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4Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
5Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
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The subarctic environment of northernmost Sweden has changed over the

past century, particularly elements of climate and cryosphere. This paper pre-

sents a unique geo-referenced record of environmental and ecosystem

observations from the area since 1913. Abiotic changes have been substantial.

Vegetation changes include not only increases in growth and range extension

but also counterintuitive decreases, and stability: all three possible responses.

Changes in species composition within the major plant communities have

ranged between almost no changes to almost a 50 per cent increase in the

number of species. Changes in plant species abundance also vary with par-

ticularly large increases in trees and shrubs (up to 600%). There has been an

increase in abundance of aspen and large changes in other plant communities

responding to wetland area increases resulting from permafrost thaw. Popu-

lations of herbivores have responded to varying management practices and

climate regimes, particularly changing snow conditions. While it is difficult

to generalize and scale-up the site-specific changes in ecosystems, this very

site-specificity, combined with projections of change, is of immediate rele-

vance to local stakeholders who need to adapt to new opportunities and to

respond to challenges. Furthermore, the relatively small area and its unique

datasets are a microcosm of the complexity of Arctic landscapes in transition

that remains to be documented.
1. Introduction
Although climate change is occurring in the Arctic twice as fast as in most other

places on the Earth [1,2], it is not the only driver of ecosystem change in north-

ern lands [3]. Habitat fragmentation, resource extraction, pollution, changes in
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historic hay mowing sites [58]

historic leaf cutting site—in addition: cuttings along the railroad [58]

historic Sami camp sites (viste) and corrals [58]

historic reindeer migration routes (also along the entire main road) [58]
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Figure 1. Land use and infrastructures in the Abisko region, subarctic Sweden. The location of objects is not exact in congested areas, but optimized to retain overall
neighbourhood relationships while maximizing the number of exact positions. See electronic supplementary material, table S1 for exact positions, methodology and
data sources. Map prepared by T. Thierfelder.
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land use and ultraviolet-B radiation increases all act together

to affect ecosystem services. These services are essential for

Arctic residents (provisioning services, such as game and

berries) and for the global community (regulatory services,

such as carbon capture and release). Although changes in

Arctic ecosystems have been documented [4–11], attribution

to a particular driver remains uncertain in some cases [12,13].

This is because of the multiple co-occurring drivers and also

because any one driver such as climate warming can act on

various processes within an organism and on interacting

species among trophic levels [4].

Recently, it has been shown that ecosystem responses

to climate change vary among northern regions [10,14] and

even within one area undergoing the same climatic changes

[15,16]. Furthermore, events that disturb ecosystems can

counterbalance or even over-compensate for long-term

changes [17,18]. In fact, less than 40 per cent of the Arctic

has ‘greened’ in the past 30 years despite widespread warm-

ing [11]. With this complexity in mind, our aim here is to

compile and analyse multi-decadal changes in a range of ter-

restrial ecosystems from the subarctic of northern Sweden.

This area has an unrivalled history of northern environmental

observation over 100 years [19,20]. We show that many and

diverse responses of ecosystems to climatic and other changes

can be observed in one catchment, that climate acts directly

and indirectly on ecosystems, and that past land use and

short-lived (hours to weeks) extreme events can also have

long-term impacts (annual to decadal) that sometimes over-

ride long-term, multi-decadal trends driven by climate
change. We show conclusively that local knowledge is essen-

tial for understanding the cause and potential futures of

ecosystems at the wider pan-Arctic scale. This study also

develops a platform and new geo-referenced baseline against

which future projections of climate-driven ecosystem change

can be validated and refined [21–23] as a tool to help local

residents and authorities to adapt to climate change and

their impacts [24].
2. Methods and study area
This synthesis is based on numerous papers, unpublished

reports and theses, historical records, old photographs, site

re-visits, data from control plots of long-term experiments,

dendrochronolgy and remote sensing (aerial photography

and satellite imagery). In addition, some of the sources

used are themselves syntheses of multiple studies performed

as contributions to the International Polar Year Project ‘Back

to the Future’ [6]. The text summarizes the results while the

methods behind each study are presented in electronic

supplementary material, table S1. Furthermore, the results

from each study in terms of change or stability of a variable

are geo-referenced and presented in a series of figures

(figures 2–4) as well as digitally in electronic supplementary

material, table S1. The study starts with an overview of

changes in important drivers of change in ecosystems and

then presents the complexity of numerous types of vegetation

response to these drivers.
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Figure 2. Abiotic changes in the Abisko region, subarctic Sweden in relation to changes in summer degree days between 1913 and 2009. The location of objects is
not exact in congested areas, but optimized to retain overall neighbourhood relationships while maximizing the number of exact positions. See electronic sup-
plementary material, table S1 for exact positions, methodology and data sources. Map prepared by T. Thierfelder.
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We compile data for a region that includes the northwest

catchment of Lake Torneträsk and some areas lying on the

border of northern Norway and Sweden (see figure 1 and elec-

tronic supplementary material, table S1). The area is diverse

topographically (342 m.a.s.l. to more than 1900 m.a.s.l. [25])

and climatically with a northwest–southeast oceanic-continental

gradient and local rain shadow effects owing to the Scandes

mountains. Climate has been monitored since 1913 at the

Abisko Scientific Research Station (ANS) [26]. Currently

(2002–2011), mean annual temperature is þ0.498C while the

seasonal mean temperatures from spring to winter are 20.82,

þ10.9, þ1.1 and 29.28C, respectively (ANS data). The ANS

has also been the centre of many dispersed observations of

climate and ecosystems over the past 50 years or more [19,20].

For example, climate at the mid-alpine Latnjajaure Field Station,

one of the satellite stations of the Abisko Station, has been

monitored since 1990 (year-round since 1992 [27]). Climate

downscaling to 50 m resolution for the Abisko area shows that

temperature at the 50 m scale is determined mainly by topo-

graphy in summer and proximity to the large lake (332 km2)

in winter [28,29]. Overall, the results show important long-

term trends (see figure 3 and electronic supplementary material,

table S1) as well as periodic extreme events (see figure 4 and

electronic supplementary material, table S1; see below).

The latest succession stage for the warmest parts of

the region is represented by needle-leaf coniferous forest. In

the warmer, southern part of the region, the forest is dominated
by Norway spruce (Picea abies (L.) Karst.) but this species

is absent from the study area. In contrast, Scots Pine (Pinus
sylvestris) exists as an exclave population in the warm inner

Abisko valley [30,31]. Most of the forest is deciduous and

dominated by birch (Betula pubescens ssp. czerepanovii) that

can grow in either the polycormic form (multiple stems) or as

single-stemmed trees (monocormic) on warmer, well-drained

and nutrient-rich sites [32]. The birch forest reaches an altitud-

inal limit of approximately 600 m.a.s.l. in the western parts and

approximately 800 m.a.s.l. in the eastern parts of the Torne-

träsk catchment [30]. Within the birch forest, isolated clones

of aspen (Populus tremula L.) and individuals of alder (Alnus
incana (L.) Moench.), rowan (Sorbus aucuparia L.), species of

willow (Salix spp.) and bird cherry (Prunus padus L.) occur

[33]. The soils are dominated by till, colluvium and glacio-

fluvial deposits, although peat occurs in lowland depressions.

Soil nutrient content decreases from the west to east but the

soils are nutrient-rich in the central part [34]. These climatic

and edaphic conditions are associated with a distinctive vege-

tation composition and distribution: the most widespread

plant communities are the birch forest (B. pubescens ssp. czere-
panovii), which occurs either as a heath or meadow-type

according to the understorey vegetation, heath vegetation

(e.g. Arctostaphylos alpina (L.) Sprengel, Arctostaphylos uva-ursi
(L.) Sprengel, Betula nana L., Empetrum nigrum L., Vaccinium
myrtillus L., Vaccinium vitis-idaea L., Vaccinium uliginosum L.,

Phyllodoce caerulea (L.) Bab., Juncus trifidus L.) [34], meadow
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(e.g. Bistorta vivipara (L.) Gray, Calamagrostis lapponica
(Wahlenb.) Hartm., Filipendula ulmaria (L.) Maxim., Geranium
sylvaticum L., Potentilla crantzii (Crantz) Beck ex Fritsch, Ranun-
culus acris L., Rumex acetosa L., Trollius europaeus L.) [34,35], and

snowbed communities (e.g. Carex bigelowii Torr. ex Schwein,
Cassiope hypnoides (L.) D. Don, Gnaphalium supinum L., Sibbaldia
procumbens L.) [36], with other sparse plant communities such

as bogs (with mosses such as Dicranum fuscescens, Kiaeria
starkei, Oligotrichum hercynicum, Pohlia spp., Polytrichum
hyperboreum) [37]. Remnants of the typical low Arctic tussock

tundra are found in the mid-alpine zone in flat areas on mineral

soil with permafrost (now degrading [38]).

