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Tropical rainforests in Africa are one of the most under-researched regions in

the world, but research in the Amazonian rainforest suggests potential vulner-

ability to climate change. Using the large ensemble of Atmosphere-only

general circulation model (AGCM) simulations within the weather@home

project, statistics of precipitation in the dry season of the Congo Basin rainfor-

est are analysed. By validating the model simulation against observations, we

could identify a good model performance for the June, July, August (JJA) dry

season, but this result does need to be taken with caution as observed data are

of poor quality. Additional validation methods have been used to investigate

the applicability of probabilistic event attribution analysis from large model

ensembles to a tropical region, in this case the Congo Basin. These methods

corroborate the confidence in the model, leading us to believe the attribution

result to be robust. That is, that there are no significant changes in the risk of

low precipitation extremes during this dry season (JJA) precipitation in the

Congo Basin. Results for the December, January, February dry season are

less clear. The study highlights that attribution analysis has the potential to

provide valuable scientific evidence of recent or anticipated climatological

changes, especially in regions with sparse observational data and unclear pro-

jections of future changes. However, the strong influence of sea surface

temperature teleconnection patterns on tropical precipitation provides more

challenges in the set up of attribution studies than midlatitude rainfall.
1. Introduction
Rainforests are not only the ecosystem with the highest biodiversity, but are

also a key feature in the global carbon cycle as a sink of CO2 and thus are crucial

in the global climate system. A loss of tropical forest would not only mean a loss

of biodiversity, but also amplify climate change by losing the CO2 sink. For

these reasons, Malhi & Wright [1] show that rainforests are potentially strongly

affected by climate change, highlighting the need for more research on how cli-

mate change affects rainforests. Subsequent studies focus mainly on Amazonia,

because IPCC projections jointly show a decrease in precipitation, whereas there

are no clear projections for the African rainforest. In the study of Phillips et al.
[2], it is shown that droughts in rainforests are not only stressful for the local

ecosystem, but exert a strong feedback via the carbon cycle on the global climate

system as a whole. However, results of studies in the Amazon region or south

Asian rainforests are potentially not transferable to African rainforests in a

straightforward way, since the annual precipitation is around 1000 mm per

month less than in Amazonia and temperatures are much lower due to the

higher elevation of African tropical forests [3]. Projections from a multi-model

ensemble of temperature and precipitation changes in a warming African cli-

mate show [4] a significant increase in mean temperatures on the whole

continent and in all seasons with the most pronounced warming in June,

July, August (JJA), but hardly any statistically significant changes in precipi-

tation apart from an increase in precipitation over east Africa and a

pronounced drying in JJA in southern Africa. From the so-called ‘rich-get-

richer effect’, convergence zones such as tropical rainforests are expected to

see an increase in precipitation under global warming [5], however such an
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increase cannot be seen robustly in recent projections. Model-

ling errors aside, this shows that it is not clear which of the

many mechanisms that influence African tropical precipitation

dominate the response to global warming. One important fea-

ture influencing tropical rainfall in Africa is the Indian dipole

oscillation which could potentially weaken under climate

change (discussed by [4]). Vecchi & Soden [6] discuss the possi-

bility of a general weakening of the tropical circulation, which

seems to induce a decrease in precipitation in large parts of the

tropics over land [6]. The overall picture is unclear; moreover,

other factors may be important, for example, James et al. [7] dis-

cuss the possible influence of the rearrangment of zonal

dynamics on precipitation anomalies. If there is a consensus,

it is that most of the above effects could lead to drier and

longer dry seasons (e.g. JJA) in the African tropical forests.

Despite the model disagreement on projections of precipi-

tation changes [8], we analyse simulations of recent decades

of dry season precipitation in the Congo Basin with the aim

to identify changes in the precipitation and exploring whether

they can be attributed to external drivers of the global climate

system. Using the emerging method of probabilistic event

attribution (PEA) [9], the attribution of precipitation changes

to external drivers is employed, aiming at quantifying changes

in the risk of extreme precipitation events. Analysing simu-

lations of Central African precipitation in hindcast models

with prescribed sea surface temperatures (SSTs) results can be

robust in contrast to future predictions. Recent studies show

that climate models forced with observed SSTs can actually

match the observed variability of land precipitation, relating

to ENSO [10], which leads to potentially high predictability of

tropical forest precipitation.

Using the results from a large ensemble of global climate

model simulations, we analyse the dry season in the Congo

Basin as an example attribution study on tropical forest preci-

pitation. We will show analysis for both dry seasons, JJA and

December, January, February (DJF), but will concentrate in

the analysis on JJA because of the clearer signal in projections

as discussed earlier and a better performance of our model

for JJA. By comparing the decade of the 1960s with the 2000s,

and simulations of the 2000s with the anthropogenic climate

signal in the driving SSTs removed, we are able to disentangle

some of the drivers of anthropogenic climate forcing and find

the risk of water stress has not changed significantly.

