,70,72,75,163,164 If the same
geometries were used in the BLW-ED analysis with different basis sets, the energy variation
would have been even smaller.

Table 1 shows that the coulombic complex of the formic acid dimer would be considerably
stable with a binding energy of about −35 kJ mol−1 from BLDFT calculations without
electron transfer delocalization between the monomers. The stabilization energy may be
attributed to the local dipole–dipole attractions between the two monomers, of which −24 to
−27 kJ mol−1 originate from the permanent (unpolarized) charge distribution and −11 to −13
kJ mol−1 from mutual polarization. The hydrogen bond distance, H⋯O (R2), between the
two monomers shows a modest dependence on the basis set, varying from 2.014Å to
2.047Å. The O–H stretching frequency shows a red shift of 24–66 cm−1 (note that there are
two absorption peaks for the dimer as a result of symmetric and antisymmetric coupling),
and the computed absorption intensity is noticeably increased relative to that of the
monomer.

Electronic delocalization between the two monomers in the formic acid dimer has a dramatic
impact on the optimized hydrogen bond distance in full DFT calculations, with the acceptor
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H⋯O distance shortened by more than 0.3Å (Table 2), whereas the effect on the donor
distance (R1) is rather small. Although we have not investigated if the geometrical changes
are artefacts due to the specific functional used, the structural change is nevertheless
reflected by marked increases in deformation energy of the individual formic acid, in the
Pauli repulsion between the monomers, resulting in a net positive Heitler–London energy
term (Table 1). However, they are more than offset by the enhanced polarization and the
inclusion of charge transfer stabilization. Table 2 shows that the electronic delocalization
from the carbonyl oxygen atom in one monomer to the σOH* in the other greatly weakens
the donor O–H bond order, resulting in a remarkable red shift in the O–H stretching
frequency by 500–600 cm−1 in comparison with the value of the monomer. Furthermore, the
absorption intensity is also significantly increased.

To visualize the effects of polarization and electron transfer on a molecular wave function in
intermolecular interactions, we illustrate the change in electron density induced by mutual
polarization, and then, by electron transfer. The electron density difference (EDD)
isosurfaces are shown in Fig. 2 for the formic acid dimer. The EDD map due to polarization
effect is obtained by taking the difference between the total electrons densities of the
unpolarized monomer wave function (ψBLW0) and the optimal BLW (ψBLW), both at the
geometry of the Coulomb complex optimized using BLDFT (Fig. 1). Similarly, the effect of
electron transfer on the molecular wave function is depicted by the difference between the
total electron density from the fully delocalized Kohn–Sham orbitals in the standard DFT
method and that from the block-localized DFT calculations. Fig. 2a shows that polarization
results in electron density shifts predominantly from the hydroxyl hydrogen atom to the
carbonyl oxygen atom within each monomer, apparently through π-conjugation. The
polarization electron density variation is an important mechanism through which electron
transfer is shown in Fig. 2b to occur across the hydrogen bonds in the direction from the
carbonyl oxygen atom in one monomer to the hydroxyl hydrogen atom in the other
monomer.

The above application of the BLW-ED to the formic acid dimer shows that the BLW-ED
approach, making use of block-localized density functional theory, not only can provide
quantitative results on the individual energy components, but also can yield unique and rich
information on structural and physical properties for the intermediate state where the
electron transfer is quenched.

3.2 Cation–π interactions
Because of the exceptionally strong non-covalent interactions, cation–π complexes have
long been recognized to play a critical role in biomolecular recognition.165,166 In fact, a
variety of cations have been found in close proximity of aromatic sidechains,167–170

suggesting that proteins may use cation–π interactions to bind cationic substrates.171 An
understanding of the origin of cation–π interactions is valuable to dissecting the
mechanisms of enzymatic catalysis involving ionic substrates172–174 and ion
transport.175,176 We have modeled the cation–π interaction in δ-opioid receptor–ligand
binding by considering a series of nonbonded complexes involving N-substituted piperidines
and substituted monocyclic aromatics.177 Of significance is that the BLW-ED analysis
revealed a linear relationship between the total interaction energy and its energy components
for these complexes. This finding helps to explain the dilemma that on the one hand simple
electrostatic models without the explicit treatment of polarization and charge transfer can
model biomolecules with reasonable success, but on the other hand it is well recognized that
both polarization and charge-transfer terms play significant roles in cation–π interactions.