The Abisko area has a rich avifauna [39] and there are sev-

eral mammal species including reindeer (Rangifer tarandus),

moose (Alces alces), European brown bear (Ursus arctos), red

fox (Vulpes vulpes), wolverine (Gulo gulo), lynx (Lynx lynx),

mountain hare (Lepus timidus), Norwegian lemming (Lemmus
lemmus) and voles (predominantly Myodes rufocanus). The

species that most affect vegetation and predators are reindeer,

moose, lemmings and voles, and two geometrid moth species.

Small rodents, especially voles and lemmings, are herbivores in

northern ecosystems [13,40,41]. In most boreal and Arctic eco-

systems, rodents normally experience regular inter-annual

population density cycles of 3–5 years [42]. The two geometrid

moth species that naturally disturb the birch forest vegetation

in the Abisko area are the autumnal moth (Epirrita autumnata)

and the winter moth (Operopthera brumata). Both species exhibit

a more or less cyclic population fluctuation pattern.
3. Changing drivers of ecosystem structure
and function

(a) Temperature
Statistically smoothed climate trends between 1913 and 2006

show a warm period in the late 1930s and early 1940s but a

recent warming that statistically significantly exceeds the earl-

ier warming by 0.888C over the year, by 1.38C in spring and

by 0.408C in autumn [19]. Over the whole period 1913–2006,

mean annual air temperatures increased by 2.58C, winter and

spring temperatures each increased by 2.98C and the autumn

temperature increased by 1.68C: summer temperatures have

not risen significantly (95% confidence limits) in the recent

warming or over the twentieth century despite an increase of

1.78C. At Latnjajaure, the mean annual air temperature has

increased steadily since 1992 at a rate of ca 18C per decade

[43]. Temperature extremes in the Abisko area have been

most notable in winter when extreme warming events for

just a few days result in brief excursions above 08C, snow-

thaw and re-freeze to create ice layers [17]. Records of layers

of ice and hard snow in snow profiles from ANS show that

the frequency and intensity of winter thaws have increased

between 1960 and 2010 [44]. At fine-scale resolution (50 m

grid cells), modelled summer degree-day temperature change

[28] ranges between 598C and 658C (see figure 2 and electronic

supplementary material, table S1). Also at this fine scale, the

average annual temperature between 1991 and 2009 varies
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from 26.8 to þ0.68C across the study area (see figure 4 and

electronic supplementary material, table 1). There is a notable

diminishing of differences in the rate of warming between

north- and south-facing slopes (see figure 2 and electronic

supplementary material, table S1). Solar radiation (at high

northern latitudes) primarily heats south-facing slopes, so as

there was less sunshine owing to increased cloudiness over

time (ANS data), warming of southern slopes by solar

radiation was reduced relative to north-facing slopes. The

increased cloudiness at Abisko is consistent with pan-Arctic

modelling studies that show an increase in Arctic cloudiness

[45,46]. To some extent, these findings mitigate against the con-

cept that fine-scale temperature heterogeneity will create

refuges for resident plant species and prolong their existence

during warming [47].
(b) Precipitation
Summer precipitation was relatively constant for the first

half of the twentieth century and then increased significantly

( p ¼ 0.09) from 117 mm in 1959 to 143 mm in 2006 [19].

Currently (2002–2011), mean annual and mean summer pre-

cipitation totals are 332 and 138 mm yr21, respectively (ANS

data). Extreme rainfall events (more than 20 mm d21) have
been recorded throughout the twentieth century. However,

‘extremes of extremes’—more than 30 mm per day—occur at

intervals of approximately 15 years (with wide variation) [48]

and damage landscapes (see figure 4 and electronic supple-

mentary material, table S1) and infrastructure (see figure 1

and electronic supplementary material, table S1). Since 1956,

each ‘extreme of extremes’ has been a new record for the instru-

mental period [48] and in 2004, for instance, over 61 mm of

rainfall (about 20% of the annual average) fell in one day [19].
(c) Snow
Snow depth increased during the twentieth century [49] but

since the 1980s, there has been an accelerating decrease ([19],

see figure 2 and electronic supplementary material, table S1).

Between 2002 and 2011, the mean snow depth during

the main snow cover season (November–April) is 25.6 cm

(ANS data). Snow duration has decreased significantly by 0.1

week yr21 at high elevations between 1978 and 2007 to 27

weeks ( p ¼ 0.018), while at low altitude, spring snow thaw

has become significantly earlier by 0.12 week yr21 over the

same period ( p ¼ 0.001) [47]. Snow stratigraphy, representing

winter weather, has changed since 1960: the incidence of

increased and more complete thaw events led to an increase
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in hard snow/ice layers in the snow pack between 1961 and

2009 [44].

(d) Permafrost and lake ice
Since the 1980s there has also been an accelerating loss of

lowland permafrost [50] and lake ice [19] (see figure 2 and

electronic supplementary material, table S1). Monitoring of

permafrost (by measuring active layer thickness and perma-

frost temperature) at nine mires along an east–west transect

shows increases in active layer thickness (determined by

probing) and decreases in permafrost thickness (determined

from increases in permafrost temperature): complete loss of

permafrost occurred at three mires ([50]; figure 2, electronic

supplementary material, table S1). Borehole temperature

measurements at three of those mires between 1980 and

2002 show increased temperature (by between 0.48C and

18C) and decreased permafrost thickness through thaw at

the surface and at depth (probably because of ground

water flow) [51]. Aerial colour infrared images from 1970

and 2000 show thawing permafrost at the lowland Stordalen

Mire that has resulted in an increase in areas of open water

[52], the expansion of wet habitats and a decrease in dry,

hummock sites [53]. In contrast, permafrost thaw at higher

altitudes has resulted in the rapid drainage of shallow lakes

on periglacial rocky silt: there are two cases in the Latnja

valley and another lower one in Kårsavagge; draining pro-

ceeded rapidly between 2006 and 2010 and the former lake

bottoms remain almost unvegetated (Ulf Molau 2012, per-

sonal observation). These contrasting local changes in

surface hydrology mirror those occurring at much larger geo-

graphical scales throughout the Arctic [54,55]. The changes in

surface hydrology associated with thawing permafrost

directly drive changes in plant communities (see §4a(v)).

Lake ice on the large Lake Torneträsk has melted earlier

and formed later each year giving an overall reduction in

duration of lake ice of about 40 days between 1913 and 2006

(figure 2; [19]). The dynamics of ice on the large lake are

likely to affect vegetation via the temperature regime on land

as winter temperatures on land surrounding the lake are

affected more by the lake than by topography in winter

[28,29]. This effect could become stronger as ice cover decreases

further and is similar to the large-scale effect of loss of sea ice

that enhances the greening of the Arctic [5].

(e) Ultraviolet-B radiation
Models of UV at Abisko show a statistically significant

increase of 2.2 per cent per decade from 1950 to 1999, result-

ing mainly from thinning stratospheric ozone but also to

some extent from varied sunshine duration and snow

albedo [56]. These increases could potentially affect the

local ecosystems [57].

( f ) Land-use and infrastructure development
The land-use of the Torneträsk area by a relatively small

population was dominated by fishing and hunting up

to the seventeenth century, but more intensive reindeer

husbandry developed between the seventeenth century and

ca 1920 [58] with a peak in reindeer population of 120 000

around 1890 [59] compared with the current (2010) reindeer

population of 50 000 [60]. Although reindeer densities have

fluctuated over time, data show no consistent trend of
increasing or decreasing densities over the past century.

