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For some species, climate change has altered environmental conditions

away from those in which life-history strategies evolved. In such cases, if

adaptation does not keep pace with these changes, existing life-history

strategies may become maladaptive and lead to population declines. We

use life-history theory, with a specific emphasis on breeding strategies, in

the context of the trophic match–mismatch framework to form generalizable

hypotheses about population-level consumer responses to climate-driven

perturbations in resource availability. We first characterize the income

and breeding traits of sympatric caribou and muskoxen populations in wes-

tern Greenland, and then test trait-based hypotheses about the expected

reproductive performance of each population during a period of high

resource variability at that site. The immediate reproductive performance

of income breeding caribou decreased with trophic mismatch. In contrast,

capital breeding muskoxen were relatively unaffected by current breed-

ing season resource variability, but their reproductive performance was

sensitive to resource conditions from previous years. These responses

matched our expectations about how capital and income breeding strategies

should influence population susceptibility to phenological mismatch. We

argue for a taxon-independent assessment of trophic mismatch vulnerability

based on a life-history strategy perspective in the context of prevailing

environmental conditions.
1. Introduction
Rapid climate change has increased the global frequency of extreme weather

[1–3], driven uneven shifts in the phenology of coexisting taxa [4–6],

and altered the relationship between physical cues and ecological processes

[7–9]. The trophic mismatch concept (reviewed in [10–12]) examines the

population-level consequences of climate-driven phenological asynchrony be-

tween consumer resource requirements and the availability of these resources

during the consumer’s breeding period. Trophic mismatch affects diverse

taxa in numerous environments [13–19], but demonstrating generality in

patterns among species or populations has proved elusive [8,12]. Here,

we employ a case study based on a long-term dataset to integrate concepts

from life-history theory, focusing specifically on life-history traits that

form the basis of breeding strategies, with the trophic match–mismatch frame-

work. We promote simplified, generalizable and testable hypotheses about

consumer population-level responses to climate-driven perturbations of

resource environments.

(a) Breeding strategies and match – mismatch
Reproduction is constrained by fundamental trade-offs linked with resource

acquisition and subsequent allocation to offspring production and provisioning

[20]. Capital- and income-breeding strategies mark endpoints of a continuum of

solutions to these trade-offs that are distinguished by the degree to which an

organism relies on stored energy to finance reproductive costs [21,22]. A capital
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Figure 1. Match – mismatch framework adjusted by reproductive strategy. The match – mismatch framework depicted above was modified to display the difference
in exogenous (i.e. environmental) resource acquisition requirements of capital and income breeders during their breeding period. Endogenous (i.e. stored energetic
capital) reproductive resource stores and costs are not pictured. Match and mismatch scenarios for income and capital breeders alternate by panel. (a) A temporal
match between the peak environmental resource needs of income breeders with environmental resource availability/quality. It also depicts a temporal ‘mismatch’
between the peak environmental resource needs of capital breeders and available environmental resources. These scenarios are reversed in (b). Note the contrasts in
energetic mismatch (non-overlapping areas) between capital breeders and environmental resources ((a), minimal) and income breeders and environmental resources
((b), extensive). (Online version in colour.)
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breeder primarily invests in offspring production from its

own resource reserves, which are acquired prior to reproduc-

tion. By contrast, an income breeder relies on financing its

reproductive costs from resources acquired from the environ-

ment during the breeding period [21,22]. Purely capital- or

income-breeding birds and mammals are uncommon [23],

but interpretation of life-history traits, particularly those

associated with breeding, allow for a priori classification of

individuals as more representative of one strategy than the

other [21,22].

