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Complex biotic interactions drive long-
term vegetation dynamics in a
subarctic ecosystem

Johan Olofsson, Mariska te Beest and Lars Ericson

Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden

Predicting impacts of global warming requires understanding of the extent

to which plant biomass and production are controlled by bottom-up and

top-down drivers. By annually monitoring community composition in

grazed control plots and herbivore-free exclosures at an Arctic location for

15 years, we detected multiple biotic interactions. Regular rodent cycles

acted as pulses driving synchronous fluctuations in the biomass of field-

layer vegetation; reindeer influenced the biomass of taller shrubs, and the

abundance of plant pathogenic fungi increased when densities of their

host plants increased in exclosures. Two outbreaks of geometrid moths

occurred during the study period, with contrasting effects on the field

layer: one in 2004 had marginal effects, while one in 2012 severely reduced

biomass in the control plots and eliminated biomass that had accumulated

over 15 years in the exclosures. The latter was followed by a dramatic decline

of the dominant understory dwarf-shrub Empetrum hermaphroditum, driven

by an interaction between moth herbivory on top buds and leaves, and

increased disease severity of a pathogenic fungus. We show that the climate

has important direct and indirect effects on all these biotic interactions. We

conclude that long time series are essential to identify key biotic interactions

in ecosystems, since their importance will be influenced by climatic con-

ditions, and that manipulative treatments are needed in order to obtain

the mechanistic understanding needed for robust predictions of future

ecosystem changes and their feedback effects.
1. Introduction
Understanding the factors regulating the abundance of plants has been the

central goal within ecology for more than a century, since they form the

energy basis of most food webs and drive global carbon cycles. However,

plant abundance and net primary production are highly variable in space

and time. Spatial variations of net primary production are related to factors

such as climate, vegetation distribution and land use across the planet from

local to global scales. Temperature and precipitation are key climatic variables,

and both are, in general, positively related to plant production in most eco-

systems [1]. Between-year variations in temperature and climate are thus

important drivers of variation in plant abundance and primary production

in space and time [2].

Top-down effects from herbivores and pathogens can also have strong

effects on plant biomass [3,4]. Spatial variation in herbivores has, for example,

large consequences for species composition and structure of plant communities

worldwide [5,6], and dramatic fluctuations in herbivore abundance have also

been found to drive corresponding fluctuations in plant abundance in natural

ecosystems [7–10].

Numerous studies have investigated vegetation changes and related them to

a changing climate [11–16]. However, in order to do so, it is important to

understand natural patterns of fluctuations in plant communities. Most existing

long time series of population dynamics or community composition reveal
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large fluctuations [4,17–20], and that the importance of

different factors causing these fluctuations often vary over

time [4,18,21].

Arctic and alpine regions are examples of currently

changing ecosystems. Since these regions have become

warmer during the past century [11,22,23], recent observations

of shifts in the composition and abundance of Arctic and

alpine plants have been interpreted as responses to a

warmer climate [12,13]. In many locations, the ranges of

thermophilic species such as trees and shrubs [14,15,16], and

tall forbs [12,13], have expanded beyond their recent alti-

tudinal or latitudinal limits. Warming experiments support

the hypothesis that higher temperatures could drive these

vegetation shifts [24,25].

Although the current range of expansion of thermophilic

species in Arctic and alpine ecosystems is circumpolar

[12,13], such changes vary in space and time [13,26], and

in some areas [13,26], no changes or even decreases in the

abundance of thermophilic plants have been observed. This

indicates that local differences in geology, topography, climate

or land-use can strongly influence observed patterns [26].

Moreover, changes in plant community composition are not

constant over time [26,27] and herbivores disrupt the linear

relationship between summer temperature and shrub growth

[17]. Bottom-up regulators such as temperature [24] and nutri-

ent availability [28,29] are indeed major drivers of primary

production and plant community composition in nutrient-

poor, cold Arctic and alpine ecosystems [30,31]. However, this

does not mean that top-down forces such as herbivory and

pathogen attacks are unimportant. Numerous exclosure studies

have revealed that mammalian herbivores such as voles and

reindeer strongly influence the vegetation [7,28, 32,33]. More-

over, outbreaks of moth species [8,9,33] and plant pathogens

[4] can also cause dramatic changes in Arctic and alpine ecosys-

tems. Many of these bottom-up and top-down forces are likely

to interact. For instance, responses of plants to warming are

enhanced by nutrient addition [34–36], while herbivores may

reduce increases of plant biomass following fertilization

[28,29,37] and warming [33,38].

Annual recordings of plant biomass and community com-

position in open, grazed control plots and herbivore-free

exclosures in a subarctic ecosystem in the Abisko region

have demonstrated that the regular interannual density

fluctuations of voles and lemmings drive synchronous inter-

annual fluctuations in the biomass of field-layer plants, as

well as the relative abundance of various species [7]. The

effects of combined vole and lemming peaks were clearly vis-

ible in satellite images, more specifically in reductions in

normalized difference vegetation indices obtained from

images covering a 770 km2 area in the following year [7].