Benzene is a prototypical model to illustrate cation–π interactions, which has no net charge
and molecular dipole moment. Thus, electrostatic interactions in a cation–π complex have
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been assumed to be primarily due to quadrupole moment of the aromatic system.171,178–180

Additional many-body terms, including induction, dispersion and charge transfer also make
important contributions to cation–π interactions.181 It has been shown that molecular
mechanics models with the inclusion of explicit polarization terms can yield better
agreement with experiment on cation–π complexes than pair-wise potentials.182,183 The
BLW-ED method at the DFT level has been applied to a series of cation–π interactions
between cations (Li+, Na+, K+, NH4

+ and N(CH3)4
+) and benzene (Scheme 1), where the

electrostatic and Pauli repulsion energies have been grouped into a single Heitler–London
energy term.75 In this article, we employ HF/6-311G(d,p) to further analyze the individual
contributions of the electrostatic and Pauli energy terms in these five typical cation–π
systems.

Table 3 lists the computed energy components along with the optimized distances between
the cation and benzene centers; in addition, dispersion energy is included at the
MP2/6-311G(d,p) level (except for the N(CH3)4

+−C6H6 complex in which 6-31G(d) is
employed). Geometries and binding energies for the alkali metal ion complexes with
benzene have been addressed by Nicholas et al. at various levels,184 and our optimizations
yield similar results. In particular, cation–benzene separations are found to be 1.89 (1.87),
2.47 (2.42) and 2.98 (2.81)Å for Li+, Na+ and K+ at the HF/6-311G(d,p) (MP2/6-311G(d,p))
level, respectively, whereas the distances from the nitrogen atom for NH4

+ and N(CH3)4
+

are 3.12 (2.89) and 4.58 (4.23)Å, respectively. In all cases, inclusion of electron correlation
reduces the M+–benzene separation, notably in the cases of K+, NH4

+ and N(CH3)4
+; the

importance of dispersion effects follows the order Li+ < Na+ < K+ < NH4
+ < N(CH3)4

+.

Table 3 lists both Coulomb attraction and Pauli exchange repulsion terms. Although the
Coulomb interactions are strongly attractive, in the order of Li+ > Na+ > K+ ≈ NH4

+ >
N(CH3)4

+, as the distance between the cation and the benzene plane increases, they are
largely offset by short range repulsions as a result of orthogonalization of the block-
localized orbitals to satisfy the Pauli Principle. Consequently, the Heitler–London energy,
which consists of the Coulomb and Pauli energy terms, follows the order of NH4

+ <
N(CH3)4

+ < K+ < Li+ < Na+ which accounts for 23% (Li+), 44% (Na+), 40% (K+), 35%
(NH4

+) and 32% (N(CH3)4
+) the overall binding energy in each complex. The non-uniform

correlation between the electrostatic component and the total binding energy makes it
difficult to design a simple pair-wise potential that includes only Coulomb terms to
simultaneously yield good agreement in binding energy and geometry in comparison with ab
initio results.182

Table 3 reveals that the most significant contribution to benzene–cation binding is
polarization in the alkali metal complexes, which dominantly originates from the distortion
of the molecular wave function of benzene. For the three alkali cation–benzene complexes,
the polarization energy contributes 52%, 43% and 32% to the total binding energies for Li+,
Na+ and K+, respectively. It is interesting to note that the polarization effect decreases
roughly exponentially with increasing cation–benzene distance. This finding supports
previous arguments that the explicit inclusion of polarization in molecular interaction
potential is essential to modeling cation–π interactions.182,183,190,191 Without the inclusion
of the polarization effect, even the modified OPLS potential that reproduces the quadrupole
moment of benzene still just yields a binding enthalpy of −98 kJ mol−1 for the Li+−benzene
complex.182 Cubero et al.190 estimated a polarization stabilization energy of −41 kJ mol−1

for the interaction of Na+ with benzene, which is in good agreement with the BLW-ED
analysis (−43 kJ mol−1).

To elucidate the origin of polarization effects, the individual contributions from the cation,
the in-plane σ bonds and the perpendicular π orbitals of benzene are considered. Each
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individual polarization contribution is obtained by optimizing the corresponding orbitals,
while the remaining block-localized orbitals are kept frozen. In addition, we have partitioned
the cation–π system into three blocks, called BLW(3), corresponding to the cation, the σ-
framework, and the π-conjugated system to account for the mutual polarization effects, but
excluding σ–π coupling. The sums of the three separate contributions are −32.8, −13.1,
−6.4, −5.7, and −1.2 kJ mol−1 for the five complexes of Li+, Na+, K+, NH4

+, and N(CH3)4
+,

respectively, which are close to the results from BLW(3) calculations (Table 4). The small
difference reflects the mutual polarization effects from the three (cation, σ, and π orbitals)
independent components. However, if the σ and π orbitals are grouped in the same fragment
to be polarized by a cation, a major enhancement in polarization effect is obtained (the
difference between the last two columns in Table 4), ranging from −54.1 for Li+(C6H6) to
−3.2 kJ mol−1 for the distant hydrophobic cation N(CH3)4

+ (C6H6) complex. The large
energy contributions from σ–π coupling in the electronic polarization of benzene is essential
to the understanding of cation–π interactions, which cannot be properly modeled by
empirical potentials based on dipole polarizability models.

