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We review the literature and find 16 studies from across Africa’s savannas
and woodlands where woody encroachment dominates. These small-scale
studies are supplemented by an analysis of long-term continent-wide satellite
data, specifically the Normalized Difference Vegetation Index (NDVI) time
series from the Global Inventory Modeling and Mapping Studies (GIMMS)
dataset. Using dry-season data to separate the tree and grass signals, we
find 4.0% of non-rainforest woody vegetation in sub-Saharan Africa (exclud-
ing West Africa) significantly increased in NDVI from 1982 to 2006, whereas
3.52% decreased. The increases in NDVI were found predominantly to the
north of the Congo Basin, with decreases concentrated in the Miombo wood-
land belt. We hypothesize that areas of increasing dry-season NDVI are
undergoing woody encroachment, but the coarse resolution of the study
and uncertain relationship between NDVI and woody cover mean that the
results should be interpreted with caution; certainly, these results do not con-
tradict studies finding widespread deforestation throughout the continent.
However, woody encroachment could be widespread, and warrants further
investigation as it has important consequences for the global carbon cycle
and land-climate interactions.

1. Introduction

We currently have little certainty about the fluxes of carbon in tropical ecosystems:
the error bars on estimates of carbon fluxes to and from the land surface are almost
as large as the fluxes themselves [1-4]. A number of global and regional studies
show that throughout most of the tropics deforestation and degradation are wide-
spread, and the perception is that a net reduction in forest area is occurring across
tropical forest, woodland and savanna ecosystems [5—9]. This loss of forests in the
tropics is a significant component of anthropogenic CO, emissions [5], though it is
currently being more than offset by an observed increase in above-ground bio-
mass in intact forests, likely through a combination of CO, fertilization and
regrowth [3,4,10-12].

While it is likely to be true that forest losses exceed forest gains in the tro-
pics, the uncertainties in all the estimation methods used are high [1,9,13]
and may be biased towards the detection of deforestation as opposed to
woody encroachment or recovery. This bias towards the detection of forest
loss is due to three reasons: (i) most monitoring bodies are set up with the pur-
pose of mapping forest losses, so emphasize this in their methods, (ii) the
sudden, definite nature of forest loss as opposed to the gradual nature of
forest regrowth and (iii) the difficulties of assessing changes in mixed tree—
grass systems, where significant increases in canopy cover may not trigger a
change in a broad vegetation class. These biases may be exacerbated in
Africa, as mixed tree—grass systems dominate (it is the location of two-thirds
of the world’s savanna [14]); historical ground data are especially rare; and
the capacity of environmental and forestry departments to perform mapping
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tends to be limited, with the majority of remote-sensing-
based science being performed by scientists from more devel-
oped nations, largely independently of local researchers [15]
(though some studies are an exception to this [16,17]).

There is thus no reliable map available showing how
woody cover has changed in Africa over the recent past:
maps of deforestation, for example [1], explicitly ignore
forest gains, and detailed high-resolution analyses are typi-
cally available only for small areas [16,17]. The Food and
Agriculture Organization of the United Nations produces
forest resource assessment (FRA) reports every 5 years, pro-
viding country-level statistics; though these are not maps,
they may be less prone to the bias towards deforestation
as statistics are provided by national governments. The
FRA 2010 reports that on average the 49 countries from sub-
Saharan Africa lost 0.5% of their forest cover each year from
1990 to 2010 [6]. In the most recent period (2005-2010), seven
of the 48 countries reported forest area gains, the others report-
ing no change or forest loss, with these gains often being due to
increases in forest plantations, not the recovery of natural for-
ests. These seven countries are also all small, representing
just 0.45% of sub-Saharan Africa’s total land area. There are
also studies that have analysed land-cover change using
high-resolution remote sensing data for small subsets (typically
10 x 10 or 20 x 20 km) located in a systematic grid across the
continent, for example the TREES projects [16,18]. From these
and other sources of evidence, it is clear that deforestation
has dominated, and forest cover has reduced in Africa over
the recent past.

However, there is growing evidence that woody encroach-
ment into savannas is occurring widely [19,20]: this study
reviews the literature and analyses a satellite time series
to suggest that significant forest gains, as well as the well-
understood forest losses, are occurring in the continent.

2. Evidence of woody encroachment in Africa

We have collated a substantial body of local-scale studies
that found increases in tree cover in Africa, as shown by the 16
studies from eight countries listed in table 1. These are widely
spread, ranging from west Africa (Ivory Coast [30]) through
Central Africa (Gabon [29]; Cameroon [21-23]; Congo [25,26])
to eastern Africa (Ethiopia [27,28]) and South Africa [31-34],
and cover a wide range of ecosystems and rainfall levels. In all
these cases, either forest is expanding into savanna or savanna
woodlands are becoming rapidly woodier.