Moreover, the total plant biomass almost doubled when all

mammalian herbivores were excluded for 14 years [7,17].

Here, we use data from the experiment described above to

assess how different top-down and bottom-up forces influence

the plant community. More specifically, we assess how the bio-

mass of the six most common plant species of the field-layer

changed during the period 1998–2012, in grazed control

plots, large mesh-size exclosures and small mesh-size exclo-

sures in two contrasting habitats (forest and tundra). The

ecosystem experienced considerable variation in temperatures

including an extreme winter warming event [26], four vole

peaks, three lemming peaks, two geometrid moth outbreaks

and at least two outbreaks of plant pathogenic fungi during
this period. One of the outbreaks of geometrid moths, in

2012, had severe effects, including rapid and extensive decline

of the dominant understory species Empetrum hermaphroditum.

We show here how each of these events separately or

interactively influenced the plant community.
2. Material and methods
(a) Study area
The study was carried out in the proximity of the Paddus cliff,

550 m.a.s.l. approximately 4 km southwest of the Abisko

Scientific Research Station, in the Torneträsk region, northern-

most Sweden (6881902300 N, 1885105700 E). The bedrock here is

nutrient-poor and the forest is dominated by mountain birch

(Betula pubescens ssp. czerepanovii), which is typical for Fenno-

scandian treelines. The mean annual air temperature and

precipitation from 1960 to 1990 at the Abisko Scientific Research

Station were 20.88C and 304 mm, respectively [26,39]. The eco-

systems at the study location consist of a mixture of forest and

tundra patches. The birch density in the forest patches was

747+ 68 trees per ha in 1998. Reindeer graze in the area

mainly in spring and autumn, but solitary reindeer can be

found throughout the summer. Climate warming in the region

has led to temperatures exceeding those of earlier warm periods

since the start of the new millennium and crossing of the 08C
mean annual temperature threshold [26]. In addition, since the

1980s, a previous century-long trend of increasing snow depth

has been replaced by an accelerating reduction [39].

(b) Experimental design
The analysis reported here is based on data from three study sites

established in proximity to the Paddus cliff. The distance between

sites varies between 0.2 and 2 km. Each site consists of a birch

forest and adjacent tundra. The forest and tundra were chosen

to be as similar as possible, except for the presence of trees. At

all of these sites the field-layer vegetation consists of a dwarf-

shrub heath, but grasses and herbs are more common inside the

forest. The large herbivore guild is totally dominated by semi-

domesticated reindeer, while voles and lemmings are the main

small vertebrate herbivores [40,41]. Three 8 � 8 m experimental

plots were established in 1998 in each of the three forest and

three tundra sites. These three experimental plots were randomly

assigned to the following treatments: ‘large mesh-size exclosure’

(excluding ungulates and mountain hares), ‘small mesh-size exclo-

sure’ (excluding all mammalian herbivores) and a no-exclosure

control treatment (allowing all herbivores unrestricted access to

the vegetation). Steel wire sheep netting (1.2 m high with a 10�
10 cm mesh size), fastened 10–20 cm above the ground, was

used for the large mesh-size exclosures and galvanized net (1 m

high with a 1.2 � 1.2 cm mesh size), inserted 10–30 cm into the

mineral soil, for the small mesh-size exclosures. As voles and lem-

mings are the most important small vertebrate herbivores in the

region the small mesh-size exclosure plots are referred to hereafter

as rodent exclosures. The original experiment also included three

other locations in northernmost Sweden and Norway [7,17, 40,41].

However, only the southern continental location close to Abisko is

considered here.

(c) Vegetation recording
We recorded the plant community composition (vascular plants,

mosses and lichens) in three permanent subplots (0.5 � 0.5 m,

more than 1 m apart) within each exclosure and grazed control

plot, and estimated plant biomass non-destructively with a

modified point intercept method (100 pins per plot). We carried

out the measurements annually from 1998 to 2012, in late
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July–early August, using a transparent Plexiglas table, 0.5 �
0.5 m, with 100 randomly distributed 4 mm holes. We lowered

a pin of the same diameter through each hole, and recorded

the number of contacts the pin made for each vascular plant

species. Plants of E. hermaphroditum and Vaccinium vitis-idaea
showing visible disease symptoms were recorded separately

(see §2(e)). To convert the point intercept data to biomass for

the permanent vegetation plots, 20 additional representative

plots were selected in the summer of 2011 in close proximity to

the grazed control plots, surveyed by the point intercept

method in the same way as the permanent subplots, and

harvested at the peak of the growing season (early August).

The plant biomass was sorted into functional groups, dried to

constant mass (48 h at 608C) and then weighed. Only data for

the most abundant species are reported here. For older data

see [7,17,40,41].