The intensive period of reindeer husbandry had a substantial

impact on both the vegetation’s productivity and structure as

well as on the treeline location (see §4a(i)), as the Sami reindeer

herders often stayed close to the treeline with their animals [58];

figure 1; electronic supplementary material, table S1 and figure

S1). During the past ca 100 years, extensive reindeer husbandry

has resulted in a larger proportion of the landscape being used

by reindeer, and thus a more even but reduced grazing

pressure. Also, parts of the Torneträsk area have been grazed

by goats (especially around the reindeer herding camps) and

cattle around farms [58].

Farming also affected the vegetation during the last part of

the nineteenth century and the beginning of twentieth century,

but ceased in the 1940s. Hay cutting on both mires and on man-

made meadows as well as birch leaf cutting was extensive ([58];

figure 1; electronic supplementary material, table 1).

The Abisko area is important for its fishing and hunting

resources. The two most common important prey species are

moose (Alces alces) and ptarmigan (Lagopus spp.). Ptarmigan

hunting attracts many visitors from Sweden and abroad.

Most lakes and rivers are accessible by licence to fishing

tourists and the local public. The main catch is Arctic char

(Salvelinus alpinus), brown trout (Salmo trutta) and grayling

(Thymallus thymallus). Recent climate warming has made it

possible for pike (Esox lucius) to invade waters to the west

from the eastern part of the Abisko area [61].

The Abisko region is attractive as an area for berry picking,

in particular for cloudberry (Rubus chamaemorus), lingon berry

(V. vitis-idaea) and billberry (V. myrtillus). Berry picking on

public or private land is free in Sweden. Berry picking is carried

out both for private consumption and for commercial (foreign

and domestic) purposes.

During the construction of the railway between Kiruna

and Narvik in the first years of the twentieth century, exten-

sive areas of the birch forest were cut in an estimated 1000 m

wide zone along the railway [62] and pine trees were

harvested from the Abisko valley [58,62]. Much later, in the

1940s, tall birch tree trunks were cut on the north shore of

Lake Torneträsk and brought across the frozen lake by

horses and trucks to provide fuel for Abisko and even

Kiruna (Anders Eriksson 2000, personal communication).

When the railway was opened, the first tourist hotel was

built in Abisko in 1903. The environmental impact of tourism

(wild-life experiences, mountain-walks and cross-country

skiing) during the first half of the twentieth century was

small, although tourism from the 1940s to 1980 steadily

increased [58,63]. From the 1940s, tourist complexes developed

at only a few locations because the area was accessible only

by rail. During the 1950s and 1960s, major downhill ski con-

structions were built in Abisko, Björkliden and Riksgränsen.

A new road between Kiruna and Narvik was constructed

between 1979 and 1984. The road occupied about 40 ha

km21, in total 530 ha for the Swedish part of the road, but sec-

ondary expansions at ski and hotel areas reached a further ca
340 ha by 1987 [64]. Despite early concerns about possible

environmental impacts (Mats Sonesson 1976, unpublished

data), subsequent research has revealed limited effects so

far [64] and the road has stimulated tourism and the

local economy.

The study area is a major centre for conservation with two

national parks and two nature reserves. The Abisko National

Park (77 km2; figure 1) was inaugurated in 1909. More than
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half its area is mountain birch forest. Vadvetjåkka National

Park (26 km2; figure 1), an area mostly of treeless mountains,

was inaugurated in 1920 but unlike the Abisko National

Park, it has neither trails nor amenities. The two nature

reserves (figure 1), Stordalen (1980, 11 km2) and the area

around ANS (1982, 55 ha), were created to protect rich bird-

life and to secure areas for field-based research, respectively.

Together, these four protected areas are part of the Natura

2000 network, that also includes two areas south of Lake

Torneträsk (Låktatjåkka and Nissuntjårro), as well as the

entire mountain area north of the lake.

As early as 1902, a research station was developed at

Katterjokk, west of Abisko a few kilometres from the

Norwegian border, in a disused railway building. When

the building burned down in 1910 a new facility was located

at Abisko, i.e. the Abisko Scientific Research Station. Meteoro-

logical monitoring and scientific research started in 1913.

Currently, a wide range of research (plant ecology, climate

impacts, climatology and geo-science) is carried out by several

hundred visiting scientists per year from around the world.

Most of the research is carried out in the valleys and mountains

south of Lake Torneträsk. Many manipulation studies have

been established. They focus on impacts of increased tempera-

ture, atmospheric carbon dioxide concentration and UV-B

radiation, as well as snow accumulation [20,65].
(g) Animals
Statistics show that from the middle of the nineteenth cen-

tury to the mid-1990s the number of reindeer within the

Norrbotten County (the northernmost county in Sweden)

varied between 100 000 and 200 000 [66]. In the Sámi villages

of Talma, Gabna and Laevas in the Abisko area, intensively

managed reindeer densities peaked at approximately 15 000

in about 1860, while extensively managed reindeer densities

peaked at approximately 35 000 in the 1930s [16,58].

Moose populations increased in the area during the twen-

tieth century [67]. Increases in the latter part of the twentieth

century were probably owing to the removal of the top pred-

ator, wolves (Canis lupus), in the 1960s and earlier [68] and

perhaps also by climate warming that has increased forage

availability. Statistics from annual observations of moose by

hunters in the Abisko area show an increase from 1991 to

2009 of approximately 0.2–0.5 observations per man-day

with a peak of 0.52 in 2004 [69]. Although it is difficult to

translate this index into numbers of individual moose,

other observations indicate that 70–110 moose currently

live in the Abisko valley in wintertime. Approximately, one

quarter of these animals stay in the valley year-round and

the others migrate into neighbouring valleys and even to

the Norwegian coastline in summer (Caroline Stolter 2012,

personal communication).

The two geometrid moth species (the autumnal moth,

E. autumnata, and the winter moth, O. brumata) reach a popu-

lation density peak approximately every 9–11 years [70].

During most population peaks, tree defoliation levels by

the moth’s caterpillars do not exceed 15 per cent [71]. How-

ever, dating back to 1800, dendrochronological analysis,

historical reports and field surveys have identified several

moth population peaks that reached outbreak densities

[41,72–75]. On average, a birch forest area will experience a

severe outbreak every 60–70 years causing high tree or

stem mortality [74,76].
In most boreal and Arctic ecosystems, rodents normally

experience regular interannual population density cycles of

3–5 years [42], but the amplitude and regularity of these

cycles have been reported to be declining during the past dec-

ades in response to warmer winter climate and denser snow

[42,77]. Clear evidence for this is, however, limited to rodents

at the southern edge of their distribution [77,78]. At Abisko,

regular rodent trapping has been carried out only since

1998 ([13]; Ulf Molau 2012, personal observation), but in var-

ious heath and meadow plant communities. However,

during this period, vole densities (predominantly Myodes
rufocanus) fluctuated with a regular 3–4 year cycle, and lem-

ming populations peaked during three of the vole peaks,

albeit with a more variable amplitude. There are no indi-

cations that the cycle characteristics are changing at Abisko,

as has been reported for other northern ecosystems [13,41].
4. Responses to changing drivers
(a) Ecosystem responses to long-term trends in drivers
(i) Forest tree distribution and growth
Evergreen needle-leaf trees spruce and pine. Changes in species

composition have been relatively small, though important

locally. Norway spruce has not yet entered the study area.

Scots pine, which expanded during the first warm period of

the twentieth century when saplings were ‘shooting up

everywhere’ [79], showed no recorded increased distribution

by 1996 [31] although on the south slope of Slåttatjåkka, some

2 m tall pine individuals have been found at 45 m higher

elevation in the past decade [80]. In contrast, and consistent

with [31], small declines in pine were recorded between

1997 and 2010 by Hedenås et al. [81]. The general lack of

expected response of pine to recent warming is probably an

effect of browsing by increased populations of moose. Pine

sown from seeds are now 1 m high in herbivore exclosures

whereas they are less than 20 cm high in grazed control

plots (Johan Olofsson 2012, personal observation). Further-

more, continued suppression of tree crowns to below

winter snow height exposes the trees to heavy infection by

the fungus Phacidium infestans (snow blight) [31].