In §2, PEA is briefly introduced, followed by a description

of the modelling framework and observed and reanalysis

data used for the study. A time-series analysis for validation

purposes is discussed. Results of applying the model in the

region and the attribution study are presented in §3, which

is followed by a discussion and concluding remarks in

§§4 and 5.
2. Material and methods
(a) Probabilistic event attribution
The emergent science of PEA is becoming an increasingly impor-

tant method of evaluating the extent to which human-induced

climate change is affecting localized weather events [11–13].

The method as introduced by Stone & Allen [14] requires

access to a sufficiently large number of simulations to enable

sampling of the uncertainty, so that statistics of the occurrence

of a rare event can be estimated with confidence. The weather@

home project provides such a large ensemble using publicly
volunteered distributed computing [15,16]. Studies employing

PEA rely heavily on climate modelling and have concentrated

on European and US American events. Hence it has been

suggested that these studies make a case for natural scientific evi-

dence as the only basis of decision-making and neglect important

aspects of vulnerability. Therefore, they are claimed to have

negative impacts on adaptation funding in countries with

sparse data [17].

Although the main argument given in Hulme et al. [17] is

unquestionably that PEA relies on the ability of climate models

to represent the true statistics of extreme events, we do not

come to the same conclusion. Hulme et al. [17] conclude that

because models are impossible to verify, the approach is highly

subjective, disguised in scientific objectivity and makes PEA see-

mingly misplaced in the allocation of adaptation funding. We

argue, however, that attribution studies can provide a very valu-

able source of scientific evidence of a changing climate, especially

in regions with sparse observational data and ambiguous projec-

tions of the future impacts of anthropogenic climate change. PEA

is a method that identifies how climate change is affecting us

now. It is not limited to attribution of extreme events that were

already observed, but can assess changing risks of extreme

events that may occur given current and past or counterfactual

climate conditions. PEA could, therefore, provide a method to

identify vulnerability in addition to socially defined capacities,

potentially leading to more objective allocation of adaptation

funding and allowing anticipation of extreme weather events.
(b) Observed datasets
Rainforests are regions with notoriously sparse observational data.

While in recent years, several programmes have started to close

this gap with satellite measurements, most prominently the joint

NASA and Japan Aerospace Exploration Agency (JAXA) tropical

rainfall measuring mission (TRMM), there are no reliable datasets

long enough to analyse trends in precipitation over time periods

longer than two to three decades. The Congo Basin, the heart of

tropical African rainforest is a region where weather stations are

almost absent. As a result, the African rainforest is one of the

most under-researched regions in the world. Hence, analysis of

changes in precipitation patterns in this region relies heavily on

reanalysis data and modelling results.

We identify the Congo Basin (108 S–98 N, 138–308 E) as the

region in the African tropical forest with two wet seasons in

March, April, May (MAM) and September, October, November

(SON) and two dry seasons in JJA and DJF. We concentrate in

this analysis on the JJA season, additional information on the

second dry season DJF can be found in the electronic supplemen-

tary material. The region has barely any weather stations [18]

which renders observed datasets from rain gauge measurements

especially in the pre-satellite era problematic. Figure 1a,c gives an

overview of different observed and reanalysed datasets for JJA

(figure 1a) and DJF (figure 1c) all of which are interpolations of

few station data and satellite measurements, and so are less

reliable than in other parts of the world. Figure 1 also depicts

the ensemble mean (black) and 90% quantile (grey) of the mod-

elling analysis described below. The datasets agree on the mean

precipitation while the interannual variability differs across the

datasets without depicting major extreme events apart from the

2005 drought in JJA, although strong precipitation anomalies

are thought to have extended to the African rainforests in

recent years [3].

The observed datasets are based on satellite measurements in

case of TRMM and CMAP. The merged analysis of precipitation

(CMAP) provided by the climate prediction centre (CPC) at the

National Atmospheric and Oceanic Administration (NOAA)

[19] provides measurements from five different satellites using

active and passive remote-sensing techniques and is thus
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Figure 1. (a,c) Time series of model data (ensemble mean in black, 5 – 95% interval in grey), reanalysis data ERA-interim (magenta) and NCEP (blue) and observed
datasets from satellite TRMM (green), the merged dataset CMAP (cyan) and gauge dataset GPCC (red) for (a) JJA and (c) DJF. (b,d ) The same time series with bias
correction to match mean and s.d. of CMAP for JJA (b) and (d ) DJF.
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independent from raingauge data and reanalysis products.