The σ–π coupling in the electronic polarization of benzene can be visualized in the EDD
isosurfaces. Shown in Fig. 3a is the change in electron density due to polarization of
benzene in the electrical field of Li+. Electronic polarization is evidently due to σ→π*
transition, and the overall change is seen as a mushroom cloud effect as the electron density
of benzene flushes from the hydrogen atoms through the σCH orbitals into the highly
polarized, delocalized π* orbitals of carbon atoms. Other cations have similar effects,
although the external field effect decreases as the cation–benzene distance increases. The
difference among the cations can also be confirmed by the natural population analysis.192

The electrical field of the alkali cations shifts 0.258e (Li+), 0.186e (Na+) and 0.138e (K+)
0.132e (NH4

+) and 0.006e (N(CH3)4
+) from the benzene hydrogen atoms into carbon atoms.

Interestingly, Fig. 3b reveals that the electron density accumulated on the side of the
benzene ring facing the cations is transferred into the cation site. Thus, the overall picture of
electronic reorganization in a cation–π complex is the transfer of electron density from the
in-plane hydrogen atoms into the perpendicularly positioned cation through σ–π coupling of
the benzene orbitals. In this case, polarization and charge transfer effects operate in the same
direction to enhance electron density migration.

The BLW-ED analysis demonstrates that charge transfer effects are important and not
negligible in cation–π interactions (Table 3 and Fig. 3), particularly for the small ion Li+, in
which charge transfer stabilizes the Li+⋯benzene complex by −39.3 kJ mol−1 (compared
with −37.2 kJ mol−1 at the DFT level),75 which accounts for 24% of the binding energy. For
other cations, charge transfer effect is not as large as in Li+(C6H6), but still makes sizable
contribution of more than 10% to the total binding energy. Population analysis reveals that
benzene transfers 0.028e, 0.014e, 0.010e, 0.014e and 0.008e to Li+, Na+, K+, NH4

+ and
N(CH3)4

+, respectively. It is interesting to note that although the energetic contributions
from charge transfer effects are significant, the net amount of charge transferred from
benzene to the cations, in fact, is negligibly small from natural population analysis.

3.3 Transition metal complexes
The BLW-ED method provides an excellent venue for studying chemical bonding in metal
complexes such as the metal π–ligand bond,34,193 which is found in a wide range of
materials, catalysts and fuel cells. Here, we illustrate an application to a series of metal–
carbon monoxide complexes. The metal–CO bonding interactions have been extensively
investigated and the experimental observations of the CO vibrational frequency shifts and
variations in metal–ligand bond distance can be well explained by the Dewar–Chatt–
Duncanson model.194–199 Based on this theory, there are two synergic interactions (Scheme
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2); one is the σ dative bond from the lone pair electrons of C to the transition metal, and the
other is the back-donation from a d orbital of the metal center into the virtual π* orbital of
the ligand. Because of the opposite directions in electron flow in σ bonding and dπ back-
donation, both interactions are mutually enhanced in the process. It is of great interest to
evaluate these two kinds of interactions separately, along with the coupling of the forward
and backward electronic flow. Typically, the back-donation from the metal center dominates
the mutual interactions, resulting in net electron transfer from the metal to the ligand,200,201

resulting in a reduced CO bond order and an increase in bond length, evidenced by the
observation of a red-shift in the C–O stretching frequency. However, in other complexes, the
C–O stretch frequencies have been found to be close or blue-shifted relative to that of an
isolated carbon monoxide. Bagus et al. used the CSOV method to estimate the energy
contributions from various types of bonding to the metal–carbonyl bond.14,202,203 It was
found that the CO σ donation contributes just about one third of the bonding interactions
compared with that due to dπ back-donation. This differs from the analysis by Blyholder and
Lawless who separated the total energy into monatomic and diatomic energy terms at the
semi-empirical level, resulting in a conclusion that σ bonding is more important.199

We have used the BLW-ED method to probe the properties of chemical bonding in
transition metal–CO complexes, including the neutral MCO (M = Ni, Pd, Pt) and cationic
M+CO (M+ = Cu+, Ag+, Au+) species using block-localized density functional theory with
the B3LYP functional and the SBKJC valence double-zeta basis with compact relativistic
effective core potentials (SBKJC/ECP) for the transition metals204 and the 6-311+G(d) basis
set for C and O.205 Structural and energetic results are summarized in Tables 5–7.206 Head-
Gordon, Bell and coworkers have also investigated some of these transition metal–CO
complexes.207