Aspen. Changes in aspen distribution have shown com-

plex trends (see figure 3 and electronic supplementary

material, table S1). Overall, aspen increased its distributional

range during the twentieth century by spreading north-

westwards and by increasing in altitude [33,82]. Over the

past 100 years, it became 16 times more abundant and has

reached tree-size at the alpine treeline, an ecotone that

has been dominated by birch for approximately the past

4000 years. In one location in the Abisko valley (figure 3; elec-

tronic supplementary material, table S1), aspen was found to

cover 15.4 m2 in 2010 in plots that together cover 7500 m2,

whereas the species was absent in 1976/1977 [83]. Reduction

in competition by birch that was periodically defoliated by

moth caterpillars was in general important for aspen estab-

lishment in the subalpine zone. In contrast, some aspen

clones in the lowlands have been remarkably stable in at

least one area between 1978 and 2008 despite higher recruit-

ment and growth rates in aspen than in neighbouring birch

([74]; figure 3; electronic supplementary material, table S1).

Like the pine population in the Abisko valley, the lowland

aspen population is heavily browsed by moose. However,
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in contrast to birch that periodically is defoliated by insects,

aspen is only slightly impacted (100-year-old birch trees suf-

fered on average 9.0 years of significantly reduced growth

compared with only 1.4 years in aspen: see below). The net

result appears to be a dynamic during a warming climate

when insect defoliation of birch reduces competition and

allows aspen recruitment but subsequent increases in

moose browsing of aspen prevent further expansion ([74];

figure 3; electronic supplementary material, table S1).

Alder, willows and rowan. Grey alder (A. incana) has

increased its elevational and distributional ranges since 1977

[84] in the west of the study area (figure 3; electronic sup-

plementary material, table S1). In 1977, it was not recorded in

transects that were later revisited in 2006 when the trees were

seen. It had much faster growth than neighbouring birch and

had a similar growth rate to aspen. In more extensive sampling,

alder showed an increase in growth from 150 to 210 kg ha21

between 1997 and 2010 [81]. In the same study, rowan

(S. aucuparia) showed a decrease from 8 to 1 kg ha21 over the

same period and willow (Salix spp.) also decreased, from

64 to 52 kg ha21. Over a smaller area of 150 m2 studied by

Rundqvist et al. [83], rowan less than 3.5 cm in DBH increased

its overall area from 17.5 to 23.6 m2, an increase of 28 per cent ,

between 1976/1977 and 2009/2010 (although the number of

stems larger than 3.5 cm decreased from a total of six to

zero). Recent uphill range extension of rowan has also been

documented in nearby Kårsavagge [82].

Birch. Since the beginning of the twentieth century,

the forest has become denser and treelines have risen in

elevation, partly as a response to changing reindeer husband-

ry practices [16,58,62,74,85,86]. An extensive and rigorous

recording of changes in vegetation dominated by birch

between 1997 and 2010 showed that the percentage cover of

‘birch forest of heath type with mosses’ increased signifi-

cantly from 8.7 to 22.9 per cent [81]. As the changes were

mainly in existing birch forest, this can be seen as forest den-

sification. A densification of the birch forest near treeline, as

recorded in general in northern Norway [87] was observed

as early as the early 1930s [79] in the early twentieth century’s

first warm period [19]. The densification was also documen-

ted in 1977 at the start of the current warming period at

the north and south sides of Lake Torneträsk [88] and near

Pålnoviken within the Abisko area [58] (figure 3; electronic

supplementary material, table S1). This was attributed to

the early twentieth century warm period (1930s and 1940s)

and reduced reindeer grazing (1960s and 1970s). Later, local

densification in the Abisko valley between 1976/1977

and 2009/2010 reached a 600 per cent increase in the area

of birch (a total area increase in plots from 122 to 809 m2,

[83], figure 3; electronic supplementary material, table S1).

Although recent climate warming has probably stimulated

growth and regeneration of birch, post-1976 densification of

the birch forest near the treeline is also mainly attributed to a

continued slow and long-term recovery from intense reindeer

browsing damage. In contrast, on the north shore of Lake

Torneträsk, forest death has occurred following a winter

moth (O. brumata) outbreak in 1964/1965 ([70]; see below).

Birch treeline dynamics also show contrasting patterns

and drivers as elsewhere in the Arctic [89]. Maximum

increase in altitude of the subalpine birch forest reached

145 m since 1912 at a rate of 1.5 m yr21 vertically and

2.7 m yr21 in actual distance ([16]; figure 3; electronic sup-

plementary material, table S1) and birch seedlings have
recently invaded alpine vegetation [82,90,91]. Defining tree-

line as the elevational limit of the highest 2 m tall birch,

upslope shifts up to 225 m (3 m yr21 vertically) have

been reported between 1950 and 2010 [80]. In other areas

(figure 3; electronic supplementary material, table S1), the

subalpine birch forest elevational limit decreased as a result

of a winter moth outbreak in 1964/1965 on the north side

of Lake Torneträsk, while in still other areas (figure 3; elec-

tronic supplementary material, table S1) this vegetation

boundary has been stable for nearly 100 years because of

steep mountain slopes and unsuitable soils for tree growth

[16]. Overall, in four out of eight treeline sites studied by

Van Bogaert et al. [16] the subalpine birch forest had

advanced and the net displacement was an increase in

elevation of 24 m at an average rate of þ0.2 m yr21. Surpris-

ingly, this overall expansion of the birch forest is correlated

more with release from heavy reindeer grazing pressure

and more intensive herding practices several decades before

recent warming (even if evidence of this impact is decreasing

in visibility: electronic supplementary material, figure S1)

than with recent climate warming in summer [16] that has

not been significant (see §3a). However, there may be a synergy

between the two processes. In addition, treeline advance can

be facilitated by the ascending shrub zone (see §4a(ii)) that

can protect tree seedlings from damage from high solar radia-

tion and herbivory [92]. Within the climate warming of the

twentieth century, treeline has therefore shown all three pos-

sible responses: upward expansion, stability and downward

retreat, each resulting from a different local driver and with

climate warming playing a relatively minor and sometimes sec-

ondary effect. An important conclusion, however, is that local

knowledge of site history is an essential factor in interpreting

mechanisms of vegetation change.

There are few measurements of northern deciduous tree

growth in the study area, and indeed elsewhere in northern Fen-

noscandia. However, re-sampling of an extensive programme

of recording tree and understorey growth in 1997 [93] has

shown substantial overall growth (figure 3; electronic sup-

plementary material, table S1) but variable small-scale trends

[81]. Tree (mainly birch) growth in the alpine-birch forest

ecotone averaged a 19 per cent increase in biomass, from

3507 kg ha21 to 4176 kg ha21. However, values for individual

plots (radius 5 m) ranged from a decrease of 23.4 t ha21,

through values of no change to substantial increases of

8.6 t ha21 [81]. Other tree species comprised about 7 per cent

of the 1997 total tree biomass values. Much of the variability

was again probably associated with site history in that an

E. autumnata outbreak defoliated much of the birch area in

2004 ([75]; figure 4; electronic supplementary material, table

S1; see below) and tree growth in some areas was reduced

compared with uninterrupted growth in areas not defoliated.

Understorey plant community. In 1983, species composition

was recorded at a birch forest site [94] which was re-sampled

in 2008 by Hedenås et al. [95], who found a decrease in

species richness that could be attributed to the dramatic

increases in tree and shrub growth demonstrated by Rundq-

vist et al. [83] for nearby plots. Data collected from an

ongoing experiment in the birch understorey between the

ANS and the southern lake shore [96] has shown that although

the dwarf shrub understorey communities have been exposed

to periodic insect outbreaks (e.g. 2004 and 2012) the percentage

cover of three out of four dwarf shrub species has increased in

recent years (Dylan Gwynn-Jones 2012, personal observation):
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a total of nearly 27 per cent increase in dwarf shrub cover

(V. vitis-idea, 16.1%, E. nigrum, 0.2% and V. uliginosum 11.2%

(V. myrtillus cover decreased by 1%)) was recorded between

1991 and 2009. This has meant a reduction in bare ground

and cover of other species including mosses and lichens.