The data obtained by the TRMM measures high and moderate

precipitation roughly between 358 N and 358 S. TRMM is the

only satellite additionally carrying radar measurements and is

thus providing one of the first comprehensive datasets on the

four-dimensional distribution of precipitation over a region with

very sparse observational data. A further mission is planned to

start in 2014, enabling lighter rainfall to be detected. Because of

the inability of the satellite measurements to detect lighter rain,

the absolute values are likely to underestimate the actual precipi-

tation. Here, version 3B43 is used, which enhances the satellite

measurements with station data to get a best estimate but is

thus not independent of global precipitation climatology centre

(GPCC). GPCC is a gauge-based gridded precipitation dataset pro-

vided by the Deutscher Wetterdienst [20]. Owing to the sparse

station data and the need to interpolate onto a grid, the data are

likely to be unrealistically smooth.

Reanalysis data, in contrast to satellite measurements, feeds

observed data on pressure, winds, temperature and humidity

into reanalysis climate models. Precipitation in reanalysis data is

thus a model product based on observations. For regions with

sparse and unreliable observational data, reanalysis models can

provide good estimates of observed weather and climate events,

especially for those variables used as inputs, but derived variables

such as clouds and precipitation should be regarded as more like

climate model data. The two reanalysis time series in figure 1,

ERA-interim (an ECMWF reanalysis product) and NCEP (the rea-

nalysis product from NOAA), differ considerably, highlighting the

lack of knowledge about the region. Dee et al. [21] note in their

description of ERA-interim that reanalyses data products do not

balance their water budgets and suffer from data homogeneity
problems, especially in Central Africa [22]. With the exception of

TRMM for variability and ERA-interim in the most recent

period, the model (figure 1a) simulates precipitation for JJA of

similar magnitude and interannual variability to the observed

datasets and thus provides a suitable tool to investigate features

of mean precipitation. Precipitation for DJF seems to be biased

throughout towards lower precipitation compared with all

datasets and has a considerably smaller ensemble spread,

represented by the 90% quantile in figure 1c.

(c) Modelling analyses
PEA relies on robust model simulations of large ensembles to

account for changes in the frequency and magnitude of extreme

precipitation events. The main analysis of this study is, therefore,

based on a large global climate model (GCM) ensemble used

to deconstruct the influence of anthropogenic climate forcing

on recent changes in frequency and magnitude of extreme

precipitation events in the tropical forests of the Congo Basin.

Analysing changes in magnitude and frequency of extreme

events and the fraction of attributable risk due to external drivers

such as anthropogenic greenhouse gas emissions, large ensembles

of climate model simulations are needed to sample statistically rare

events. In this study, we make use of the GCM data provided by

the weather@home project.

weather@home is a volunteer distributed computing project,

which uses idle computing time from a network of ‘citizen

scientists’ home computers to run a regional climate model

embedded within a GCM. For this analysis, we use the global

model HadAM3P, an atmosphere only general circulation model

with N96 resolution, (1.258 � 1.8758 resolution, 19 levels), with
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15 min time steps for dynamics, forced using observed SSTs and

sea ice (SI) from the HadISST [23] dataset. HadAM3P is based on

the atmospheric component of the Hadley Centre GCM HadCM3

[24,25], but with some major differences in the parametrizations

[26] improving the representation of clouds, radiation, precipitation

and the sulfur cycle. A large ensemble size is needed to provide

results from which statistical significance and the shape of the dis-

tribution of key variables, which in this study is precipitation, can

be assessed. Also, a sufficiently long period of time is to be simu-

lated to evaluate model bias (figure 1), and to determine whether

the model captures the observed distribution of the relevant vari-

ables (not shown). To generate a sufficiently large ensemble, the

model was run for several years many hundreds of times with

different initial conditions within the climateprediction.net weather@

home project [15,16] via volunteer distributed computing. Output

of the global model for the region of interest provides only monthly

diagnostics, which is not ideal to look at precipitation extreme

events relevant for flooding, for example, however, this is no disad-

vantage for the study since the deficit in rainfall accumulated over

months is especially important for rainforests.

Figure 1 shows a time series of precipitation in the Congo Basin

from 1960 to 2010 for the global general circulation model

(HadAM3P) compared with several reanalysis and observed

datasets. There are no studies reporting significant trends in pre-

cipitation, however, [3] report of droughts in recent years and

the satellite data depict an extremely dry JJA season in 2005. The

model data do not account for this drought and neither do the re-

analysis. However, the model seems to be able to simulate the

mean precipitation with the ensemble average (black line) quite

well for JJA but underestimates DJF precipitation.