As climate change continues to affect the predictability

of seasonal resource pulses relative to consumer breeding

phenology, consumer demographic responses [10,12] may

vary according to their breeding strategy [22]. For example,

we predict that the reproductive performance of an income

breeder will exhibit an immediate positive response to an

increasing trophic match, but an immediate negative response

to an increasing trophic mismatch. In contrast, while capital

breeder reproductive performance may respond to increasing

trophic match, it should be relatively insensitive to increasing

mismatch in the year of offspring production. This is because

capital breeders finance a critical portion of their reproduc-

tive costs with energetic capital accrued prior to costly

breeding phases, and as a result their reproductive perform-

ance during a given breeding period is comparatively less

dependent on phenological synchrony with environmental

resource availability (figure 1). Ultimately, however, changes

in resource dynamics at any point in the year may affect capital
acquisition and capital storage costs that can have a cascading

impact on future reproductive performance.
(b) Case study: large herbivores in the Arctic
Rapid warming has already strongly affected plant phenology

in the Arctic [24–26] and, by extension, Arctic herbivores

[18,19,25,27]. Muskoxen (Ovibos moschatus) and caribou

(Rangifer tarandus) are the only large herbivore species that

are resident in and breed in Arctic tundra environments, yet

they have markedly contrasting life-history traits and repro-

ductive strategies that place them on opposing sides of the

capital–income breeder continuum [28,29]. Using a literature

review, we classify West Greenland caribou as income breeders

and muskoxen generally as capital breeders on the basis of

differences in their life-history traits (sensu [22]) drawing

specific focus to differences in calving phenology, body com-

position and size, metabolic rate, factors that influence

conception and general patterns of productivity (table 1). In

this case study, we use this classification system and a long-

term dataset from ongoing research in low-Arctic West

Greenland [40] to explore our general predictions about

capital- and income-breeder responses to environmental

perturbations. Specifically, we focus on the reproductive per-

formance of sympatric caribou and muskox populations

during a period of sustained warming. As income breeders,

caribou should display immediate negative consequences of

trophic mismatch during and shortly following their breeding



Table 1. A summary of the trait and other local-population characteristics identified in the literature review that informed our a priori classification of West
Greenland caribou and muskoxen as income and capital breeders, respectively.

trait West Greenland caribou/muskoxen population characteristic reference(s)

calving phenology caribou: synchronized with resource phenology [30,31]

muskoxen: several weeks prior to resource availability

infant mortality more variable in caribou than muskoxen [28]

lactation phenology caribou: peak lactation one week post-calving

muskoxen: begins two to three weeks before vegetation emergence

[32,33]

age at first reproduction variable, but caribou generally earlier (require less capital reserve) [34,35]

body fat’s influence on

conception probability

muskoxen: more sensitive to body condition

caribou: more sensitive to recent nutrition

[28,36 – 38]

range usage caribou: integrate resource uncertainty through space via migration/high-mobility

muskoxen: integrate uncertainty in resource quality through time by residency, prolonged browsing

[18,28,39]

metabolism and gut

retention time

muskoxen: low metabolic rate, slow but highly efficient extraction of resources from forage [28,32,39]

caribou: faster metabolic rate, rapid but comparatively less efficient gut processing
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season, whereas muskox reproductive performance should be

little impacted by the timing of resource availability in the year

of offspring production.
2. Material and methods
(a) Phenology and herbivore productivity data
Near-daily records of plant community emergence and herbivore

calving progression were collected between May and June for 11

years (1993, 2002–2011) at a long-term research site situated near

a shared caribou and muskox calving ground in low-Arctic West

Greenland (67.118 N, 50.348 W) [40]. Calf production was recorded

annually for both caribou and muskoxen several weeks after the

conclusion of their respective calving seasons, and thus after

the critical period of early calf mortality had passed [41]. All obser-

vational and analytical methods quantifying phenological data are

consistent with previous reports from this site [19] as is our method

for calculating caribou calf production [18,19,30,42,43].