(d) Herbivore damage and visible disease symptoms of
Empetrum hermaphroditum

To identify drivers of the extensive and rapid death of

E. hermaphroditum in the forest following the moth outbreak in

2012, we sampled five shoots from each of 10 replicated subplots

in three microtopographic positions (mounds, intermediate and

depressions) across a 50 m long transect in each of the three

forest sites at the end of August 2012. The three microtopo-

graphic positions reflect large differences in snow cover from

snow-poor mounds to snow-rich depressions, which means

that timing of snowmelt may differ for several weeks. The

mounds are often located around tree trunks. The altitudinal

differences between mounds and depressions are about 1 m.

The sampled shoots were examined in detail under a stereomi-

croscope. Top buds were categorized into three classes: intact,

killed by parasitic fungi and eaten by herbivores. Thereafter,

from each shoot we randomly sampled 10 leaves from each of

four age classes (C is the current year’s shoot, C þ 1, C þ 2 and

C þ 3). Annual stem length increments were identified under a

stereomicroscope by the scars left by each year’s bursting bud.

The sampled leaves were scored for herbivore damage (feeding

scars) and presence/absence of pathogenic fungi.

(e) Parasitic fungi
Species identifications of parasitic fungi are based on microscopic

examinations and follow [42–44]. Nomenclature follows [45]. In

the vegetation recordings with the point intercept method (see

above), we only scored disease on dead plant parts. We identified

one fungal pathogen, Arwidssonia empetri, on E. hermaphroditum,

while disease on V. vitis-idaea was caused by three different

pathogens Eupropolella vaccinii, Lophodermium melaleucum and

Myxothyrium leptideum. Although E. vaccinii was by far the most

abundant, they were treated collectively in the field scoring.

Both A. empetri and E. vaccinii are so-called snow-blight fungi

with extensive mycelial growth under an isolating snow pack in

winter. Attacked plant parts are killed and appear as brownish

patches immediately after snowmelt (for further information see

[4,46], respectively). The detailed scorings of individual leaves in

the Empetrum study differ in detail because disease on both

living and dead leaves was identified in the laboratory. We

found two common pathogenic fungi, Epipolaeum sulcicola and

A. empetri. As the latter was of more limited importance in the

birch forest, we only present data for E. sulcicola in figure 7. Epipo-
laeum sulcicola is a hemibiotrophic pathogen, i.e. it is biotrophic

early in the life cycle and eventually switches over to necrotrophic

nutrition [47,48]. Following successful inoculation it will take

about 1 year until any disease symptoms allowing accurate identi-

fication become visible. That is when the first small incipient

ascocarps have been formed. This time lapse between successful
infection and possible identification of about 1 year is, for obvious

reasons, not visible in our data (figure 7). In contrast to both

A. empetri and E. vaccinii, E. sulcicola has a more restricted mycelial

growth, limiting infection to younger leaf cohorts of the ramet.

Lophodermium melaleucum is also hemibiotrophic [46], while the

life cycle of the anamorph M. leptideum is not resolved [44].

( f ) Rodent densities
We thoroughly surveyed the sites for signs of rodents in June

1998, before the exclosures were constructed. Tracks, droppings,

damaged plants and bodies of dead voles and lemmings were

found. All these signs indicated that there was a rodent peak

in the autumn of 1997. We subsequently monitored spring and

autumn densities of rodents using the small quadrate method

[49]. The spring trapping took place as soon after the snowmelt

as possible (mid-June) and the autumn trapping during the

first two weeks of September. A quadrate of 15 � 15 m was

marked, and 12 traps of galvanized steel were placed as clusters

of three in each corner. Distances between quadrates were

approximately 100 m. Traps were baited with small pieces of Fin-

nish rye bread, set for 48 h and checked twice (after 24 h and 48 h).

Each quadrate thus represents 24 trap nights. We used five small

quadrates in a forest and five small quadrates in an open heath-

land (240 trap nights in total) close to the sites (0.2–2 km) where

exclosures were built in all locations. More than 80 per cent of

all caught voles were Myodes rufocanus individuals. In addition,

Norwegian lemmings, Lemmus lemmus, were abundant during

peak years. A few individuals of Myodes rutilus and Microtus agres-
tis were also caught. This species composition is typical for dry

heathlands in the Fennoscandinan forest–tundra ecotone [50].

Moth population dynamics were not surveyed in any systematic

way. Population peaks were easily distinguished as a binary vari-

able, since the birches were almost totally defoliated in the whole

research area during these years, while damage levels did not

exceed 20 per cent in the other years.