Owing to the lack of weather stations, the satellite measure-

ments provide arguably the best estimate of precipitation in the

region, with both showing a higher interannual variability than

the model in figure 1a,c, with the exception of ERA-interim for

DJF, but as noted above satellites do not easily pick up on light

rain and thus may underestimate precipitation. However, a

recent study notes that sparse sampling in station data products

may overestimate rainfall [27]. Extreme events, as the JJA

drought in 2005, are not simulated in the raw model data, how-

ever, a simple bias correction to match the mean and standard

deviation of the longer satellite time series (CMAP) leads to the

model average closely following the variability in the satellite

data for both dry seasons (figure 1b,d ). However, while a

straightforward bias correction matching mean and standard

deviation gives very good results for the ensemble mean it

increases the spread of the whole ensemble considerably as the

scaling factor to match the standard deviation is applied to

every ensemble member leading to unrealistic dry and wet

ensemble members in JJA (see grey shading in figure 1b), while

the spread in the DJF ensemble is still too low in some years to

encompass the observational datasets as the spread is extremely

small in the raw model data. To illustrate the impact of bias cor-

rection, the attribution analysis for the JJA season is done with

raw and bias-corrected model data.

Time-series plots give a good overview of the average model

behaviour and spread of the ensemble and are thus ideal to

assess the suitability of a model to study changes in the mean

state of climatological variables. To investigate extreme events,

it would be beneficial to validate the model analysing the tails

of the distribution to check whether the model simulation ade-

quately represents extreme events in the validation time period.

However, short monthly time series of observed data will prob-

ably not describe well the tails of the precipitation distribution.

Hence, such a model validation exercise might not be very mean-

ingful in this region, especially as it is unclear which observed

dataset best represents reality. The latter also underlines the

fact that bias-corrected data might not be better than raw

model data in the Congo Basin.
For the attribution study, we follow a methodology similar to

Otto et al. [13] that uses large ensembles of GCMs to assess the

change in risk of a July 2010-type Russian heat wave under

two different climate scenarios: observed July 1960–1969 and

observed July 2000–2010. We apply this method for precipitation

in the dry season, using decadal average simulations of the JJA

season climate of 1960–1970 and 2000–2010, which reduces

some of the effects of natural variability and allows both scen-

arios to be validated against observed data and the application

of straightforward bias correction. Additionally, we analyse a

third climate scenario [12,28]: a counter factual ensemble simulat-

ing 2000–2010 dry season precipitation forced with SSTs as

might have been had anthropogenic warming not taken place.

This counter factual or natural-only forcing characterizes a

climate forcing that is identical to the one we observed in the

last decade, but representing greenhouse gas emissions held at

a pre-industrial level, thus simulating a world that might have

been without anthropogenic greenhouse gas forcing.

The attributable twentieth-century greenhouse gas warming

in SSTs cannot be found directly from observations because

observations also contain the signal of both natural (e.g. solar

and volcanic) and other anthropogenic (e.g. sulfate aerosol)

drivers, and internal variability. Instead, we obtained the pre-

industrial SSTs similar to estimates in prior studies [11], using

the method described in more detail in [28]. The Met Office

state-of-the-art-coupled climate model HadGEM2 is used to com-

pute SST difference fields by subtracting SSTs of a HadGEM2

‘natural’ run without anthropogenic greenhouse gas, ozone,

SO2 and DMS forcing as provided for the coupled model inter-

comparison project (CMIP5, [29]) from the same model runs

with ‘all forcing’. These SSTs differences are then subtracted

from HadISST SSTs. To reduce noise, the SST differences are

produced using decadal averages.

The counterfactual SSTs were then used to estimate the sea ice

concentration for the ‘world that might have been’. All three cli-

mate scenarios of African tropical forest dry season precipitation

are subsequently used to analyse changes in extreme Congo

Basin precipitation events, aiming at identifying the fraction of

attributable risk on global climate change.
3. Results
As described earlier, African precipitation is highly influenced

by large-scale teleconnection patterns, e.g. ENSO or the Indian

dipole oscillation. This is an important factor to take into

consideration for attribution studies since it can make the dis-

entangling of external drivers more difficult than in other

regions with synoptic precipitation of high internal variability.

In the following, the potential predictability of African preci-

pitation owing to strong influences of external drivers is

analysed as well as the coherence of precipitation in the

Congo Basin. The latter is also an important precondition for

an attribution analysis.

(a) Coherence and predictability of
precipitation patterns

In addition to comparing model simulated time series with

observed datasets, we analyse the ratio of external and internal

variance of precipitation in the model as a measure of the

signal-to-noise ratio, to identify the potential predictability of

precipitation in the region of interest. The ratio of external to

internal variance as introduced by Kumar & Hoerling [30]

computes the external variance as the variance of the mean,

an indicator of external variability due to external drivers
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and the internal variance, the mean of the variance, as an

indicator of internal variability. Values are very small in midla-

titudes and higher over the tropical oceans. Figure 2 shows the

ratio of external and internal variance in African dry season pre-

cipitation (JJA (figure 2a) and DJF (figure 2b)). Values of the ratio

are high over Central Africa in JJA with very high values at the

coasts and over the oceans (not shown) and lower values over

the Congo Basin and very low values in northern and southern

Africa. The ratio in the Congo Basin, especially in the southwes-

tern part of the region is still considerably higher than in most

parts of the world, indicating that precipitation is strongly con-

nected to SSTs. In DJF, values are generally lower and shifted

towards the south, indicating a less strong dependency on

global SST patterns in that season.