Annual muskox calf production, similar to that of caribou, is

reported as the post-calving ratio of calves to total individuals

observed in the roughly 20 km2 calving area. The large post-calving

herd(s) of caribou makes a comprehensive calf census possible on a

single day in late June, but because resident muskoxen are dis-

persed in small family groups throughout the post-calving

season, we used the annual maximum single day ratio of calf to

total individuals from ad libitum censuses of the study area

repeated throughout June.
(b) Quantifying the phenology of trophic interactions
(match – mismatch)

The phenology of caribou calving is tightly coupled with

vegetation phenology [30,44]. The annual extent of synchrony

between caribou calving and vegetation emergence constitutes

the trophic mismatch index [19]. This index is quantified as the pro-

portion of plant species emergent in the community, averaged

across twelve 0.5 m2 long-term monitoring plots that are spread

across three sites separated by several hundred metres encompass-

ing differing microclimates [19], on the date of 50 per cent caribou

births [42,45]. Said another way, this index quantifies the resource

state at the midpoint of the annual season of caribou parturition.

Annual estimates of trophic mismatch therefore vary between
zero and unity, with higher values indicating increasingly earlier

vegetation emergence with respect to the peak of the caribou

calving season and thus increasing mismatch [19].

Unlike caribou, muskoxen calve four to eight weeks prior to

the plant growing season throughout their circumarctic range

[31,46,47]. At the study site, muskox calving occurs before our

initiation of fieldwork each year. To quantify trophic mismatch

for muskoxen, we used a conservative estimate of the end date

of the focal population’s calving period [34] and calculated the

difference between this and the observed annual date of 50 per

cent plant species emergent for each year. This metric quantifies

the duration of the window between the latest possible onset of

lactation (i.e. parturition) and the midpoint of the vegetation

emergence season, a date when offspring provisioning costs

can first be reliably sourced from the environment rather than

solely from endogenous stores. This index therefore only reflects

interannual variation in vegetation emergence, with larger

numbers indicating a longer delay between the estimated end

of the calving period and the observed timing of environmental

resource availability in a given year. There is little published

information available about the patterns and drivers of interannual

variation in the timing of muskox calving, so at present, we are

unable to factor this potential bias into our analyses.
(c) Relating trophic asynchrony to herbivore
demographic response

To link herbivore calf production to the degree of phenological

asynchrony (mismatch) between herbivore calving and vegetation

emergence, we conducted multiple- and simple-linear regression

in the R statistical computing environment [48] incorporating mis-

match terms in current and previous years for each herbivore

population. Previous studies have documented the critical rele-

vance of density dependence in both Rangifer [36,49–51] and

muskoxen [50,52,53] population dynamics, so current and 1-year

lagged calving season abundances were included as covariates

during model construction. Seasonal herbivore abundance was

calculated as the maximum number of individuals of each species

seen on a single day at the study site throughout May–June. There

are no apex predators in this system, and regulated hunting is

restricted to the late summer and winter seasons; therefore, no

top-down factors were included in our models. Furthermore, we

examined each time series for temporal trends and repeated our

analyses with detrended data when necessary to isolate potential
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Figure 2. Variation in herbivore calving and vegetation phenology. (a) ‘Caribou’ and ‘vegetation’ show the range, quartiles and median of the date of 50% caribou
calf births and date of 50% plant species emergence, respectively, from the years 1993, 2002 – 2011. ‘Muskoxen’ is a depiction of the approximate calving period of
muskoxen at this site. A conservative end date of muskox calving was selected of May 13 (day of year 133). Vertical dotted lines signify the first day of May and June
(non-leap years). (b) A 1 : 1 graph of caribou calving phenology versus vegetation phenology. If caribou calving phenology consistently tracked vegetation phenology
these points would fall on the 1 : 1 line.
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drivers of interannual variation in calf productivity from those

primarily related to trends.
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Figure 3. Variation in calf production for muskoxen and caribou in the
Kangerlussuaq population from 2002 to 2011 (years with observations for
both species). Boxplots depict the range, quartiles and median of calf
production in each population.
3. Results
(a) Variation in vegetation and herbivore phenology
Over the 11-year study period, the date of 50 per cent plant