(g) Statistical analyses
Changes in biomass of the total community or individual species

in the grazed controls were tested using linear regression with

years as a continuous factor. Relationship between biomass of

species and years since a rodent peak, mean temperatures and

precipitation were tested using linear regression. The models

were simplified and the models with the lowest AIC were

selected. The effects of excluding herbivores on plant biomass

were analysed using repeated measure ANOVA. The linearity

of the species responses in the exclosures over time were tested

by comparing linear and asymptotic models (y � a 2 b �
exp(2c)) with an ANOVA. The fit of the linear model and non-

linear model was tested with AIC, and by comparing the

variance explained by the two models with an ANOVA. Herbi-

vore damage and pathogen abundance on E. hermaphroditum
were analysed using two-way ANOVA. The effect of different

types of herbivores (small and large mesh-sized exclosures)

were tested with a two-way ANOVA followed by a Tukey HSD

test to separate individual treatments.
3. Results
(a) Climate and herbivore dynamics
The past two decades have been warmer in the study region

than in the rest of the twentieth century. Summer temperatures

peaked in 2002, but all summers between 2002 and 2007 were

fairly warm. However, summer temperatures have tended to

decline during the past 10 years in Abisko, and the two coldest

summers during the past 15 years were in 2010 and 2012



ca
tc

h 
ra

te

0
5

10
15
20(a)

(b)

1998 2000 2002 2004 2006 2008 2010 2012

ca
tc

h 
ra

te

0
5

10
15
20
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(figure 1). As previously presented [7], the density of voles

fluctuated with a 3-year cycle, with peaks in 2001, 2004, 2007

and 2010 (figure 2). Lemming densities peaked in synchrony

with those of voles, except in 2004 when no lemmings were

caught, but there was a large variation in the amplitude of

the peaks. There were two geometrid moth outbreaks during

these 15 years and trees in the mountain birch forest were

completely defoliated in both 2004 and 2012. During

the 2004-peak, only Epirrita autumnata was recorded, while

the 2012-peak was a combined E. autumnata and Operophthera
brumata outbreak. However, although large parts of the

surroundings were totally defoliated, our study sites in the

upper part of the forest–tundra ecotone were only 50–80%

defoliated in 2004 while the defoliation was close to 100 per

cent in 2012 (J. Olofsson, personal observation).

(b) Vegetation changes in grazed controls
The total vascular plant biomass in the grazed control plots

fluctuated with a 3- to 4-year cycle in response to the vole
and lemming cycles (cf. [7], statistical analyses not repeated

here). The biomass of most common plant species changed

over time. The biomass of Betula nana and V. vitis-idaea
increased in the tundra ( p ¼ 0.017, p ¼ 0.002), but did not

change in the forest ( p ¼ 0.133, p ¼ 0.312). The biomass of

E. hermaphroditum increased in the forest ( p ¼ 0.015), but

did not change in the tundra ( p ¼ 0.079). Vaccinium uligino-
sum decreased in the forest ( p , 0.001), but did not change

in the tundra ( p ¼ 0.090). The biomass of Deschampsia flexuosa
increased ( p ¼ 0.045) and the biomass of Vaccinium myrtillus
decreased in the forest ( p , 0.001). Both these species were

too rare for statistical tests in the tundra.

The biomass of plants did not experience linear changes

during these 15 years, but rather fluctuated dramatically

depending on climatic conditions and rodent dynamics. The

total field-layer biomass increase was statistically significant

with years since the last rodent peak both in the forest and

in the tundra, but there were no statistically significant effects

of temperature and precipitation (table 1). On the level of indi-

vidual species, the increase in biomass of V. myrtillus and V.
uliginosum was statistically significant with years since a

rodent peak in the forest, and years since a rodent peak was

also included with a positive value in the best models

(lowest AIC) for most species (table 1). Precipitation outside

the growing season had a negative effect on the biomass of

B. nana in the forest, and precipitation both within and outside

the growing season had a negative effect on V. uliginosum in

the tundra. There was also a positive effect of higher tempera-

tures outside the growing season for B. nana and D. flexuosa.

However, the severe outbreak of geometrid moths in 2012

dramatically interrupted these trends in the forest by reducing

the biomass of all common plants except for the graminoid

D. flexuosa (figure 4c). The moth outbreak reduced the biomass

of B. nana, E. hermaphroditum, V. myrtillus, V. uliginosum and

V. vitis-idaea by 76, 56, 54, 59 and 34 per cent, respectively

(figure 4a–k) compared with the year before. In contrast to

the dramatic effects in 2012, the geometrid moth outbreak in



Table 1. Effect of years since a rodent peak (YRP), precipitation within the growing season (May – August, PreM-A), precipitation outside the growing season
(September – April, PreS-A), temperature within the growing season (May – August, TempM-A) and temperature outside the growing season (September – April,
TempS-A) on plant biomass in the grazed controls during 15 years. Variable coefficients are given in the table and significant relationships are marked in italics.
Non-significant relationships that were included in the model with the best fit (lowest AIC) are also shown in the table (not italics).

habitat
YRP
(g/year)

PreM-A
(g/mm)

PreS-A
(g/mm)

TempM-A
(g/88888C)

TempS-A
(g/88888C)

total plant biomass forest 24.9 15

tundra 16.3 – 2.0

Betula nana forest – 0.4 – 0.4 1.7

tundra

Deschampsia flexuosa forest – 3.0 – 0.7 4.4

Empetrum hermaphroditum forest 3.5

tundra 5.8

Vaccinium myrtillus forest 18.9 13.0

Vaccinium uliginosum forest 5.3 0.7

tundra 2.3 – 1.0 – 1.3 1.9

Vaccinium vitis-idaea forest 0.8 1.0 3.0

tundra 2.2 0.2

Table 2. F-values from statistical analyses (repeated measure ANOVA) of the responses of the six most common plant species to exclusion of all mammalian
herbivores during 15 years in forest and nearby tundra. H ¼ habitat, T ¼ treatment, Y ¼ year.