It should be noted that we did not attempt to collate the
studies finding deforestation or degradation: the aim of this
study is to investigate the location of woody encroachment,
not to directly assess its magnitude compared with anthropo-
genic forest loss.

3. (oarse-scale analysis of changes in woody
vegetation, 1982—2006

The longest-term remote sensing dataset suitable for mapping
woody vegetation available annually at a continental scale is
the Advanced Very High Resolution Radiometer (AVHRR)
dataset, which is available from late 1981 to present. AVHRR
sensors have been present on a long series of weather satellites
controlled by the National Oceanic and Atmospheric

Administration. There are significant difficulties with using n

this dataset to analyse changes in vegetation, related particularly
to changing sensor characteristics, equatorial crossing time,
atmospheric conditions and their correction, and calibration.
Most of these are believed to have been corrected in the pro-
duction of a Normalized Difference Vegetation Index (NDVI, a
standard vegetation index) product by the Global Land Cover
Facility, called the Global Inventory Modelling and Mapping
Studies dataset (GIMMS [37-39]). Independent verification
of the GIMMS dataset with other higher resolution NDVI data-
sets (e.g. those from the MODIS and SPOT VEGETATION
sensors) available for the more recent past have found good
correspondence between the datasets in Africa [38,40,41].

GIMMS gives an estimate of NDVI twice per month from
1982 to 2006; however, NDVI does not relate directly to
woody cover, so there are many ways the time series could
be analysed. Other studies, for example those looking at
changes in the Sahelian grasslands, have typically used the
NDVI signal from the wet (growing) season [42,43]. However,
this approach gives a proxy of total photosynthetic material
over time, which is not what is desired for this analysis: here,
we are interested in obtaining a signal from only the woody
component of the vegetation in these mixed tree—grass sys-
tems. We therefore use the average NDVI of the three-month
period with the lowest NDVI, which is typically the end of
the driest season. In this period, the grass layer will be dead
in the majority of ecosystems, but at least some trees have
leaves, either retained from the previous wet season or flushed
in preparation for the coming wet season [44,45]. A number of
studies have found dry-season NDVI to relate to canopy cover
in savanna and woodland ecosystems [23,45,46]. We therefore
assume that changes in this minimum NDVI (averaged over
three consecutive months in order to reduce artefacts owing
to cloud cover or calibration) relate directly to changes in tree
cover across 8 km AVHRR pixels in the GIMMS dataset.

We have demonstrated that this technique is successful
in detecting woody encroachment based on a site in Mbam
Djerem National Park in Cameroon, where we know encroach-
ment of savannas by forest is occurring at a rapid rate
[23,24]. This signal can be seen in dry-season NDVI from
high-resolution datasets (Landsat and ASTER), and is also repli-
cated in the GIMMS dataset [23]. Crucially, the signal is
detectable only when the dry-season NDVI is used, but there
is no significant signal in the annual average or wet season
NDVI time series [23]. We appreciate this evidence is only
from one site, but based on preliminary comparisons of the
GIMMS dataset to known areas of encroachment from the refer-
encesin table 1, it appears to be sensitive to changes elsewhere as
well. One exception appears to be West Africa, where owing to
different land-use and phenology the signals in the NDVI data-
setappeared more related to changes in grass fuel loads than tree
cover (P. Mayaux 2013, personal communication), and for this
reason the West African region was masked from the analysis.

(a) Methods

(1) The GIMMS data v. 2.0 (1982-2006) were downloaded
for Africa [37]. These are pre-processed and corrected
NDVI datasets, and were used in the native Albers
equal area projection. All analysis was performed
using IDL-ENVI v. 4.8 (Exelis).

(ii) Mean NDVI was calculated for every possible consecu-
tive three-month period for each pixel from 1982 to
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Figure 1. () The location of studies finding woody encroachment listed in table 1 (a—p), overlaid on the GIMMS dataset with average three-monthly minimum
NDVI from 1982 to 1986 in magenta and from 2002 to 2006 in green. (b) Areas of significant increasing NDVI trends are shown in green, significant decreasing
trends in red. Pixels with no woody vegetation according to Mayaux et al. [17] are dark grey, pixels that are ‘lowland evergreen broadleaved forest’ are light grey.

2006. Only three-month periods where five out of six
possible observations reached this ‘best-quality’ stan-
dard were considered. Then, the minimum three-
monthly NDVI was extracted for each pixel for each
year from 1982 to 2006.