species emergence ranged over a 19-day window with a

mean date of June 1 (day of year 151.8+6.4; figure 2a). In con-

trast, the midpoint of the caribou calving season showed little

interannual variation around its mean of 6 June (day of year

156.8+1.9) spanning a range of just 7 days over the same

period (figure 2a). Among all years, the latest recorded date

of 50 per cent plant species emergence was 1 day earlier than

the latest recorded date of 50 per cent caribou births, but the

earliest date of 50 per cent plant emergence occurred 13.5

days before the earliest recorded date of 50 per cent caribou

births. The largest difference in a single season between the

midpoint of vegetation emergence and midpoint of caribou

births was 18 days. There was no correlation between the

annual timing of vegetation emergence and caribou calving

(Pearson’s r ¼ 0.23, p ¼ 0.50; figure 2b). The midpoint of the

local muskox calving season occurs in late April [31,54], prior

to the onset of our field season and approximately six weeks

before peak green-up (figure 2a). We therefore provide only a

depiction of the duration of the muskox calving season

(figure 2a) and an estimate of 13 May (day of year 133) as a con-

servative end-of-calving date on the basis of a literature review

[31,34,46,54,55] to provide comparative trophic context to the

calving phenology of each herbivore population.
(b) Calf production
Caribou were marginally more productive than muskoxen

(two-tailed Welch’s two sample t-test, t ¼ 21.621, d.f.¼ 14.34,

p ¼ 0.13) but exhibited greater interannual variability in calf

production (one-tailed F-test: F ¼ 3.04; d.f. ¼ 9,9; p ¼ 0.06;

figure 3) and a higher maximum productivity (0.42 versus

0.30 calves/total individuals) across all years that both species

were monitored. Muskox calf production increased significantly

over this time (b1 ¼ 0.02+0.005, R2 ¼ 0.61, p ¼ 0.007), while
caribou displayed a declining but non-significant trend in cari-

bou calf production (b1 ¼ 20.02+0.014, R2¼ 0.15, p ¼ 0.28).
(c) Relating magnitude of trophic mismatch to
herbivore productivity

Caribou calf production was significantly negatively related

to trophic mismatch in a given year (b1 ¼ 20.55+ 0.15,

R2 ¼ 0.60, p ¼ 0.005), but not with that of the previous year

(b1 ¼ 0.33+0.22, R2 ¼ 0.24, p ¼ 0.18). This contrasted with

observed patterns of muskox calf production, which related

negatively to the timing of vegetation emergence in the

previous year (b1 ¼ 20.0064+ 0.0029, R2 ¼ 0.41, p ¼ 0.06),

but displayed no relationship with vegetation emergence

in the current year (b1 ¼ 20.0037+ 0.0037, R2 ¼ 0.11,
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Figure 4. Relating trophic mismatch and population abundance to calf production. Each panel shows the relationship between herbivore production and the popu-
lation specific index of trophic mismatch in immediate (a,c) or previous (b,d) years after accounting for the effect of population abundance in the immediate year.
Panels showing lagged effects of trophic mismatch contain two fewer data points (no 1993, 2002) due to analytical requirements for including the lagged effect.
Subsetting the non-lagged panels to the same data series resulted in nearly identical relationships to those depicted here (see the electronic supplementary
material, appendix A). Lines represent significant partial regression fits. (a,b) Show that caribou calf production is closely related to immediate mismatch conditions,
whereas (c,d ) demonstrate that muskoxen are more sensitive to the lagged consequences of mismatch. (Online version in colour.)
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p ¼ 0.34). The overall sign, magnitude and significance of

these relationships persisted even after accounting for herbi-

vore abundance (figure 4), a factor that, surprisingly, did not

contribute to better model fits (see the electronic supple-

mentary material, appendix A). Significant temporal trends

existed in muskox calf production ( p ¼ 0.007) and trophic mis-

match ( p ¼ 0.02), while caribou trophic mismatch displayed

only a marginal trend ( p ¼ 0.08; electronic supplementary

material, appendix B); only caribou calf production was sig-

nificantly related to a detrended mismatch index ( p ¼ 0.003;