H1,8 T1,8 H 3 T1,8 Y14,112 Y 3 H14,112 Y 3 T14,112 Y 3 H 3 T14,112

total plant biomass 3.5 2.8 0 8.7*** 2.5** 7.2*** 1.5

Betula nana 2.0 0.9 0.6 60.1*** 9.3** 13.4*** 1.5

Deschampsia flexuosa 0.5 4.2* 1.5

Empetrum hermaphroditum 4.4 4.1 0.6 5.6*** 1.2 3.0*** 1.4

Vaccinium myrtillus 10.8* 2.8*** 0.6

Vaccinium uliginosum 0.2 0.6 0.6 0.7 1.4 0.6 0.5

Vaccinium vitis-idaea 0.5 14.8** 0.1 4.2*** 0.5 1.8* 0.6

*p . 0.05, **p . 0.01, ***p . 0.001.
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2004 had only marginal, although observable, effects on the

field-layer vegetation (figure 4).

(c) Vegetation changes in vertebrate herbivore
exclosures

Excluding rodents (that is the small mesh-size exclosures)

influenced the total plant biomass (table 2), and there were

no statistically significant differences between the habitats

(there were no statistically significant year (Y) � habitat

(H) � treatment (T) interactions; table 2 and figure 3).

Rodents influenced all dominant plant species, except the

grass D. flexuosa, either by affecting their long-term trends

in biomass or by inducing interannual fluctuations (tables 1

and 2, figure 4). We found no indications that the responses

of any species to rodents differed between the forest and

tundra in habitat-specific analysis of the data (there were no

statistically significant H � T or Y � H � T interactions,

table 1). Four of the six dominant vascular plant species

(B. nana, E. hermaphroditum, V. myrtillus and V. vitis-idaea)

increased in biomass in response to herbivore exclosure
(table 2, figure 4). Initially, all these species increased linearly

in the exclosures both in the forest and in the tundra. This

increase was clearly interrupted by the dramatic die-off by

many species following the moth outbreak in 2012 in the

forest. However, this increase declined towards the end of

the study period in the exclosures in the tundra as well

(figures 3 and 4), and asymptotic linear regression functions

provide significantly better fits for all these species (B. nana,

p ¼ 0.025; E. hermaphroditum, p ¼ 0.008; V. uliginosum, p ¼
0.001; V. vitis-idaea, p ¼ 0.024). The disruption to increases

of E. hermaphroditum (figure 5a) and V. vitis-idaea (figure 5b)

in the exclosures coincide with increases in the severity of

damage caused by a number of host-specific parasitic fungi:

A. empetri (figure 5a) and the sum of E. vaccinii, L. melaleucum
and M. leptideum (figure 5b). The differences in disease

severity between treatments were only statistically significant

for E. hermaphroditum (F1,4 ¼ 63.9, p ¼ 0.001) and not for

V. vitis-idaea due to large spatial variation (F1,4 ¼ 1.3, p ¼
0.314). In the forest, the long period of linear increase

in plant biomass is interrupted by a dramatic drop in 2012,

since the total plant biomass and biomass of all
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common plants, except D. flexuosa, decreased in the exclo-

sures in response to the geometrid moth outbreak in

2012 (figures 3b and 4). The decline in total plant biomass,

and of the six common species, was dramatically stronger

in the mammalian herbivore exclosures than in the grazed

controls. In these exclosures, biomass that had accumulated

over 14 years was eliminated within a few weeks, and

consequently no statistically significant between-treatment

differences remained for any species in August 2012

(B. nana, p ¼ 0.221; D. flexuosa, 0.547; E. hermaphroditum, p ¼
0.690; V. myrtillus, p ¼ 0.608; V. uliginosum, p ¼ 0.219;

V. vitis-idaea, p ¼ 0.876).

(d) Moth outbreak and Empetrum hermaphroditum
browning

Although the moth outbreak caused E. hermaphroditum to

decline in the forest as much as many other species, its mech-

anism differed since plants of the species rapidly browned, in

spite of relatively modest feeding damage. Furthermore, the

detailed analyses of sampled shoots in 2012 revealed that

the response of E. hermaphroditum plants to the moth out-

break depended on their small-scale topographic position.