Table 5 shows that without electronic delocalization between the transition metal and CO in
BLDFT geometry optimizations, the M–C distances are significantly longer than the
equilibrium structure from standard (delocalized) DFT calculations, implicating the key
roles of σ-donation and dπ-back bonding interactions. Furthermore, electrostatic
polarization of the C=O bond in the presence of the external field of the transition metal
enhances the C=O bond order, resulting in a reduction in bond length and a blue-shift of the
C–O vibrational frequency in the range of 45 to 130 cm−1 both for the so-called classical
and non-classical transition metal–CO complexes. For the neutral species, the exchange
repulsion is the dominant force (HL term in Table 6), which is significantly greater than the
corresponding polarization stabilization. Thus, electrostatic interactions without covalent
bonding interactions through charge delocalization are not sufficient to bring a neutral
transition metal and CO together to form a stable complex other than a van der Waals
complex. On the other hand, for monocationic complexes, the exchange repulsion is
significantly reduced (Table 6), which may be attributed to a more compact electron
distribution of the cation, while polarization effects of the CO group are more critical.
Surprisingly, Table 6 shows that the polarization energy of the CO group is somewhat
greater in the neutral complex than that in the cationic metal center.

Relaxation of the block-localized Kohn–Sham orbitals to the fully delocalized,
unconstrained DFT calculation drastically increases the covalent character in the M–CO
bond, resulting in metal–ligand bond shortening by as large as 0.6 Å and a stabilization
energy of more than 460 kJ mol−1 due to charge transfer in the PtCO complex. Interestingly,
the overall electronic delocalization effects can be separated into σ donation and dπ back-
bonding contributions by specifically block-localizing the corresponding orbitals in BLDFT
calculations. The advantage of our BLW-ED analysis is that the energies due to forward and
backward electronic donation are variationally optimized as opposed to a perturbative
Roothaan step calculation by Khaliullin et al.207 Table 7 reveals that the electronic
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delocalization stabilization due to orbital mixing between the dπ orbital of the metal with the
2π* orbital of CO ΔECT(π) is noticeably greater for the neutral complexes than the
σdonation from the carbon lone pair in CO to the metal dσ orbitals ΔECT(σ). However, not
surprisingly, induction effects through σbonding donation from the ligand to the metal
center are the main factor in the cationic complexes. The reversal of electronic structural
interactions between σdonation and dπ back-bonding in the neutral and cationic complexes
makes a qualitative difference in the computed CO stretching vibrational frequency shifts. In
the neutral complexes, the strong electron back-donation to the 2π* orbital of carbon
monoxide significantly weakens the C–O bond, sufficient to overcome the opposite effect
due to electronic polarization, leading to an increase in the C–O bond length and −92 to
−133 cm−1 red-shifts in the C–O vibrational frequency relative to a free CO. In contrast,
back donation is weak in the cationic, “nonclassical metal carbonyl” species and the CO
stretching vibrational frequency shifts remain positive in good agreement with
experiment.210

In concluding this section, we note that the BLW-ED analysis offers a clear and unified
picture for the different trends in the neutral MCO (M = Ni, Pd, Pt) and cationic MCO+ (M+

= Cu+, Ag+, Au+) complexes. While the CO polarization induced by the metals enhances the
C–O bond and increases the C–O vibrational frequencies, the π back-donation tends to
weaken the C–O bond and decrease the C–O vibrational frequencies. For neutral complexes,
the latter is more prominent than the former, thereby resulting in significant red-shifts in the
C–O vibrational frequencies. In contrast, σ induction in the direction towards the cation
center is most significant, whereas the dπ back-donation is minimal in MCO+ complexes.
Consequently, the C–O bonds in the cationic complexes retain higher bond orders thanks to
electronic polarization effects and blue-shifted vibrational frequencies relative to the free
CO.

4. Prospects
The advantage of the BLW method, expressed both in terms of wave function theory and
density functional theory, lies in the definition and self-consistent optimization of the wave
function of the intermediate, electron-localized states where polarization and charge transfer
among interacting species can be deactivated. While the present energy decomposition
approach divides the total intermolecular interaction into a number of physically intuitive
terms, including structural deformation, electrostatic, Pauli repulsion, and polarization
energy terms, the difference between the optimal results from standard (delocalized) DFT
and block-localized DFT computations manifests the changes in structure and physical
properties due to charge transfer/delocalization effects among the monomers. Note that our
block-localization approach is a general concept, not only applicable to individual molecular
fragments, but also to atomic orbitals on the same element such that specific σ and π
electronic effects can be analyzed.