electronic supplementary material, appendix C).
4. Discussion
As income breeders, caribou lose proportionally less forage

energy to capital conversion and storage costs but experience

more volatility in reproductive performance among years

than muskoxen (figure 3). Iteroparous income breeders may

hedge the risk of energetic shortfall even in highly variable

resource environments if they express plasticity in parturition

phenology capable of tracking resource variability [21,22], or

if resource uncertainty varies about a long-term mean. Under

the latter scenario, multiple reproductive opportunities

may buffer intermittent reproductive failures in some years
with strong reproductive performance in others. Neither

situation exists in southwest Greenland, however, where a

strong trend towards advancement of the timing of peak

resource availability [26] may render income breeding for

caribou maladaptive if calving phenology does not adjust

to the consistently earlier timing of vegetation emergence.

Indeed, recent evidence suggests that Rangifer lack the molecu-

lar clockwork that drives circadian rhythms in other mammals,

and as a result calving phenology in this species may be con-

strained directly by photic cues [56]. This implies that caribou

lack sufficient phenotypic plasticity in their ability to track

long-term directional shifts in vegetation phenology (as in

figure 2b), and that reducing trophic mismatch can therefore

only be achieved via cross-generational selection.

For muskoxen in this population, the absence of an

immediate effect of vegetation emergence on recruitment is

consistent with our expectation for a capital breeder. The

presence of a 1-year lagged effect of resource phenology not

associated with density-dependent factors (figure 4d) can

also be interpreted in the context of capital breeding. In contrast

to caribou, muskoxen store a greater proportion of their total

body mass as fat and will avoid conception when fat to body

mass ratios drop below approximately 20 per cent, a threshold

roughly two to four times higher than conception-inhibiting

leanness in caribou [28,37]. As a result, extreme resource
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variability more commonly contributes to breeding pauses in

muskoxen [34,57], whereas caribou reproductive performance

is more strongly influenced by calf mortality [58–60].

In contrast to their North American conspecifics, the

calving period of Palaearctic reindeer (also Rangifer tarandus)

typically occurs several weeks prior to the onset of the spring

resource pulse [51,61], a life-history trait associated with

capital breeding [22]. Consistent with this classification,

the reproductive performance of 19 semi-domestic reindeer

populations in Norway increased as the result of widespread

trophic match in years with earlier vegetation emergence [51].

Svalbard reindeer on the high-Arctic island of Spitsbergen

exhibit capital breeding traits comparable with those of

muskoxen [47,61]. Like muskoxen in southwestern Green-

land, Svalbard reindeer fecundity increased during a multi-

year warming period characterized by more favourable but

less predictable environmental conditions outside of their

breeding period [62].

Capital breeding marmot populations in the Rocky

Mountains (Marmota flaviventris) and French Alps (Marmota
marmota) provide further examples of life-history trait-driven

population response to resource variability. Both of these clo-

sely related (phylogenetically) populations are emerging

from hibernation earlier in response to shifting environmental

conditions, and as a result, are experiencing longer growing

seasons [63–65]. Marmots in the Rocky Mountains have
capitalized on this longer growing season with increased sea-

sonal capital accrual that has resulted in larger litter sizes

[64]. In contrast, the positive effect of the longer growing

season has been offset by higher capital storage costs associated

with changing environmental conditions and a higher temp-

erature-dependent metabolic rate in the French Alps marmot

population, ultimately resulting in smaller litters there [65].

Changing trophic interactions, rather than the direct effects

of weather on energy balance, are perhaps the best-documen-

ted proximate causes of climate-linked population declines

and local extinctions [66]. The match–mismatch framework

has traditionally formed the conceptual basis for describing cli-

mate-driven changes in trophic interactions [10,11], but few

cross-species or -population comparative match–mismatch

studies have been undertaken (but see [67]). Rather than focus-

ing on species-level vulnerabilities, however, we argue for a

taxon-independent assessment of trophic mismatch vulner-

ability based on a life-history strategy perspective in the

context of prevailing environmental conditions.
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