Regions of high values give an estimate of the potential

predictability of precipitation with respect to SSTs which in

turn depend on external forcings and teleconnection patterns.

High values in Central Africa indicate high predictability of

precipitation from given SSTs which lends credibility to tropi-

cal precipitation in an SST-driven climate model, underlining

that it is an appropriate tool for this study especially for ana-

lysing JJA precipitation. However, the variance ratio is not
independent of the spatial resolution, increasing the size of

the gridboxes increases the ratio. Furthermore, in an SST-

driven model, it is no surprise that predictability appears to

be higher at the coasts and over oceans with direct influence

of ocean temperature.

The comparably high JJA values over the Congo Basin,

away from the coasts leads to the conclusion that despite

the deficits of the method, the potential predictability of

Central African precipitation is also high in that season.

Thus, interconnection of precipitation patterns and external

drivers are likely to be detectable, which is integral to the

attribution of identified changes in precipitation patterns to

external drivers. Studies might be less reliable for DJF.

Above we identified the Congo Basin, 108 S–98 N, 138–308 E,

as the region of African tropical rainforest with two rainy

(MAM and SON) and two dry seasons (JJA and DJF) per year

[31]. The variance ratio earlier-mentioned (figure 2) shows the

Congo Basin as a region with comparably high signal-to-noise

ratio (JJA), but it also suggests that the region is not entirely

coherent. Correlating the area mean precipitation of this

region with global precipitation per gridbox (figure 3b,d)

shows high correlation of precipitation pattern within the
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chosen region in both seasons, but again, a horizontal splitting

of the region with less high correlation across the equator

especially in JJA. Correlations in DJF are generally higher. Ana-

lysing precipitation according to the two regions of high

potential predictability in JJA, the southwest Congo Basin

(108–08S, 138–208E) and the north of the region (08–98N,

138–308E) reveals two very different precipitation patterns

with respect to the magnitude of the rainfall; with an average

precipitation of approximately 150 mm per month in the

north and less than 30 mm per month in the dry season precipi-

tation of the southwest Congo Basin. This difference shows

that the identification of regions with identical seasonality

and vegetation cannot be guided by similar climatological

and geographical features alone. The region identified as the

Congo Basin with tropical rainforest vegetation and the same

seasonal paradigm of two dry and two wet seasons is not coher-

ent in its precipitation patterns. Thus, it seems likely that the

influence of external drivers on extreme precipitation events is

not identical in the entire region either. We therefore analyse

the two regions separately for the JJA attribution analysis and

as a whole. Correlation patterns of the subseasons can be

found in the electronic supplementary material.

To identify drivers of precipitation patterns in the Congo

Basin, the correlation of the area mean precipitation with SSTs

is presented in figure 3a,c. The high values of the variance ratio

in figure 2 lead us to expect correlations with SSTs, furthermore

the correlation of JJA precipitation with global precipitation in

figure 3b shows a pattern reminiscent of ENSO, with high corre-

lations on the south American east coast and high anticorrelation

values in the southern subtropical Pacific. Additionally, a corre-

lation pattern resembling the Indian Ocean dipole oscillation

pattern with high positive values close to the African coast and

high anticorrelation in the eastern Indian Ocean is detectable.

Correlating the period of analysis (1960–2010) Congo Basin pre-

cipitation with SSTs reveals, however, no strong correlation

pattern for JJA but high correlation values for the north and

tropical Atlantic and tropical Pacific as well as anticorrelation

with the Southern Atlantic and Indian Oceans. The apparent

anticorrelation with SSTs in the Pacific could be an indicator

for an influence of ENSO but is statistically insignificant. Both

the patterns resembling ENSO and IOD from the precipitation

correlation are not manifest in SST patterns. Correlating the

two subregions identified earlier (see the electronic supplemen-

tary material) reveals an almost identical pattern in case of the

north of the Basin, with no significant interconnection; the south-

west region, however, is associated with a different pattern

showing a correlation with Indian Ocean SSTs with coefficients

above 0.5.