The BLW method has been implemented both in the Hartree–Fock theory and in density
functional theory. DFT treats dynamic correlations extremely well for compact molecular
structures, a major advantage over WFT in computational costs. However, the current
functionals developed for the Kohn–Sham DFT are less successful for systems that have a
high degree of degeneracy in the electronic structure; here, WFT is more effective in treating
static correlations. Although recent advances in DFT-D schemes, in which molecular
mechanics terms are introduced to model dispersion interactions, have significantly
enhanced the accuracy for treating hydrogen-bonding and van der Waals complexes,211,212

an exploration of methods that go beyond the current Kohn–Sham density functional theory
can be useful.
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To this end, we have described a multistate density functional theory (MSDFT) in which
BLDFT is used to define charge localized, VB-like states, which are used in configuration
interaction or multiconfiguration self-consistent field (MCSCF) approaches to obtain the
adiabatic ground state energy.1,76 The MSDFT method is an extension of the mixed
molecular orbital and valence bond (MOVB) theory that has been extensively used for
chemical reactions in solution previously.126–129

Starting from eqn (6), we first define a charge transfer state between monomers a and b by
combining these two monomers into a single block:1

(21)

where Φab represents a product of molecular orbitals that are constructed using the basis

functions of both monomers a and b,  is a charge transfer state of the two monomers
indexed by the subscript in the electrostatic field of the rest of the system, and N(ab) is a
normalization factor. Clearly, there are k − 1 blocks in eqn (21), whereas there are k
monomer blocks in eqn (6). Thus, the energy difference between the state specified by eqn
(21) and that by eqn (6) can be categorized as the CT energy between monomers a and b in
the presence of all other monomers.

(22)

To a good approximation, the BLW energy (eqn (7)) plus the sum of all pair-wise CT
energies (eqn (22)) provides a first order estimate of the total energy of the supermolecular
complex,106 which can be generalized to trimer corrections and higher order terms.1 An
advantage of the block-localization followed by pair-wise CT energy corrections is that it
divides a large supermolecular calculation into k smaller monomer fragmental
calculations,72–74,106 which naturally leads to a linear-scaling approach as the number of
monomer blocks increases.213–217

The resonance of all dimeric charge transfer states defined by eqn (21), which accounts for
the overall charge delocalization effects in the entire supermolecular complex, can be
represented by the following multistate wave function:1

where the subscript X2 specifies that the configurational basis functions are the dimeric
charge transfer states. Obviously, the extension to many-body CT states is straightforward.1

Two computational approaches have been described.77 In the first method, each CT diabatic
state is first variationally optimized and then used in configuration interaction calculations.
Here, only the configurational coefficients are optimized and this procedure is called the
variational diabatic configuration (VDC) method.77,126–128 Alternatively, in the second
method, both configurational and orbital coefficients in all states are consistently optimized
in the same fashion as in MCSCF theory. The latter approach is called the consistent
diabatic state (CDC) method.77

In MOVB, either using VDC or CDC, the configurational matrix elements are given as
follows:
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(24)

where the subscripts u and w specify, respectively, a given CT state defined by eqn (21), and
J and K are matrices of the Coulomb and Exchange integrals. Importantly, eqn (24) is
equally applicable to MSDFT, with the only exception that the exchange integral K is
replaced by the exchange-correlation potential, Exc[ρuw(r)]:76

(25)

where the density, both for the same state (u = w) and exchange transition state (u≠w), is
given generally as follows:

(26)

where Cu and Cw are the coefficient matrices of occupied orbitals for state functions 

and .

The expression in eqn (23) is a multistate generalization of the single determinant Kohn–
Sham theory, which is used to define and generate the electron densities for the individual
block-localized states. The difference, however, is that the total electron density specified by
eqn (23) is not directly used to determine the adiabatic ground state energy; rather, the latter
is obtained by a multistate self-consistent field procedure. This differs conceptually and
computationally from the ensemble DFT218 and the works of Filatov and Shaik219,220 and
Baerends and coworkers221 in that the coupling of different configurational states is
included. In fact, the generalization of eqn (25) to density functional theory is a key result of
MSDFT. An advantage of MSDFT is that the difficult task of imposing the necessary
constraints to a single determinant to obtain the exact ground state electron density is
separated into constraining densities corresponding to VB-like configurational states.
Consequently, MSDFT takes advantages of both the excellent performance of KSDFT in the
treatment of dynamic correlation and the convenience of multistate configuration interaction
to model static correlation.