The frequency of intact buds was over 25 per cent on small

mounds around the birch tree trunks and 0 per cent in

depressions (F2,83 ¼ 33.4, p , 0.001, figure 6a). The direct

moth herbivory was severe, but it differed along topographic

gradients; more than 50 per cent of the top buds were

damaged by herbivory on mounds, while only about 25 per

cent were damaged in the depressions (figure 6b). However,

even more top buds were killed by parasitic fungi, but the

pattern was reversed with only 21.6 per cent of top buds dis-

eased on mounds, and 73.4 per cent of the top buds diseased

in depressions (F2,83 ¼ 52.8, p , 0.001, figure 6c). About 60

per cent of the leaves from the current year’s growth (C

leaves) had feeding scars, fewer than 25 per cent of the

leaves on the 1-year-older cohort showed any damage, and

feeding signs on older leaf cohorts were negligible (figure

7b). E. empetri, which entirely dominated the pathogens in

the forest, showed the opposite pattern: almost 100 per cent

of the 3- and 2-year-old leaf cohorts were diseased, while

less than 50 per cent of 1-year-old leaves showed any visible

disease symptoms (F2,174 ¼ 200.3, p , 0.001; figure 7a).

(e) Large and small herbivores
All data presented above are from the small mesh-size exclo-

sures, excluding all mammalian herbivores. By contrasting
large mesh-size exclosures and grazed controls, and small-

mesh size exclosures with large mesh-size exclosures, we

were able to analyse the effects of large and small herbivores

separately. In 2012, after 15 years of herbivore exclusion, large

herbivores, presumably reindeer, reduced the biomass of

B. nana (figure 8a, F2,12 ¼ 6.2, p ¼ 0.048) and the lichen

Cladina mitis (F2,12 ¼ 18.7, p , 0.001; figure 8e). Small

vertebrate herbivores, presumably voles and lemmings,

reduced the biomass of E. hermaphroditum (F2,12 ¼ 6.2, p ¼
0.014; figure 8b), V. myrtillus (F2,12¼ 13.1, p ¼ 0.003;

figure 8c) and V. vitis-idaea (F2,12 ¼ 5.6, p ¼ 0.019; figure 8d ).
4. Discussion
This unique time-series demonstrates the importance of verti-

cal biotic interactions such as herbivores and pathogens for

the plant community composition. However, it also indicates

that climate has strong direct effects on plants and pathogens,

and how they interact. Our data show that the studied ecosys-

tem has been profoundly affected by gradual changes in

biotic and abiotic variables, regular pulses of biotic disturb-

ance and sudden irregular biotic disturbances during the

past 15 years. The vole and lemming cycles, which reduce

plant biomass and change plant community composition

every third to fourth year, are the most obvious examples

of regular pulses, while the severe outbreaks of geometrid

moths and plant pathogens are examples of sudden irregular

events that profoundly affect the field-layer vegetation, at

least within the time frame considered in this study.

As previously shown, the regular interannual density

fluctuations of voles and lemmings drive synchronous fluctu-

ations in the biomass of field-layer vegetation, and of NDVI

estimates obtained from satellite images covering a 770 km2

area [7]. By analysing the data separately for the two habitats,

we show here that the cycles in total plant biomass are more

pronounced in the forest than in the open tundra, although

year since the last rodent peak was still the only statistically

significant predictor of total plant biomass, with no signifi-

cant effect of temperature or precipitation in any of the two

habitats. This finding may appear to conflict with a previous

report that voles and lemmings influence low-productivity

tundra vegetation more than productive forest floor vege-

tation, since the densities of herbivores are limited by

predators in the latter habitat [32]. However, in our study

the forests and tundra were separated by less than 100 m

and did not differ in productivity, so significant differences

in predation pressures between the two habitats are unlikely.
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Moreover, since the effects of the voles and lemmings on indi-

vidual species did not differ between the two habitats, their

impact is probably weaker in the tundra than in the forest

because the tundra vegetation in this study is dominated by

relatively unpalatable evergreen species.

This study confirms that voles and lemmings have strong-

er effects on the vegetation than reindeer by consuming and

damaging more biomass, especially during the winter, when
plants are unable to compensate for the lost tissue [7,17,40],

although the succession towards a dominance of larger

shrubs (i.e. B. nana) observed in the exclosures indicates

that reindeer could be more important for the long-term

vegetation changes observed in this area than previously

assumed. Various density-dependent processes will increase

in importance in response to increasing densities of host

plants in exclosures, eventually resulting in outbreaks of
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biotrophic pathogens [4,46]. Thus, the initial increases of eri-

caceous dwarf shrubs in the absence of small rodents will

after some time be inhibited by pathogens, while taller

shrubs and lichens (which both are mainly influenced by

reindeer), will continue to increase provided that climatic

conditions are suitable [17,33,51,52]. Such shrubification

may have cascading effects on the tundra ecosystem, since

shrubs will increase the snow depth, thereby raising winter

soil temperatures, microbial activity and plant-available

nitrogen supplies [15]. In addition, it is likely to reduce bio-

diversity [52] and contribute to the regional warming by

decreasing land surface albedo [34].