Correlation patterns of DJF precipitation in figure 3d show

mainly very strong correlation with precipitation patterns

over eastern and Central Africa and also a pattern resembling

the Indian Ocean dipole oscillation. Also for DJF the corre-

lation of the subregions with global SSTs is similar to

correlating the entire region. This underlines the assumption

that the region is rather heterogeneous, especially in JJA, with

respect to SST drivers, thus we analyse the southwest in

addition to the entire Congo Basin in our attribution study

of JJA precipitation.
(b) Attribution experiments
As described earlier [2], the first attribution experiment is a com-

parison of 1960s precipitation with precipitation of the last
decade, under the assumption that there was no significant

signal of the impact of anthropogenic greenhouse gas emissions

in global mean temperature. Using the 1960s as a proxy for pre-

industrial SSTs is however comparably weak due to the high

anthropogenic aerosol forcing which influences temperatures

and might also have an influence on circulation over Africa.

Therefore, we additionally compare precipitation in the Congo

Basin of the last decade (2000–2010) with simulated precipi-

tation for the same period in a counter factual experiment,

prescribing SSTs with the anthropogenic climate signal remo-

ved (§2c). This second strand of attribution analyses allow for

a cleaner comparison with pre-industrial precipitation, how-

ever, it is not possible to validate the counterfactual model

simulations. The two methods combined could thus lead to a

robust attribution conclusion. Both extreme high and extreme

low precipitation events are analysed.

A measure for droughts (extreme low precipitation

events) in rainforests is the cumulative water deficit (CWD),

which is accumulated in months with less precipitation than

evaporation, as described by [32] for Amazonia, see also [7].

The calculation of the water deficit is based on

the approximation also given by [32], that a moist tropi-

cal canopy transpires 100 mm per month. This value is

derived from the mean evapotranspiration obtained by

ground measurements in different locations and seasons in

Amazonia [33,34]. Owing to a lack of such measurements in

the Congo basin, we apply the same value for the calculation

of the accumulated water deficit in the African rainforest.

Zelazowski et al. [35] showed that the water deficit that

assumes an evapotranspiration of 100 mm per month has

reasonable skill over African forests too with the exception

of western Congo where dry season cloudiness prevents

application of this approach. Further studies might be

needed to test the sensitivity of results using the exact value

of evapotranspiration. For this study to illustrate the principle,

the CWD in the dry season is calculated for African tropical

forests. Measurements in Amazonia showed the water deficit

to be a good indicator of meteorological water stress, follow-

ing [32]. This value ignores the possibility that with a drying

forest the evaporation also diminishes. Further research on the

canopy will show whether this is the case. The assumption is,

therefore, that the forest suffers water deficit when the

monthly rainfall is less than 100 mm. The water deficit for

each month within a season is calculated as follows, starting

with a water deficit WDn21 from the previous month:

If WDn�1ði; jÞ � ETði; jÞ þ Pnði; jÞ , 0;

then WDnði; jÞ ¼WDn�1ði; jÞ � ETði; jÞ þ Pnði; jÞ;

and

else WDnði; jÞ ¼ 0:

The water deficit is calculated for each gridbox (i, j ), with

ET(i, j ) being the fixed evapotranspiration of 100 mm per

month and P representing the monthly precipitation. Aver-

aging the water deficit over the Congo basin and the dry

season of JJA gives an indication of water stress owing to

meteorological conditions without taking into account local

soil conditions. The soil-moisture feedback and also plant

adaptation mechanisms are thought to play a role but are

poorly understood [32].

We calculate the accumulated water deficit (CWD) for the

dry season (JJA) separately for each decade: the 1960s, the

2000s and the 2000s in a ‘world that might have been’.
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Taking the CWD defined in this way as an index for water

stress in African tropical rainforests, we can assess the

return period of stressful dry seasons (JJA) in the Congo

Basin by plotting the CWD for the three subsequent

months against the size of the sample divided by the rank

of the index within the sample. Figure 4 displays the results

of this analysis of water stress in the dry season in the

Congo Basin area in the simulations of all three decades.

The same analysis is done for DJF with figure 4a for DJF

shown in the electronic supplementary material.

Dry season precipitation in the Congo Basin is on average

below the 100 mm per month threshold [31], which is rep-

resented by the model simulations. While analysis of the

time series shown in figure 1 would reveal trends in the

mean precipitation, return time plots shown in figure 4 are

means to identify changes in the return time of extreme

events in different decades.

Return time plots show the chance of exceeding a

threshold of any measure for a given year with the values

for that measure, precipitation and CWD in figure 4, on the

y-axis and the return time on a logarithmic x-axis. For

example, a monthly precipitation of more than 90 mm in

the JJA season in the Congo Basin is a approximately a one

in a hundred years event (figure 4a), so in every given year
the chances of exceeding that threshold are 1%. Comparing

return time curves of different simulation ensembles are

thus a good means to identify changes in the magnitude

and frequency of occurrence of water deficit in the dry

season. Return time plots of precipitation (figure 4a,c,e)

reveal changes in magnitude and frequency of occurrence

of high precipitation extreme events, while return time

plots of CWD (figure 4b,d,f ) depict changes on the other

tail of the distribution, events of extreme dry JJA seasons.