A number of issues remain to be addressed. The current functionals developed for the
Kohn–Sham DFT approach may not be suited for such a multistate density functional
approach since the adiabatic ground state energy is not computed from a single, optimized
ground state density, as opposed to the KSDFT algorithm. However, the KSDFT approach is
used to determine the energies and matrix elements of block-localized configurational states.
Thus, these functionals are in principle applicable to BLDFT calculations, which has been
shown to be a rigorously defined constrained DFT (CDFT).76 The use of a
multiconfigurational approach within density functional theory has the suspicion that there is
a double counting of electron correlation effects. This is a subject that still requires careful
examination and testing. Nevertheless, the block-localization procedure constrains electron
distribution corresponding to a given Lewis structure, which naturally introduces nodes into
the wave function. Thus, it is expected that static electron correlations due to configuration
mixing are also reduced or removed from such a constrained DFT approach, which are
subsequently recovered from the configuration interaction or MCSCF procedure.

In concluding this perspective, we use the minimum energy configuration of the water
trimer complex to illustrate an application of MSDFT, in comparison with the results using
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MOVB in WFT, to elucidate the origin of the trimer interaction energy. Table 8 lists the

computed relative energies for the strictly monomer-localized state , for

the pair-wise charge transfer states , and for the resonance delocalized configuration
(ΘX2) corresponding to the adiabatic ground state. Both WFT and DFT are examined; we
note that the multistate approach using WFT is called the mixed molecular orbital and
valence bond theory (MOVB) which has been used in a variety of applications and applied
to the explicit polarization (X-Pol) method as a generalized (GX-Pol) theory,126–129 whereas
it is called MSDFT76 using density functional theory to define block-localized states. In the
latter method, the popular PBE0 and B3LYP functionals are employed.217,222

The energy of the monomeric block-localized configuration relative to the three separated
water molecules is the total electrostatic interaction energy, including mutual polarization
without charge transfer, which are determined to be −36.2, −40.8, and −34.0 kJ mol−1 using

HF and DFT with the PBE0 and B3LYP functions, respectively. The  states yield the
three pair-wise charge transfer energies in the water trimer complex, which amounts to −4.1
to −4.7 kJ mol−1 in the HF theory, and −6.7 to −8.5 kJ mol−1 in DFT. CT makes significant
contributions to the total interaction energy of the water trimer complex. Noticeably, the
numerical results from the present energy decomposition analysis show that there is a
greater CT effect using DFT than using WFT. The total interaction energies ΔEHF/DFT are
−49.2, −63.1, and −57.5 kJ mol−1 at the HF, DFT/PBE0 and DFT/B3LYP levels of theory,
respectively, in which the inclusion of electron correlation in the latter two methods greatly
enhances binding interactions. Remarkably, the sum of the total electrostatic and the three

pair-wise CT  energies yields nearly an identical result as that from
calculations of the full system for all three methods, suggesting a powerful decomposition
procedure in which the total interaction energy of a full system may be estimated, to a high
degree of accuracy, by summing up the monomer and dimer block-localized energies in the
presence of the remainder of the system.156

The resonance delocalization energy of the dimeric CT states, , can be obtained either
through the VDC or through the CDC procedure, accounting for the coupling effects among
the three VB-like diabatic states. Clearly, it is critical to relax the charge densities of
different states in the multiconfiguration, multistate optimizations, without which only about
56% of the total charge transfer effects are obtained in the three-configuration VDC(3)
calculations. On the other hand, the interaction energy from the multistate MOVB/CDC(3)
approach is significantly enhanced; the amount of energy exceeding the full Hartree–Fock
results may be assigned to correlation effects, which is −9.5 kJ mol−1 in the water trimer
structure. It is of interest to note that the MSDFT results with three CT states, using the
PBE0 and B3LYP functionals, essentially reproduced the full DFT interaction energies. This
is a further affirmation that the likelihood of double counting of electron correlation effects
is minimal in the MSDFT method, making use of the current approximate functionals in
KSDFT to define the block-localized configuration states. In this regard, it is important to
notice that the dimeric “CT” energies from DFT calculations in Table 2, in fact, have
contributions both from the charge delocalization effect as that illustrated in the MOVB
theory and from the recovery of electron correlation from the three-block constrained state
to a two-block constrained configuration. If we use the difference between the DFT dimeric
CT energy and that of the HF-MOVB CT energy as a rough estimate of the correlation