At a birch forest site to the southeast of the Abisko village

(figure 3), comparison of baseline site data taken in 1991

(prior to experimental manipulations) in a dwarf shrub

heathland under birch [97] with another survey taken in

2009 at the same site [98] suggests different trends: the

main evergreen dwarf shrub E. nigrum has declined in

abundance over this time period although, as in the study

above, the other evergreen dwarf shrub, V. vitis-idaea, has

increased. The main deciduous dwarf shrubs, V. myrtillus
and V. uliginosum have shown rather subtle decreases in

abundance, V. myrtillus trends agreeing with those in the

previous study whereas the V. uliginosum trends strongly

contrasted with this study. However, grasses, Cladonia lichens

(the latter again contrasting with the previous study) and

the main bryophyte Hylocomium splendens show some indi-

cations of increases in cover over this time period. Caution

in interpretation of the changes should be taken since many

of them are not large and sometimes involve infrequent

species, so they could readily arise from differences in obser-

vers between years. Overall, the differences in trends of the

dwarf shrub species cover from site to site and the increase

in lichens are not totally consistent with the changes expected

[87,99,100].

These changes at the community level at the birch forest

site to the southeast of the Abisko village were not supported

by measurements of annual stem growth and leaf mass per

shoot in the dwarf shrubs measured in 1992 [101] and

again in 2008 [102] in control plots from the same manipu-

lation study. Only leaf mass per shoot in E. nigrum showed

some increase between these years, though such single-

season shoot-level measurements will be heavily influenced

by inter-annual variation in climate that reduces any signal

of long-term climate trend changes.
(ii) Tall shrub distribution and growth
It is perhaps the expansion of tall shrubs in the tundra

[8,10,103–105] that has recently focused attention on vege-

tation change in the Arctic. In the Abisko area, tall shrubs

are important in the birch forest at treeline and beyond, and

in riparian habitats within the forest. Probably, the first

recorded increase in shrub distribution at treeline (between

1937 and 1959) was recorded by Sandberg [79]. More recently,

a general increase in shrub distribution has been documented

throughout the area depicted in figure 2 by several studies.

Throughout an extensive area from treeline to lake on

both shores of Lake Torneträsk ([81]: figure 3; electronic sup-

plementary material, table S1), the mean percentage cover

increases of shrubs between 1997 and 2010 include 7.8–8.9

for willow, 14.0–20.1 for dwarf birch, 1.4–2.1 for juniper

and 0.2–0.3 for other shrub species. In a longer term study

(1976/1977 to 2009/2010) of three 50 � 50 m plots on the

east-facing slope of the Abisko valley, overall shrub expan-

sion was again documented: dwarf willow area increased

by an average of 107 per cent and willows increased by an

average of 189 per cent [83]. In recent years, saplings of the

normally subalpine willow Salix phylicifolia L. have estab-

lished in nutrient-rich snowbed meadows at Latnjajaure in
the mid-alpine zone [36,38]. However, in contrast to the gen-

eral increase in shrub cover, juniper cover decreased by 19 per

cent. This decrease in measured juniper cover contrasts with

its upward extension at or above treeline inferred from

dendrochronological analyses by Hallinger et al. [106].

Although Hallinger et al. [106] showed positive correlations

between treeline juniper growth and summer warming, this

area is recovering from intensive reindeer grazing and

human impacts, and the increased shrub growth is likely to

be a combination of both effects, particularly as summer temp-

erature increases have been modest [19]. Furthermore, the

upward shrub expansion (mainly Salix) recorded by Sandberg

[79] occurred in a period without warming trends. Also, experi-

mental exclosure of small rodents and reindeer in the same area

has shown conclusively that herbivores moderate the response

of vegetation in general to climate warming [12,13]. Since rein-

deer grazing probably is less intense in the areas close to the

treeline [16,62], it can be expected that at least some component

of the shrub responses is owing to reduced grazing pressure.

Also, if small rodent population peaks should decline in the

future as they have done in the south of Norway [77], this

could lead to increase of plant biomass and changes in plant

community structure.
(iii) Heaths
In 1997, heaths covered 54 per cent of the extensive area

sampled by Dahlberg et al. [93]. By 2010, this area was 59 per

cent [81] but the increase was not significant. Possible changes

in species composition were studied in five heaths. Plant

species were recorded in 1984 by Headley et al. [107] on

Mount Njulla, in 1984 by Carlsson & Callaghan [108] near

the summit of Mount Slåttatjåkka, by Svensson et al. [109] in

1992 near the ANS, by Emanuelsson [110] in 1977–1979

in Kärkevagge and in 1989 by the Swedish Environmental

Protection Agency programme for monitoring of environ-

mental quality (Program för övervakning av miljökvalitet;

PMK) [94] again at Mount Slåttatjåkka. The vegetation studied

at Slåttatjåkka [94] included some elements of low-herb

meadow, and the vegetation at Kärkevagge studied by

Emanuelsson [110] contained some elements of low-herb

meadow and snowbeds. All the sites were re-sampled in

either 2008 or 2009 [95].

The re-sampling of the Headley et al. [107] site showed

that between 1984 and 2008, one species was lost of a total

of 41 original species whereas 13 species were gained. At

the Carlsson & Callaghan [108] site, three of the original

nine species were lost and six were gained between 1986

and 2009. At the Svensson et al. [109] site, between 1992

and 2009, two of the original 30 species were lost and three

were gained. At the Emanuelsson [110] site, four species of

the original 37 were lost between 1977/1979 and 2009

whereas 17 were gained. At the PMK [94] Slåttatjåkka site,

between 1989 and 2008, seven of the original 36 species

were lost and eight were gained.

Overall, and including an open meadow site (see §4a(iv)),

total species number increased over the sampling period and

substantially at some sites. This contrasts with the overall

decrease expected from warming experiments [99] although

observations on species changes in cold region open vegetation

vary between increases and decreases [95]. Although an

increase in thermophilic species would be expected, no overall

increase was observed [95]. Cover changes were species-
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specific with no overall trends, but two graminoid species (C.
lapponica and Carex vaginata) and a low shrub (Salix reticulata)

increased in cover as would be expected from warming experi-

ments [99–101].

In a climate manipulation study in a wet heath southwest

of Abisko ([111]: figure 3), it was found that the total shrub

cover in the control plots (deciduous plus evergreen)

increased by 6 per cent between 1999 and 2008 [10], while

total graminoid cover declined. This was consistent with

vegetation responses in the manipulated plots exposed to a

decade of summer warming [111].
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(iv) Meadows
Meadows covered 5.1 per cent of the extensive and represen-

tative area surveyed by Dahlberg et al. in 1997 [93] and 7.5 per

cent of the area in 2010 [81], but once again the increase was

not statistically significant. The re-sampling of PMK plots

established in a meadow at Påtjujaure in 1983 by Hedenås

et al. [95] in 2008 showed a significant increase in 11 species

and a decrease in seven. Equisetum arvense and E. scirpoides/
variegatum decreased in cover [95], perhaps in response

to recent decreases in snow depth (see [112] which describes

this effect for the area surrounding Wellington Bay on south-

eastern Victoria Island, Canada). At Latnjajaure also, the

species turnover in alpine meadow vegetation has been

very significant over the past 20 years [10].
(v) Wetland vegetation
Wetland vegetation including bogs, fens and mosaic mires is

estimated by Christensen et al. [113] to cover 3.9 per cent of

the entire Torneträsk catchment. This vegetation covered 4.0

per cent of the area sampled by Dahlberg et al. [93] in 1997

and 4.2 per cent when re-sampled in 2010 by Hedenås et al.
[81]. However, a survey of the vegetation changes at the

subarctic Sphagnum mire at Stordalen (figure 3; electronic

supplementary material, table S1) by aerial photography

and ground survey in 1970 and 2000 showed changes in sur-

face stability resulting in large increases in wetland habitats

and decreases in dry hummock vegetation [52,53,114]. The

increased area of wetlands was associated with an increase

in graminoids whereas changes in the hummocks resulted in

a decrease in evergreen dwarf shrubs and mosses, but an

increase in lichens. Increases in wetland vegetation were associ-

ated with permafrost degradation whereas decreases in

hummock vegetation were related to changes in spring temp-

eratures and decreases in snow cover. These permafrost/

vegetation changes have profound effects on ecosystem func-

tioning in terms of the atmospheric exchanges of greenhouse

gases such as carbon dioxide and methane [114]. The stability

of the lowland permafrost in palsa mires has been found to be

strongly dependent on snow cover [115,116]. An increase in

snow cover depth or duration insulates permafrost from

low winter temperatures thereby raising its temperature. The

increased moisture resulting from increased snow amount

and permafrost thaw affect vegetation productivity and com-

position. An analysis of the effect of the permafrost thaw on

ecosystem functioning shows increased productivity in the

treatment plots of snow accumulation experiments despite a

longer lying snow cover and, hence, shorter growing season.