The overall result of this attribution study is negative:

there are no changes in extreme precipitation events in the

dry season (JJA) of the Congo Basin that are attributable to

anthropogenic climate change. Analysis of DJF precipitation

shows in contrast significant changes (see the electronic sup-

plementary material), but they differ widely between the two

ensembles not representing present day conditions and are

thus hard to interpret. Furthermore, figures 1 and 2 suggest

a less reliable model performance for the DJF season than

for JJA, therefore, all interpretation below is mainly based

on JJA analysis.

Figure 4 shows the return time of (i) precipitation and

(ii) CWD in the Congo Basin without applying bias correction

to the simulated precipitation. While there is no change in the

magnitude or frequency of occurrence of high precipitation
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events, a small change in low precipitation events between

the 2000s and 1960s scenarios is apparent. However, this

change does not occur when comparing the 2000s to a coun-

ter factual decade 2000–2010 (2000N). Applying the bias

correction to match magnitude and standard deviation of

the CMAP satellite observations (see §2) gives the same pic-

ture for high precipitation events (iii), but in this case the

CWD return times of a 1960s scenario are almost identical

to those of the 2000N scenario, with the 2000s showing

slightly wetter dry seasons (iv). In figure 4a– f, the red bars

are error bars representing the 5–95% CI derived from resam-

pling the ensemble several thousand times using straight

forward bootstrapping with replacement.

To account for the heterogeneity in the magnitude of

precipitation in the Congo Basin, the return times of precipi-

tation and CWD in the southwestern subregion (108–08 S,

138–208 E) are shown. Figure 4e is a return time plot of pre-

cipitation in that region which is not only very different in

magnitude, but also shows a different return time of high

precipitation in the 1960s compared with both other scenarios

and compared with the return times for the entire region.

Such a difference is not apparent in the return periods of

extreme low precipitation events (figure 4f ). The other subre-

gion identified in the north Congo Basin reveals similar

characteristics to the complete region with respect to high

precipitation extremes. The CWD, however, cannot be ana-

lysed with this method: the high magnitude of dry season

precipitation in the northern Congo Basin leads to very few

ensemble members with CWD other than zero which renders

the sample size too small to analyse return periods.

The potential predictability of tropical forest precipitation

in Africa as shown in figure 2 suggests that attribution is a

different challenge in this region compared with the midlati-

tudes, where the variance ratio is very small (not shown)

because of the insignificant influence of SSTs on precipitation.

It is thus possible, that the anthropogenic influence on
precipitation in the Congo Basin is when small compared

with SST forcing. Figure 5 shows return periods for precipi-

tation separate for each year in the Congo Basin and in an

arbitrarily chosen region of central Europe, roughly encom-

passing Germany and Poland (468–548 N, 78–258 E). The

return periods in central Europe (figure 5a) in all years

show shorter return times for high precipitation events

in the observed 2000s compared with the counterfactual

ensemble. In the Congo Basin, however, the interannual

differences in return times in both ensembles are higher in

most instances than the differences between blue and green

curves. Reproducing figure 5 with error bars (not shown)

representing 5–95% intervals of confidence, similar to

figure 4, reveals that in the European case the single years

could in no year be seen as statistically distinct in a decade

in one but in many cases between the different ensembles,

whereas the error bars do overlap in many years between

the two ensembles in the Congo Basin. Although the ensem-

ble size per year is too small to allow for yearly attribution,

this finding highlights the influence of teleconnection

patterns on tropical precipitation.
4. Discussion
The aim of this paper is to investigate the applicability of the

emerging science of PEA in the tropical rainforests of Central

Africa. Rainforests are vulnerable to droughts as demonstrated

for the Amazonian rainforests [32,18] we thus concentrate our

analysis on the dry season in JJA. PEA has been successfully

applied in investigating whether and to what extent anthropo-

genic greenhouse gas emissions have changed the probability

of extreme weather events in Europe [11,12] and other midlati-

tude climates but never in a tropical region. The challenges for

attribution in such a region differ from those in midlatitudes

and are addressed in this study.
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Attribution studies using PEA are only possible with large

ensembles of climate model simulations and all analyses

depend on the models ability to simulate the relevant climate

conditions. Arguably, the greatest challenge in an almost

weather station-free region such as the Congo Basin is the

lack of observations, and thus a reliable dataset on which to

base model validation and bias correction. The time series

in figure 1a,c show the discrepancies between the datasets. The

figure also shows that the average precipitation in the model is

well within the range of reanalysis and observed datasets thus

figure 1 gives no indication that the model gets aspects of the

precipitation particularly wrong. However, other validation

techniques which would be better to analyse the model’s ability

to simulate extreme precipitation, such as quantile–quantile

plots, are not meaningful without reliable datasets.