Outbreaks of caterpillars are important disturbance fac-

tors in boreal forest, subarctic forest and Arctic tundra

[21,33,53,54]. Outbreaks of at least one of the geometrid

moth species present in the study area, E. autumnata, occur

at regular intervals of about 10 years, but the intensity of

the outbreaks varies dramatically [26,53–55]. Severe out-

breaks of E. autumnata and Operophthera brumata completely
defoliate the birches and the larvae then move down and con-

sume many of the common species in the understory

[9,53,56–59], while less severe outbreaks only have minor

effects on the forest structure and understory [53,59]. These

previous findings are confirmed by our data, since the

moth outbreak in 2004 only had minor effects on the field

layer, while the outbreak in 2012 reduced plant biomass

by more than 50 per cent. However, based on the level of

defoliation of the birches, even the 2004 outbreak was actu-

ally quite severe [54], so most outbreaks may perhaps be

expected to have only fairly limited effects on the field-

layer vegetation. The latest outbreak that had severe effects

on both the forest structure and field-layer vegetation in

this study location took place in 1955 [57]. Our study con-

firms previous findings about vegetation responses to moth

outbreaks, except for the dramatic decrease of V. vitis-idaea,

which has been reported to be unaffected during earlier out-

breaks [57], and the lack of increase of graminoids, which has

often been reported [53,56,57,59] and which also took place
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during the 2004 outbreak. The latter may have been due to

the cold summer of 2012 preventing graminoids from

responding to the increased light following the extensive

defoliation [60].

This study compares, for the first time, the impact of

rodent peaks and geometrid moth outbreaks on field-layer

vegetation of subalpine birch forest. The vegetation seems
to respond to the two rodents and moth larvae in similar

ways. Although deciduous shrubs were the preferred food

for both types of herbivores, evergreen dwarf shrubs suffered

more from the damage they caused. The only major differ-

ence was that B. nana was severely defoliated by the moth

species, while voles and lemmings had minor effects on the

species. However, although the severity of herbivore damage
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differed among rodent peaks, the difference in severity

among moth outbreaks was much larger. Moreover, the

effects of the moths were even more severe in the exclosures

than in the grazed control plots, as biomass accumulated over

15 years in the absence of vertebrate herbivores was lost in

only a few weeks during the moth outbreak. The stronger

impact of moth in exclosures could be the result of excluding

moth predators, since rodents potentially can predate on

the moth larvae, but since rodent densities were low in

2012, this is unlikely. Instead, we believe that the higher

density of food plants favoured both larvae and pathogens

in the exclosures and thus increased their impact on the

vegetation there.

Although the unpalatable evergreen E. hermaphroditum
was much less defoliated than other dwarf shrubs in 2012,

it suffered as much as other species from the geometrid

moth outbreak; although it was only partly defoliated it

rapidly browned within a few weeks. A similar rapid dieback

was first observed in a moth outbreak in the same region in

1955 [57], and has been reported several times in northern-

most Fennoscandia during the latest outbreak wave

[9,59,61]. We show here that the dieback of E. hermaphroditum
is related to the combined effects of moth herbivory and a

common plant pathogen. The moth feeds on the leaves of

the youngest age cohorts, while the pathogen persists on

older leaf cohorts lower down in E. hermaphroditum thickets,

and together they seem to have a dramatic effect on the

sink–source dynamics of the host. Since the moth feeding

was mainly confined to the current-year leaves and left

older (C þ 2 and C þ 3) leaves almost untouched (figure 7),

and leaves of the latest 3–4 cohorts are normally green

(alive) in this area, E. hermaphroditum would presumably

have remained predominantly green if subjected to herbivory

alone. In the absence of the pathogen, the mortality of undam-

aged leaves would probably have been low, and carbon and

nitrogen would have been translocated to surviving leaf

cohorts, as observed in pines following outbreaks of various

pest species [62–64]. However, the moth outbreak in 2012

coincided with very high levels of disease caused by a hemi-

biotrophic plant pathogen, E. sulcicola. During infection,

plant pathogenic fungi synthesize and secrete proteins that

suppress the immune system and reprogramme the infected

tissue to become a source of nutrients needed for mycelial

growth and reproduction of the fungus [65]. Thus, parasitic

fungi, biotrophic and hemibiotrophic, act as sinks interfering

with photosynthesis, respiration and translocation [66,67],

and heavily diseased leaves may act as net importers of

carbon and nitrogen [68]. It seems probable that the observed

browning is a result of a decrease in net assimilation due to a

direct negative source effect from moth defoliation in combin-

ation with a strong pathogen sink. Further, as defoliation of

younger leaves often results in allocation of C and N to

older leaves in evergreen plants [62,63,69], it seems reason-

able that a similar response also in E. hermaphroditum,

might favour the growth of E. sulcicola, and maybe drive its

switch from biotrophic to necrotrophic nutrition. The moth

outbreak could also have influenced the pathogen via mas-

sive deposition of moth faeces (frass), thereby greatly

raising available nitrogen contents on the leaf surface, in

the host plant, forest floor and soil [9,70]. This nitrogen ferti-

lization could have direct positive effects on both pathogen

infection [71] and pathogen growth [21,46]. In our case, it is

probable that this fertilization has affected the environment
on the leaf surface and resulted in enhanced infection success

(cf. [71]). However, if so, that effect will not be visible until

the following year when the first ascocarps start to appear.