Increased moisture availability, greater active layer thickness

and subsequent changes in species composition caused the
thawing plots to be more productive in terms of carbon

uptake when considering the growing season as a whole [117].

In the Abisko area there are a few remaining patches of

tussock tundra dominated by Arctic cottongrass (Eriophorum
vaginatum), which is a main component of the circumpolar

low Arctic vegetation cover [118]. These patches are found

in flat areas on mineral soil (silt dominated) close to mid-

alpine lakes, the largest one located at Latnjajaure. The tus-

sock tundra at Latnjajaure has been monitored since 1992

within the ITEX project. Here, permafrost was still present

in the early 1990s but totally gone 10 years later. Repeated

analysis of the plant cover in control plots in 1995 and 2006

revealed a drastic change in the plant community from a

total dominance of E. vaginatum to a more boreal heathland

community. During the 12-year study period of final perma-

frost degradation, the boreal dwarf shrub V. vitis-idaea
increased 10-fold in biomass in control plots, a response similar

to that observed for this species in the lowland birch under-

storey (see §4a(i)). During the same period, formerly water-

filled boulder pits were drained and vegetated by a pioneer

bryophyte community dominated by Dicranella subulata [27].

(vi) Changes in snowbed habitats and their vegetation
Snowbed habitats and their vegetation are likely to be par-

ticularly vulnerable to the increased warming and reduced

snow cover duration and depth (that result in summer moist-

ure stress) recorded in the past decades at Abisko (figure 2).

The extensive re-survey of vegetation by Hedenås et al. [81]

showed that both snowbeds at their margins (‘moderate

snowbeds’) and snowbeds on rocks and boulders mainly at

high altitude (‘extreme snowbeds’) had decreased in cover

from 13.9 to 7.4 per cent and from 0.37 to 0 per cent, re-

spectively, between 1997 and 2010. The demise of snowbed

vegetation was seen through a densification of the vegetation

and ingression of surrounding species [36,119,120]. Although

climate change must play a major role in the demise of snowbed

vegetation, snowbeds are preferred habitats of lemmings, and

reduced lemming grazing owing to the unfavourable snow con-

ditions documented above could have led to the expansion of

graminoids [1,121]. Snowbeds are also important in reindeer

husbandry as they provide downhill meadows with a constant

water supply throughout the summer, and are used as retreats

for herds during warm days with particularly intense flying

insect activity [36].

Two bird species depending on snowbeds for their fora-

ging, snow bunting (Plectrophenax nivalis) and ptarmigan

(Lagopus muta), have decreased drastically in the mid-alpine

Latnja valley since 1990; the breeding population of the

former has decreased by more than 50 per cent [27]. In contrast,

in the same area, there is a marked increase in the breeding

population of the bluethroat (Luscinia svecica) [27]. However,

studies in general of the bird life in the Torneträsk region

over the past decades show no general or obvious trends in

population pattern of eight species but some variability [122].

(vii) Colonization of glacier forefields
Within the Abisko area, the Kårsa glacier has been retreating at

least over the past century and has retreated dramatically over

recent decades according to ground and aerial photography as

well as ground surveys [123–125]. Although the terminal mor-

aines have been estimated to be of several hundred years of age

using lichenometry [126], and the glacial front has retreated
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approximately 300 m over the last 100 years, no information is

yet available on the vegetation succession that has occurred

there during recent climatic warming.

(viii) High alpine vegetation
Although the vegetation composition of the mountain sum-

mits was to some extent described by Fries [127] and Du

Rietz [128] in the early twentieth century, the precise locations

of the observations are difficult to re-locate as early measure-

ments of altitude are flawed [84]. In later years, a more

precise long-term monitoring programme for alpine vascular

plants has been initiated within the network GLORIA

(GLobal Observatory Research Initiative in Alpine areas). In

a study including all major European mountain areas, a

small but significant increase in the number of species was

noted in the high alpine sites around Abisko (Latnjatjårro at

1300 m and Mount Kårsatjåkka at 1560 m.a.s.l. between 2001

and 2008 [129,130]. These changes are small compared with

the species turnover observed in the Alps and the Pyrenees

and in many other plant communities in the Abisko area.

(b) Ecosystem responses to drivers occurring as events
Changes in vegetation and animal populations are driven

relatively slowly by long-term climate change but tipping

points may be reached quickly by events such as extreme

weather, fire, insect pest and disease outbreaks. In the

Abisko area, fire has been unimportant in shaping the vege-

tation for thousands of years [131].

(i) Abiotic environmental events
Warm winters. Harsh winter weather conditions have regularly

led to crashes in the reindeer populations of northern Sweden

[132,133]. A typical weather pattern leading to a population

crash is a winter thaw event after the first snowfall. This causes

ice encapsulation of the ground vegetation, blocking the rein-

deer’s access to fodder resources. Snow accumulation after

ground-icing together with wind action increases the hardness

of the snowpack which reduces the accessibility of reindeer

fodder and may lead to reindeer starvation and death [133].

Herders may move the reindeer or feed them to avoid loss of

animals, but especially before the herding practices were moder-

nized, this was often impossible, thereby leading to large losses

such as during the crisis winters of 1905/1906 and 1934/1935

[134]. Despite modernization, this type of winter climate

continues to cause population crashes in reindeer herds [135].

Lemming and vole populations are also affected by extreme

winter warming events [77]. An extreme event with heavy rain-

fall in January 2002 formed an ice crust in the snow pack that

abruptly ended an ongoing population peak of the Norwegian

lemming (Ulf Molau 2012, personal observation).

Experimental and observational determinations of the

impacts of extreme winter thaw events on vascular plants

[17,136], mosses and lichens [137], fungi [138], soil arthropods

[139] and ecosystem processes [136] have become evident only

recently. Results from experimental thaws during winter were

validated by a natural thaw in northern Norway and Sweden

in 2007 that reduced NDVI (Normalized Difference Vegetation

Index) by almost 26 per cent over an area of at least 1400 km2

[17], although the rodent peak [13] and a plant pathogen

outbreak [140] may have also contributed to this decline. How-

ever, the recovery from most of this vegetation damage took

only 2 years [141]. Experiments and the natural event observed
in 2007 showed that the evergreen dwarf shrub E. nigrum
was particularly damaged with up to 34 per cent loss of its bio-

mass [136]. The co-occurring dwarf shrubs V. myrtillus and

V. vitis-idaea were also heavily impacted whereas V. uliginosum
and the grass Deschampsia flexuosa were more resilient. The

species-specific nature of the responses of the species to

winter thaw events and the small-scale heterogeneity of

snow thaw might play a role in the patterning of the subarctic

plant communities [138]. Thaw events affected the moss

H. splendens (but not the lichen Peltigera aphthosa: [137]) and

also reduced the abundance of fungal fruiting bodies [138].

Slope processes and flooding. The geomorphological and

hydrological activity in the Torneträsk region is fairly intense

and very unevenly spread over the year as in most humid,

periglacial and mountainous areas [142]. The geomorpho-

logical and societal importance of extreme events has been

studied since the 1950s [143,144] (Rolf Nyberg 1985, unpub-

lished data) showing that the two major periods of activity

are during snowmelt and late summers/autumns with

heavy rainfall.

Intense snowmelt periods have triggered slush torrents,

but the spatial and temporal distributions of these very

intense, sudden and very brief processes are relatively

unknown [145]. However, they have a major impact on

local landscape development and vegetation cover, and

they are a potential hazard to people and infrastructures.