Precipitation in the Congo Basin is strongly influenced by

SST patterns, most notably ENSO and the Indian Ocean

dipole oscillation. This fact can lend credibility in a SST-forced

AGCM assuming that the precipitation in the region is more pre-

dictable from given SSTs than precipitation in other regions.

Analysing the external variability of precipitation with respect

to internal variability in the region in figure 2 indeed indicates

a relatively high predictability of dry season precipitation in

the Congo Basin. A correlation of the precipitation in the

region with global SSTs shown in figure 3a,c shows that this

high predictability is not obviously related to a specific SST pat-

tern as no significant correlation can be detected. These two

plots together add to the assumption that dry season precipi-

tation in the Congo Basin can be reliable in a SST-driven

climate model on the one hand, but on the other hand the pre-

cipitation is not strongly correlated to a specific SST pattern.

Thus, changes in return times of precipitation extremes can

potentially be attributed to anthropogenic climate drivers and

are not necessarily disguised by a single teleconnection pattern;

e.g. one could imagine that with a strong correlation to ENSO

changes in precipitation due to a warming climate cannot be

identified because of the larger changes driven by ENSO. Look-

ing at decadal long calculations of return times of extreme

weather events in figure 4 instead of single years furthermore

decreases the influence of such patterns, rendering attribution

results more robust.

Calculating return times of changes in extreme precipi-

tation in the dry season in the Congo Basin tropical rainforest

(figure 4), suggests that the risk of extreme high or extreme

low precipitation has not changed. Analysis of the subregion

reveals a slightly higher magnitude in high precipitation

events in the 1960s compared with present day and, depending

on bias correction, the magnitude of low precipitation events in

the 1960s is also higher in the whole basin. However, none of

these changes are also apparent in the ‘world that might

have been’ scenario of the recent decade, corroborating the con-

clusion that there are no changes in extreme precipitation

attributable to an anthropogenic climate signal. The higher

aerosol concentration in the 1960s is known to have an influ-

ence on tropical precipitation, and it is thus not clear which

anthropogenic signal may be driving the changes between

the 1960s and 2000s, aerosols or greenhouse gas forcing

though both, presumably, may be involved.

The curves in figure 4 representing the magnitude and

frequency of occurrence of extreme events change considera-

bly, especially with respect to the magnitude of precipitation

in the region of tropical rainforests, dependent on bias
correction and the exact layout of the region. This highlights

the importance of bias correction caveats, in a region with

sparse observational data; and suggests the Congo Basin to

be a more heterogeneous region, with respect to precipitation

patterns and drivers, in spite of its similar vegetation and sea-

sonality. Attribution studies, however, are based on changes in

magnitude and frequency of occurrence, respectively, and not

absolute magnitudes and in this respect the results are robust.

Splitting the decadal long return times into individual

years in figure 5 and comparing it with individual years

in a midlatitude region highlights the fact that tropical pre-

cipitation might be better predictable from given SSTs,

however, the interannual variability is also much higher,

which renders the challenge of disentangling SST forcing

from anthropogenic drivers and natural SST variability

more difficult than in the extratropics. With the sampling of

11 years, we are able to sample a range of SSTs, and so

believe our results to be robust especially as the last decade

has not been prone to specific teleconnection patterns. How-

ever, this sampling is limited and cannot account for a large

range of variability, in particular, if analysing decades with

major El Niño or La Niña events. With this in mind, it may

be more appropriate to prescribe forecast SSTs as opposed

to observed SSTs in the model set-up, in order to allow attri-

bution of changes in the odds of extreme precipitation events

in the tropics to the anthropogenic warming signal. Such a

set-up would also allow an investigation of whether the

potential increase in interannual variability in precipitation

suggested in figure 5b is indeed an effect of anthropogenic

forcing or the specific interannual variability in the last

decade. This question could also be addressed by repeating

the same experiment but with counterfactual ensembles

derived from different model simulations.
5. Conclusion
The non-significant change in return times in extreme high

and extreme low Congo dry season precipitation as a result

of this attribution study, suggests that in contrast to tropical

forests in Amazonia, the risk of droughts in African rainfor-

ests in the Congo Basin has not changed. The potential

high predictability of Central African precipitation in the

hindcast simulations, and the fact that simulated time series

are of a similar quality to reanalysis data in a highly under-

researched region, underlines the fact that attribution analysis

can provide a very valuable source of information in vulner-

able regions. The differences in the JJA and DJF analysis,

however, highlight that the reliability of analysis needs to

be assessed on a case to case basis. In contrast to future pro-

jections of climate change in Africa, attribution analysis (in

particular PEA) can provide more robust information to

inform decision-makers. In regions with high potential pre-

dictability that allows for the deconstruction of external

drivers of climatological changes, such studies are not only

informative in relation to past extreme events, but also

allow changing risks of extreme events in the near future to

be anticipated.
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