energy in the  state relative to the fully monomer constrained , the
sum of the dimer-correlation energies are −9.0 and −10.4 kJ mol−1, a value very similar to
the correlation energy (−9.5 kJ mol−1) from MOVB/CDC(3) estimate. As a result, the total
interaction energies from the MOVB/CDC(3) and the MSDFT calculations are found to be
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in good agreement (the last row in Table 8), yet, the origin of the energy terms from these
methods are quite different. The results show that the MSDFT method can provide valuable
insights that would otherwise be extremely difficult to infer from the delocalized KSDFT
model.
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Fig. 1.
Schematic depiction of two of the computational steps used in the energy decomposition
analysis for the formic acid dimer. In the first step, molecular geometries are optimized
using block-localized density functional theory (BLDFT-Opt) in which charge densities are
constrained within each monomer, whereas charge transfer (CT) effects are included in the
second step in which the dimer geometry is fully optimized using the standard delocalized
density functional theory (DFT-Opt).
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Fig. 2.
Electron density difference (EDD) isosurfaces showing (a) polarization effects within each
monomer in the presence of the electric field of the interacting partner, and (b) electron
transfer between the formic acid monomers as a result of delocalization from the block-
localized to the fully extended Kohn–Sham orbitals in density functional theory calculations
at the B3LYP/6-311+G(d,p) level. Contour levels are shown at 0.001 a.u. (electron per cubic
bohr) with white surfaces representing an increase in electron density and black a decrease
in electron density. Note that the EDD isosurface is used for qualitative purpose and the size
of the density isosurface should not be used as a measure of the magnitude of the density
change, akin to the inadequacy of weighing a lead ball and a mushroom by inspection.
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Fig. 3.
Electron density difference (EDD) isosurface for the Li+(C6H6) complex, depicting (a)
polarization effects (contour level at 0.002 a.u.) and (b) charge transfer effects (contour level
at 0.001 a.u.) from the BLW-ED analysis at the HF/6-311G(d,p) level.
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Scheme 1.
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Scheme 2.
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Table 1

Computed energy components (kJ mol−1) at the molecular geometries optimized using block-localized density
functional theory for the charge-constrained Coulomb complex (BLDFT-Opt), and using the standard density
functional theory for the fully delocalized formic acid dimer (DFT-Opt). All calculations are performed using
the hybrid B3LYP functional with the 6-31G(d) (BS1), 6-311+G(d,p) (BS2), and cc-pVTZ (BS3) basis sets,
respectively

BLDFT-Opt DFT-Opt

Energy term BS1 BS2 BS3 BS1 BS2 BS3

Δ E def 1.4 1.8 1.8 12.8 10.4 13.9

Δ E HL −23.7 −27.1 −24.6 6.1 6.9 18.5

Δ E pol −11.4 −12.5 −13.1 −32.0 −32.2 −41.0

Δ E CT / / / −50.2 −44.4 −53.2

Δ E b −33.7 −37.8 −35.9 −63.3 −59.4 −61.8
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Table 2

Optimized donor (R1) and acceptor (R2) hydrogen bond distances (Å), and O–H stretching vibrational

frequencies (cm−1) along with the corresponding intensities (kM mol−1) for the charge-constrained Coulomb
complex (BLDFT-Opt), for the fully delocalized formic acid dimer (DFT-Opt), and for the monomer. All
calculations are performed using the hybrid B3LYP functional with the 6-31G(d) (BS1), 6-311+G(d,p) (BS2),
and cc-pVTZ (BS3) basis sets, respectively

Monomer Coulomb complex (BLDFT-Opt) Dimer (DFT-Opt)

Property BS1 BS2 BS3 BS1 BS2 BS3 BS1 BS2 BS3

R 1 0.978 0.971 0.970 0.979 0.975 0.973 1.005 0.998 1.003

R 2 / / / 2.014 2.047 2.024 1.691 1.704 1.659

ν(O–H) 3700 3769 3758 3646, 3707 3674, 3732 3668, 3731 3127, 3226 3163, 3276 3077, 3177

Intensity 0.98 1.51 1.37 4.43, 6.92 4.77, 8.24 5.22, 9.08 2.19, 43.12 3.66, 47.04 2.41, 50.16
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Table 3

Optimized ion–benzene separations (angstroms), energy components, and the total binding energies (kJ
mol−1), along with experimental enthalpy of binding for benzene–cation complexes from block-localized
density functional theory using HF/6-311G(d,p). The dispersion correlation energies are determined at the
MP2/6-311G(d,p) level for all complexes except that for the tetramethylammonium ion in which the 6-31G(d)
basis is used

Cation R Δ E def Δ E ele Δ E ex Δ E pol Δ E CT Δ E disp Δ E b ΔH (exp)

Li+ 1.89 1.1 −88.0 50.5 −85.0 −39.3 −2.7 −163.4 −160.2
a

Na+ 2.47 1.2 −73.0 28.8 −43.4 −10.7 −3.0 −100.1 −117.2
b

K+ 2.98 1.0 −54.7 22.8 −25.7 −8.2 −14.6 −79.4 −80.3
c

NH4
+ 3.12 1.8 −52.5 25.3 −23.8 −10.8 −17.9 −77.9 −80.8

d

N(CH3)4
+ 4.58 0.6 −21.0 7.3 −5.4 −5.6 −18.0 −42.1 −39.3

e

a
Ref. 185.