Another striking pattern is that the impact of parasitic

fungi varies with the topographic position. In depressions,

almost all top buds were diseased, either by E. sulcicola or

A. empetri, most probably because the thicker snow cover

facilitates the growth of the mycelia [4]. With increasing

snow cover, not only the lower part of the plants, but also

the top buds will become available for infection, leading to

shoot mortality. This shows that the importance of these

pathogens varies within landscapes and that their impact

on the plants is highly dependent on climatic conditions [4].

The observed changes in species’ biomass between years

and among treatments are likely to have large consequences

for interactions between plants and ecosystem function in

these ecosystems. Especially, the dramatic decrease of the

dominant field-layer species, E. hermaphroditum, is expected

to be important [4]. It frequently dominates the field-layer

vegetation in boreal and subalpine forest, and Arctic and

alpine tundra, it makes a major contribution to the prod-

uctivity of the understory vegetation, and it is associated

with retrogressive succession due to the accumulation of

polyphenolic compounds it releases into the soil [72]. Thus,

changes in the biomass of E. hermaphroditum are likely to

have cascading effects on the functioning of the whole ecosys-

tem [4,73]. The decrease of E. hermaphroditum is also expected

to influence the occurrence of other plant species, but the

direction is hard to predict, since both competitive and facil-

itative interactions are common in these ecosystems [74].

However, it is probable that the already existing graminoids,

especially D. flexuosa [60,75], and lichens [76] will benefit

from the increased light and nutrient availability following

the disappearance of E. hermaphroditum and other dwarf

shrubs. Moreover, E. hermaphroditum is known to prevent

establishment and growth of other plants via allelopathic

effects [75]. However, although existing experiments show a

dominance of positive responses of other plants to removal

of dominant dwarf shrubs in tundra heathlands, the response

is often weak and the direction varies with abiotic conditions

[75,77,78].

We show here that several biotic drivers, including plant

pathogens and herbivores, influence plant abundance and

community composition. These changes may in turn influ-

ence gross primary production and net ecosystem exchange

[79–81]. However, climatic conditions also have strong effects

on northern plant communities. Temperature and precipi-

tation are known to drive plant growth in these cold

ecosystems [12,13,24], which is also evident since these cli-

matic variables explain part of the variation in plant

biomass observed in this study. Climatic conditions also

have strong indirect effects on the dynamics of the plant com-

munity, via influencing herbivores and pathogens. The

population dynamics of Arctic herbivores, including voles,

lemmings and reindeer, is known to be influenced by

winter conditions [27,82,83]. Low winter temperatures are

also known to kill moth eggs and limit plant damage [84],

and snow conditions and temperatures are major factors

regulating many plant pathogens [4]. Moreover, as exempli-

fied by our data, climatic conditions can also influence the

resilience and susceptibility of plants to herbivores and

pathogens. The dynamics observed during the past 15 years

suggests that warmer temperatures increase the capacity of
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plants to regrow following herbivore outbreaks. Increased

temperatures can also decrease nutrient levels and influence

the levels of defence substances in dwarf-shrub species [85].

The devastating browning of E. hermaphroditum seems to

have been a result of climatic conditions not only favouring

both the moth and the pathogen, but also contributing to a

dramatic alteration of the nutrient source–sink dynamic in

the host plant. This extensive E. hermaphroditum browning is

most probably a rare event, and has not been observed in

Abisko between 1955 [57] and 2012. Still, it is important to

characterize these phenomena because both moths and patho-

gens have the potential to push Arctic and alpine ecosystems

across tipping points [86], causing irreversible changes in the

field-layer vegetation [4] and forest structure [26]. Further-

more, such changes may affect the carbon storage of these

ecosystems more than decades of gradual climate change

[4,73]. Since the importance of different biotic interactions

varies not only due to intrinsic population cycles but also

with the climatic conditions, long time series recording

responses of many different biotic components of the eco-

systems are needed in order to identify the key biotic

interactions in ecosystems. Furthermore, to get a mechanistic
understanding of the importance of various biotic interactions,

manipulative experiments are needed. To understand how

biotic interactions and climatic conditions interactively influ-

ence the dynamics of plant species and communities will be

critical for our ability to predict future change. Variations in

the climate have the potential to dramatically alter host—

natural enemy interactions; however, critical weather

conditions are often not easy to identify in standard analyses,

since conditions during a few critical days might be more

important than seasonal averages [87,88].
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