(iii) Linear regression was performed across each time
series for each pixel. Change in woody vegetation con-
sidered to have occurred for all areas with a
‘significant” best-fit line (using an F-test with a 90%
confidence level [42] and a slope larger than 0.002,
which suggests a change of 0.05 NDVI units in total
over the 25 year period). These thresholds are arbi-
trary and were chosen based on the literature and
visual assessments of the maps—they could be refined
given a better ground dataset, but are thought to rep-
resent areas where there is a strong signal in the data.

(iv) In order to remove areas where the signal came from
grasses, pixels containing no ‘wooded’ classes in the
Global Land Cover 2000 (GLC 2000 [14]) dataset [17]
were removed from the analysis; similarly, this method-
ology produces spurious results over intact rainforest,
with results related to cloud-cover contamination and
phenology, so pixels of the ‘closed evergreen lowland
forest” in GLC 2000 were also masked.

(b) Results and uncertainties from GIMMS analysis

The analysis shows that woody encroachment and forest loss
are both occurring (figure 1). Of non-rainforest woody areas,
4.00% showed a significant positive change in NDVI, and
3.52% showed a negative trend (table 2). There is a north—
south divide clearly visible: the majority of the increase in

woody vegetation is occurring to the north of the equator,
with the majority of forest loss detected occurring to the
south, especially in Miombo woodland regions.

These results should be interpreted with caution for a
number of reasons: (i) the resolution is very coarse (8 km),
meaning that many small-scale deforestation and regrowth
events will have been missed: only changes occurring over
a significant portion of the pixel will be detected (though it
should be noted that despite most 8 km pixels being ‘mixed
pixels’, i.e. containing a number of vegetation classes, the
results should be robust if the ratio of forested to non-forested
vegetation in the pixel changes significantly). (ii) The time
series of NDVI data may contain artefacts, particularly over
tropical regions, owing to the resampling and cloud-filtering
algorithms applied to the raw AVHRR data [47]; though this
should be mitigated by the extensive processing undergone
by the GIMMS dataset [38,39], no independent verification is
available for the critical earlier half of the time series. (iii) The
assumption that dry-season mean NDVI relates to woody
cover has not been fully validated across the continent, and is
likely to lead to errors in some locations, as tree and grass
phenology patterns do change across the many ecosystems in
this analysis. (iv) Rainfall patterns have changed, and some
of the pattern seen could be owing to wetter or drier conditions,
leading to different amounts of green vegetation being left in
the driest season; this is quite likely in the Sahel region where
rainfall has increased significantly over the study period [42].

It is hard to discount the above concerns, but some confir-
mation comes from the literature review that gave specific
instances of the location of woody encroachment. Figure 1a
locates the studies listed in table 1 on a map, displayed on
the NDVI data from the first and final 5-year sections of the
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Table 2. Area of sub-Saharan Africa (excluding West Africa) showing
significant changes in NDVI.

class area (km?) area
no woody vegetation present (2000) 6819 968
‘woody vegetation present (2000) 10086656
© dosed evergreen forest (20000 1345088
© no significant change (1982-2006) 8084160 9248
'si'gni'ﬁcant 'pos'iti'vev NDVI sIvop'e' o 349440 4.00
(1982 -2006)
signiﬁcant hegaﬁve NDVI élopé R 07968 352
(1982 -2006)

time series. All 16 studies were found on pixels that showed
a positive NDVI trend over the series, and seven of these
16 were found on pixels where this trend was identified as
significant using the criteria in §3a (iii).

4. Discussion

From both the literature review and the GIMMS analysis, it is
clear that both forest loss and gain are occurring widely through-
out Africa. In terms of area, it appears that the area of land
undergoing woody encroachment may be comparable or even
larger than areas where a significant loss of forest cover is occur-
ring; subsetting the GIMMS analysis most of the increase is in
the woodland and savannas of sub-Saharan Africa north of
the equator, whereas in the Miombo woodland regions, south
of the equator, forest loss appears to be dominating. However,
this conclusion has high uncertainties owing to potential arte-
facts in the GIMMS dataset, and regional variation in the
relationship between NDVI and woody cover. The results pre-
sented here are not directly comparable with analyses based
on detailed interpretation of small subsets [16,18], as those
interpretations assess changes in vegetation classes, whereas
the GIMMS approach sees changes in woody cover aggregated
across all vegetation types at an 8 km pixel size. While in places
the GIMMS approach and Bodart et al. [16] agree, for example
finding increases outweighing decreases in the far west of the
Democratic Republic of Congo (DRC), the Central African
Republic and Ethiopia, and rapid forest lost in the Miombo
woodlands of southern DRC, Angola, Zambia, Zimbabwe and
Mozambique, in many areas, the GIMMS approach sees more
forest gains than Bodart ef al. [16].