b
Ref. 186.

c
Ref. 187.

d
Ref. 188.

e
Ref. 189.
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Table 4

Individual polarization energies for cation and benzene (kJ mol−1)

Complex M+ π(C6H6) σ(C6H6) BLW-DFT(3) C6H6

Li+ (C6H6) −0.04 −6.32 −26.40 −30.63 −84.73

Na+ (C6H6) −0.08 −2.30 −10.67 −12.93 −43.14

K+ (C6H6) −0.21 −1.00 −5.15 −6.61 −24.89

NH4
+ (C6H6) −0.38 −0.96 −4.35 −6.02 −22.64

N(CH3)4
+ (C6H6) −0.42 −0.08 −0.71 −1.38 −4.60
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Table 5

Optimized bond distances (Å) and vibrational frequencies of CO (cm−1) for the MCO complexes, (M = Ni,
Pd, Pt, Cu+ , Ag+ and Au+), using delocalized and block-localized density functional theories. In BLW-DFT
calculations, the complex is partitioned into two blocks, corresponding to a transition metal and carbon
monoxide, respectively. The SBKJC split valence basis with an effective core potential is used for transition

metals and the 6-311+G(d) basis is used for carbon and oxygen
a

DFT BLW-DFT

M R MC R CO ν CO Δ ν CO 
b R MC R CO ν CO Δ ν CO 

a

Ni 1.672 1.151 2079 −133 2.044 1.120 2293 +81

Pd 1.879 1.142 2112 −100 2.406 1.123 2257 +45

Pt 1.791 1.146 2120 −92 2.360 1.121 2280 +68

Cu+ 1.884 1.116 2316 +104 2.177 1.114 2342 +130

Ag+ 2.199 1.116 2314 +102 2.570 1.117 2307 +95

Au+ 1.968 1.116 2310 +98 2.517 1.116 2320 +108

a
The equilibrium distance and stretching vibrational frequency for CO are 1.127 Å and 2212 cm−1, respectively, from B3LYP/SBJKC-ECP

optimization, which may be compared with the experimental values of 1.128 Å208 and 2143 cm−1.209

b
Frequency shifts are computed relative to that (2212 cm−1) of a free CO.
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Table 6

Computed energy components in the total binding energies (kJ mol−1) for the transition metal–carbon
monoxide complexes using block-localized density functional theory in BLW-ED analysis

M Δ E def Δ E HL Δ E pol Δ E CT Δ E b

Ni 3.3 113.8 −84.9 −311.3 −279.1

Pd 1.3 232.2 −151.5 −241.4 −159.4

Pt 2.1 438.9 −281.6 −462.8 −303.4

Cu+ 0.8 47.7 −105.0 −105.0 −161.5

Ag+ 0.8 37.2 −56.9 −78.2 −97.1

Au+ 0.8 189.1 −135.6 −239.3 −185.0
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Table 7

Individual polarization energies (ΔEpol) from M and CO, and charge transfer stabilization energies due to σ
dative bond ΔECT(σ) and dπ back-donation ΔECT(π)). Energies are given in kJ mol−1

M ΔEpol(M) ΔEpol(CO)
 
a ΔECT(σ) ΔECT(π)

 
b

Ni −48.5 −39.3 2.9 −94.6 −204.2 −12.6

Pd −128.9 −7.9 −14.6 −87.0 −148.5 −5.4

Pt −226.4 −27.2 −28.0 −198.3 −220.1 −44.4

Cu+ −31.0 −62.8 −11.3 −71.5 −32.2 −1.3

Ag+ −15.1 −37.2 −4.6 −63.6 −14.2 −0.4

Au+ −68.2 −50.2 −17.2 −172.4 −53.6 −13.4

a
.

b
.
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Table 8

Computed relative energies (kJ mol−1 ) for the minimum energy structure of a water trimer using MOVB and
MSDFT with PBE0 and B3LYP functionals. All calculations are performed using the aug-cc-pCVDZ basis set
at the HF/6-31+G(d) geometry

Method MOVB
a

MSDFT/PBE0
b

MSDFT/B3LYP
b

 c
0.00 0.0 0.0

−36.2 −40.8 −34.0

−4.7 −8.0 −8.5

−4.1 −6.7 −7.1

−4.6 −7.7 −8.2

−49.5 −63.2 −57.7

Δ E HF/DFT −49.2 −63.1 −57.5

VDC (3) −43.5 −53.2 −47.1

CDC (3) −58.7 −63.1 −57.3

a
Ref. 1.

b
This work.

c
The Hartree–Fock, PBE0, and B3LYP total energies of the three isolated water molecules are, respectively, −228.12879, −229.08669, −229.23051

a.u., using the cc-pCVDZ basis set.
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