Minor slush avalanches/torrents are frequent within vast

areas of the Torneträsk mountains but there have also been

recent, but rare, major events that affect infrastructures

including the road and railway [146]. The last major slush tor-

rents in the Torneträsk area occurred in 1982 (Mount Njulla),

1995 (Kärkevagge) [147] and 2010 (Låktavagge, Kärkevagge)

(Christer Jonasson 2012, personal observation) (figure 4; elec-

tronic supplementary material, table 1). The events are not

associated with years of deep snow and they seem to have

been triggered stochastically by short-term weather con-

ditions operating over a few days rather than by climatic

trends (Christer Jonasson 2012, personal observation).

In the Torneträsk region, heavy rainstorms in late summer

or autumn have caused considerable flooding, increased

sediment transport and damage to infrastructure. Several

major severe flooding/erosion events have occurred during

the past decades; October 1959, June 1979, July 1983 [147],

August 1998 [148], November 1999 [148], July 2004 [19,149]

and July 2012 (Christer Jonasson 2012, personal observation).

During the 1999 and 2004 events, there was heavy damage to

the railway and road [146,150] and slope detachment on

many mountain sides. The frequency of these extreme climate

events appears to have remained stable over the instrumental

period but the intensity has increased [48]. It can be expected,

therefore, that such damage will increase in the future: adap-

tation measures need to be taken to protect infrastructure,

whereas knowledge is needed on the dynamic interaction

between vegetation development related to climate trends,

the extent of damage owing to individual events and the

rate of recovery during climate warming.

Temperature inversions. Extreme temperature inversions

occur in the Abisko valley: temperature differences between

nearby localities at altitudes of 379 and 655 m.a.s.l. could be

as much as 248C [151]. Such inversions can cause frost

damage to birch trees and pine [70,152]. Dieback of birch in

an altitudinal zone of 410–430 m.a.s.l. on Mount Njulla in

1991 is thought to have been caused by such inversions and
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similar damage has been recorded in neighbouring localities

in 1962 and 1985 [70]. Although it would be expected that the

inversions would be less intense as the climate continues to

warm, the differential warming of south- and north-facing

slopes (figure 2; electronic supplementary material, table S1)

will probably result in complex, currently unknown effects

on inversions.
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(ii) Biotic environmental events
Insect pests. Although geometrid damage to forests in the Abisko

area is more or less in cyclical events every 10–11 years [70], on

average, a birch forest area will experience a very severe insect

outbreak every 60–70 years, causing high tree or stem mortality

[74,76]. In extreme cases such as in 1964–1965, these short-term

moth outbreak events [76] can override a long-term trend of

forest expansion and densification [16,81].

A typical moth outbreak results in the defoliation of the

birch trees and some understorey species such as B. nana,

V. myrtillus, V. vitis-idaea and E. nigrum [72]. The disturbance

is usually followed by complete recovery although acceler-

ated nutrient cycling from insect frass can cause a change

in plant community species composition by the stimulation

of grass growth over dwarf shrub re-growth [153,154].

In the mid-twentieth century two severe outbreaks were

recorded in the western part of the Torneträsk area: one in

1954–1955 (E. autumnata) on both sides of the lake and one

in 1964–1965 on the north side of the lake (O. brumata) [70].

These outbreaks had particularly large impacts on treeline,

forest density and understorey growth. In the former event,

Tenow [70] estimated that 780 kg D.W. ha21 of birch leaves

were eaten over 6000–7000 ha. The latter event killed birch

trees in an altitudinal belt stretching more than 10 km hori-

zontally. This forest area has not recovered and the treeline

has retreated 120 m downwards ([16]; see above and figure

3; electronic supplementary material, table S1).

There were also severe outbreaks of E. autumnata in both

2004 and 2012. In 2004, birch trees and ground vegetation

were damaged over large areas on both sides of Lake

Torneträsk ([75]; figure 4). Population densities of 940 cater-

pillars per m2 were recorded in late June 2004 (Dylan

Gwynn-Jones 2012, personal observation) and damage was

so severe as to convert the forest from a carbon sink to a

carbon source [155]. Although recovery occurred, tree

growth in areas of the greatest damage was limited compared

with that outside areas of intense damage (compare tree

growth in figure 3 with 2004 insect damage in figure 4).

The 2012 event had more severe impacts on the understory

than the 2004 defoliation, but its effect on the treeline and

forest structure is not known yet [41] whereas the 2004 out-

break had no lasting effect on the sub-alpine birch forest or

treeline (Rik Van Bogaert 2012, personal communication).

Recent large-scale observations show that O. brumata,

associated with a relatively moderate coastal climate, and

Argyresthia retinella, currently not important in the area, are

spreading northeastwards into traditionally colder regions

[156,157]. Models of future distributions of the species project

further range expansions and increased outbreak frequencies

during continued climate warming [158]. This scenario is

particularly probable because geometrid moth eggs (e.g. of

E. autumnata) are killed by low winter temperatures, a

major control on population density [159], and the frequency

of winters in which temperatures are low enough to kill the
moths’ eggs is expected to further decrease [160]. In contrast,

high UV-B radiation [161] and warmer summers [162,163]

result in reduced foliage quality that might offset increases

owing to enhanced egg survival. Furthermore, tree recovery

should increase during warmer summers as the damage

in 1965 was high because of exceptionally low summer temp-

eratures [162]. However, warmer summers could equally well

increase the probability that more thermophilic tree species

such as aspen will replace birch following severe outbreaks [33].

In addition to projected increases in damage from insect

outbreaks, models project an increase in birch damage from

‘background,’ i.e. non-outbreak, insect herbivory in the scen-

ario of continued climate warming [164]. Over the long term,

background herbivory could even result in more negative

growth impacts compared with that from outbreak herbivore

activity, although tree mortality is unlikely [164].

Voles and lemmings. The rodent cycles drive corresponding

cycles in the biomass of field-layer vegetation. Plant biomass

in tundra heath and forest understorey vegetation was

between 12 and 24 per cent lower during the year after a

vole peak than in the year before, and the combined vole

and lemming peaks are visible as a reduced normalized

difference vegetation index in satellite images over a

770 km2 area in the following year ([13,41]; figure 3). Studies

from other regions suggest that rodents should have even

stronger effects on the vegetation in high altitude snowbeds

[120,165], but no studies have been published in these habi-

tats in Abisko. However, Björk & Molau [36] state that

snowbeds are important wintering habitats for microtine

rodents, and most lemming winter nests are found in snow-

beds. Three population peaks occurred during the period

of observations (2000–2012) in heath and meadow habitats

at Latnjajaure: 2001, 2004–2005 (weak) and 2010–2011

(Ulf Molau 2012, personal observation; figure 4). The peak

in 2010–2011 ended in a situation of severe over-exploitation

of the plant cover. Despite the very low lemming popula-

tion density in the following year, the grazing impact on

the vegetation was still very marked in August 2012.

Tenow et al. [76] suggested that recovery of the monocormic

birch forest on the northern side of Lake Torneträsk is poss-

ibly hampered by an abundant vole population living in

the deeper snow cover on that side of the lake, and the import-

ance of rodents for tree establishment is supported by ongoing

experiments in the Abisko region (Johan Olofsson 2012,

personal communication).

Although lemmings and voles have population peaks that

can be considered as ‘events’ that drive vegetation structure

and productivity, their populations are themselves driven by

events in climate. For example, the lemming population

build-up in 2001 at Latnjajaure ended abruptly in January

2002, when 150 mm of precipitation fell as rain during 2 days

(10–11 January) followed by a marked drop in temperature

and the formation of a 10 cm thick pure ice layer in the snow-

pack at about 0.5 m above the ground surface (Ulf Molau

2012, personal observation). Hundreds of dead lemmings then

appeared during snowmelt in June 2002.