It should be noted that this analysis relates mainly to
changes in broad canopy cover in mixed tree—grass areas
and does not relate directly to the carbon balance of the African
continent (though forest regrowth must form part of the land—
surface carbon sink [4]). In particular, this analysis will not see
changes in tropical forests, and even in mixed tree—grass
systems canopy cover does not relate directly to carbon stocks.

This analysis validates the observations made that Miombo
woodlands are suffering especially badly from the loss of
woody vegetation, owing to expanding populations remov-
ing trees for agriculture and fuel (including charcoal) [48].
That this loss was not shown to have occurred to the same
extent in Malawi and Kenya, two areas where the savannas

are known to have had their tree density greatly reduced [ 5 |

over the past century, may be because much of the damage
was already done before the start of the analysis in 1982
[6,49]. The forest loss in Miombo represents a sharp contrast
to the gains observed in northern and Central Africa; but, in
turn, at least some of this increase may represent a recovery
following previous forest loss.

(a) Causality of forest expansion

To understand the causes of forest expansion, it is necessary to
comprehend the current and historical constraints on woody
cover throughout the region. It is known that much of the
African continent exists currently at a woody cover level far
below its potential given its annual rainfall [50,51]. Rainfall is
believed to control the maximum possible woody cover in a
site up to about 650 mm, but above that point full canopy
closure is possible [51]. A large number of factors operate to
maintain forest cover at its supressed state, thought to princi-
pally be fire (anthropogenic and natural) and grazing.
Woody encroachment can therefore be caused by increases in
rainfall in drier savanna ecosystems, but in most cases will be
caused by changes in the factors that suppress woody
vegetation. In particular, it is thought that anthropogenic
changes in the fire and grazing regimes may have had signifi-
cant impacts, potentially supplemented by changes in the
climate, in particular the atmospheric CO, concentration.

It is hard to underestimate the anthropogenic influence on
Africa’s forest cover. Humans have been setting fires and con-
trolling grazer numbers throughout their evolution, potentially
even having a major part in the spread of savanna vegetation
[52]. In general, it is thought that anthropogenic actions tended
to reduce forest cover [50,51], though there is some evidence to
the contrary [53]. Changes in the fire regime can have dramatic
and rapid effects on increasing or decreasing woody cover
[54]. There are also complex interactions at play: for example,
the recent expansion of cattle ranching leading to increased
grazing pressure can, in fact, cause woody encroachment, by
reducing grass fuel load, resulting in a decline in fire frequency
and severity, thus reducing sapling mortality and enhancing
woody encroachment [35]. Encroachment can even be enhanced
by the expansion of road networks (typically thought of as a
cause of deforestation), by creating firebreaks [55].

However, several studies suggest that global factors, in par-
ticular atmospheric CO, enrichment, are equally important [3].
An increase in atmospheric CO, reduces the advantage held
by C, grasses over Cj trees: C, grasses use a specialist mecha-
nism to increase the CO, concentration in cells that perform
the light reaction of photosynthesis, reducing the rate of
photorespiration that is a major limitation on photosynthetic effi-
ciency in high temperatures [56,57]; as the atmospheric CO,
concentration increases, this specialist adaptation is less of an
advantage. In particular, increased CO, concentrations mean
that trees can grow faster and saplings are more likely to be
able to grow enough between fires to escape the flame zone [58].

5. Conclusions

This study brought together a body of evidence suggesting
woody encroachment is widespread in sub-Saharan Africa.
The reason behind this encroachment is likely to be a combi-
nation of changes in the fire regime and increasing
atmospheric CO, concentrations, but further studies will be
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needed to determine this with more confidence. A coarse-
scale analysis of changes in woody vegetation from 1982 to
2006 suggested that significant woody encroachment is
occurring to the north of the Congo Basin, but, in contrast,
to the south of the Congo Basin a rapid reduction in
woody vegetation is occurring. This deforestation in the
Miombo woodlands of Africa warrants much more global
attention, as it represents a serious threat to the livelihood of
the region’s many inhabitants and to this unique ecosystem.
The results of this study should be interpreted with cau-
tion: the evidence brought together is a collection of small-
scale studies, and a coarse-scale remote sensing analysis
that can detect only broad changes in woody cover, and is
prone to artefacts. These results should stimulate discussion

on woody encroachment, but this analysis does not provide
a definitive assessment of the total magnitude of woody
encroachment compared to forest loss.
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