Disease and invasive species. Studies on relationships

between climate change and plant disease are almost totally

lacking but new studies have demonstrated the effect of

increased snow accumulation on a higher incidence of the

fungal pathogen, Arwidssonia empetri, on E. nigrum in the

subarctic vegetation of the Abisko area [140]. The incidence

of snow mould seems to be related to both snow conditions
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and mild and wet conditions before the onset of snow

[140,141]. Consequently, although long-term changes in the

occurrence of snow mould have not yet been determined,

observed changes in precipitation (see §3b) suggest that snow

moulds should be monitored in future. Furthermore, the inci-

dence of the fungal pathogen Exobasidium sp. on V. vitis-idaea
was observed by Skinner (Laura J. Skinner 2002, unpublished

data) to increase along an altitudinal gradient as temperatures

increased (figures 2 and 4; electronic supplementary material,

table S1), suggesting that the incidence of this pathogen may

increase during climate warming.

Little is known about the incidence of diseases in animals

in the area, although it is known that zoonotic diseases could

increase during climate warming and range expansion of

southern species [3].

Despite the large climatic changes documented in the

Abisko area, invasions of southern species are relatively iso-

lated. Exceptions are the invasion of aspen at treeline (see

§4a(i)) and the invasion of some boreal species above treeline

(see §4a(v)). Also, juvenile plants of S. phylicifolia, normally

not growing above the treeline, have appeared in nutrient-

rich snowbeds in the mid-alpine zone in the northern

Scandes during the past five years [36]. These willow plants

are all young and have not yet reached fertile age. Other

boreal plant species now expanding far above the treeline

include Epilobium angustifolium [38], Salix arbuscula and

Viola epipsila (Ulf Molau 2012, personal observations).

Documented invasions of animal species are difficult to

find, although moose populations have increased signifi-

cantly in the twentieth century [166]. Also, the northern

red-backed vole (Myodes rutilus), a subalpine boreal species,

is now established in the mid-alpine zone far above the tree-

line and was caught for the first time at Latnjajaure in 2005

(Ulf Molau 2012, personal observation).
5. Conclusions
This compilation of multiple, geo-referenced environmental

changes in the Abisko area, a landscape in transition, represents

a microcosm of the complexity of changes throughout

the Arctic, a region in transition [10,11,14,100,167], but the

long-term perspective and multiple studies are unique.

Overall, the results demonstrate that abiotic environ-

mental changes have been dramatic and changes in land

use have been significant locally (for example, expansion of

infrastructure and clearing of forests) and throughout most

of the area in terms of reindeer herding practices. The results

show an overall change in many vegetation types, species

and growth responses that would be expected during climate

warming (e.g. upward expansion of birch treeline, range

expansion of aspen, increase in tall and dwarf shrubs, decline

in cryptogams, etc.). However, evidence is also presented of

stable systems (that are counterintuitive) including the ther-

mophilic aspen clones and pine stands in the Abisko valley.

Also evident were indirect effects of climate warming that

could contribute to counter direct effects such as the lowering

of the birch treeline location owing to climate effects on geomet-

rid moth egg survival. It should also be highlighted that

climate change is not the only driver of vegetation change

operating in this area: herbivory, human disturbance and

impacts of steep, rocky slopes are also evident. Furthermore,

short-term events (hours to weeks) can override long-term
trends (multiple decades) in vegetation change parameters,

and even the long-term trends in temperature are more complex

than usually considered when modelled across the landscape at

50 m resolution for 100 years.

This complexity, understandable at the local scale, pro-

vides a great challenge for scaling up, e.g. for interlinkage

with climate-model output, particularly as the diverse drivers

of change and different directions of change operate within

individual vegetation types during the same climatic

changes. This further confounds the complexity of vegetation

responses described by Elmendorf et al. [10,100] for the pan-

Arctic. These authors showed that differences in vegetation

response were associated with different climate conditions.

Furthermore, the complexity of the findings presented for

the Abisko area show that simple correlations between vege-

tation changes recorded at the pan-Arctic scale and climate

change have little predictive power because the correlations

may hide the actual causes of change and the mechanisms

(direct and indirect) of change caused by climate warming.

Although the long-term (approx. 100 years) data presented

here represent a unique source, they were not collected in a

standardized way, and response variables differ throughout

the study. For these reasons, a standard statistical meta-analy-

sis is hard to perform. Instead, we have focused on highlighting

the complexity of responses, local drivers and interactions for a

single location with great biological and geomorphological

complexity that is a microcosm of the wider Arctic area. Meta

analyses may reveal broad effects and a veneer of understand-

ing but this approach would not help us to understand the

assemblage of systems and their interactions with each other

and human activity. The local people as stakeholders require

more specific details of change than would be provided via a

meta-analysis. For this reason, the information contained in

this study is presented as a new baseline for future climate

change impact analysis and modelling that will be used to

help local stakeholders adapt to changes in environment and

ecosystem services (e.g. the projects ‘Climate change, impacts

and adaptation in the subarctic: a case study from the northern

Swedish mountains’ (214-2008-188) and ‘Advanced Simulation

of Arctic climate change and impact on Northern regions’

(214-2009-389), both projects supported by the Swedish

research council FORMAS.

The main consequences of the results have substantial

implications for adaptation to, and mitigation of climate

change, as well as fundamental research and environmental

monitoring. These implications include:

—Fundamental research

(i) experimentally determining the causal mechanisms

underpinning vegetation change, particularly first-

and second-order effects of climate on individual

species and on species assemblages.

(ii) further developing dynamic vegetation models and

other systems approach models that include the com-

plexity of drivers presented in this paper.

—Adaptation

(i) a need to plan for more extreme events.

(ii) a need to develop new conservation measures, if pos-

sible, to focus on tree and shrub encroachment on

alpine habitats and to protect snowbed habitats.

(iii) a need to adapt reindeer herding practices to account

for reduced summer grazing areas and more frequent

extreme winter warming events.
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(iv) a careful reassessment of hunting and fishing regu-

lations—if moose quotas are reduced and populations

increase, this might slow down the expansion of

shrubs, birch, aspen and pine.

—Mitigation

(i) developing improved models of carbon dynamics

based on extreme events as well as long-term trends

in soil, vegetation and herbivores.

(ii) using conservation to offset carbon emissions.

—Monitoring

(i) there is a need to develop standardized protocols for inte-

grated and adaptive long-term monitoring [168] so that

meta-analyses can be performed and a new generation

of monitoring [169,170] can target the success and/or fail-

ures of adaptation measures implemented in the future.
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117. Bosiö J, Johansson M, Callaghan TV, Johansen B,
Christensen TR. 2012 Future vegetational patterns in
subarctic palsa mires: a simple modelling approach
using high resolution land cover mapping. Clim.
Change 115, 379 – 398. (doi:10.1007/s10584-012-
0445-1)

118. Walker DA et al. 2005 The circumpolar Arctic
vegetation map. J. Vegetat. Sci. 16, 267 – 282.
(doi:10.1111/j.1654-1103.2005.tb02365.x)

119. Heegaard E. 2002 A model of alpine species
distribution in relation to snowmelt time and
altitude. J. Vegetat. Sci. 13, 493 – 504. (doi:10.1111/
j.1654-1103.2002.tb02076.x)

120. Heegaard E, Vandvik V. 2004 Climate change affects
the outcome of competitive interactions—an
application of principal response curves. Oecologia
139, 459 – 466. (doi:10.1007/s00442-004-1523-5)

121. Virtanen R. 2000 Effects of grazing on above-ground
biomass on a mountain snowbed, NW Finland.
Oikos 90, 295 – 300. (doi:10.1034/j.1600-0706.2000.
900209.x)

122. Andersson NÅ. 2006 Fågelfauna i förändring. Några
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Torneträskområdet. Fåglar i Norrbotten 25, 14 – 17.

123. Holmlund P, Karlén W, Grudd H. 1996 Fifty years of
mass balance and glacier front observations at the
Tarfala research station. Geogr. Ann. Ser. A Phys.
Geogr. 78, 105 – 114. (doi:10.2307/520972)

124. Holmlund P, Jansson P. 1999 The Tarfala mass
balance programme. Geogr. Ann. Ser. A Phys. Geogr.
81, 621 – 631. (doi:10.1111/j.0435-3676.1999.
00090.x)

125. Rippin DM, Carrivick J, Williams C. 2011 Evidence
towards a thermal lag in the response of
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