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KABSTRACT

Targeted therapy against the epidermal growth factor recep-
tor (EGFR) is one of the most promising molecular therapeu-
tics for head and neck squamous cell carcinoma (HNSCC).
EGFRisoverexpressedinawide range of malignancies, includ-
ing HNSCC, and initiates important signal transduction path-
ways in HNSCC carcinogenesis. However, primary and
acquired resistance are serious problems and are responsible
for low single-agent response rate and tumor recurrence.
Therefore, an improved understanding of the molecular
mechanisms of resistance to EGFR inhibitors may provide

valuable indications to identify biomarkers that can be used
clinically to predict response to EGFR blockade and to estab-
lish new treatment options to overcome resistance. To date,
no predictive biomarker for HNSCC is available in the clinic.
Therapeutic resistance to anti-EGFR therapy may arise from
mechanisms that can compensate for reduced EGFR signaling
and/or mechanisms that can modulate EGFR-dependent sig-
naling. In this review, we will summarize some of these molec-
ular mechanisms and describe strategies to overcome that
resistance. The Oncologist 2013;18:850—864

Implications for Practice: The introduction of epidermal growth factor receptor (EGFR) targeted therapeutic agents in the treatment
of head and neck squamous cell carcinoma (HNSCC) has led to a new therapeutic challenge, namely resistance. Resistance can either be
intrinsic or acquired during treatment. The knowledge we have gained from the underlying molecular mechanisms of resistance in
HNSCC as well as other cancer types will be helpful in learning both how to predict resistance, and, if possible, how to overcome this
resistance. Eventually, thiswill lead to personalized therapy for cancer patients where the right drug will be selected for the right patient.

INTRODUCTION

Most cancers originating from the squamous epithelium of
the upper aerodigestive tract, including lip, oral cavity, phar-
ynx (oropharynx, hypopharynx, and nasopharynx), larynx, and
paranasal sinuses, are grouped as head and neck squamous
cell carcinoma (HNSCC). Overall, HNSCC comprise 90% of all
head and neck cancers and represent the sixth most common
form of cancer worldwide [1]. In only 50% of HNSCC patients,
the current conventional treatment strategies, including sur-
gery, chemotherapy, and radiation, are effective, underscor-
ing the need for new approaches to treat this malignancy [2,
3]. The existing cytotoxic therapies are nonselective and asso-
ciated with considerable toxicity in HNSCC patients. There-
fore, the need for additional treatment options that improve
clinical outcome and have a better toxicity profile is pressing.
As our understanding of the molecular biology of HNSCC con-
tinues to improve, this may provide the opportunity to de-
veloptargeted therapyfor HNSCCtreatment. Ideally, targeted
agents are directed against unique molecular features of can-
cer cells, which cause, promote, or maintain the malignant be-

havior of these cells. To maximally exploit these features,
characterization of the tumor at the molecular level, under-
standing the biological heterogeneity of human cancer, and
insight into the inter-individual variation in the human ge-
nome are essential [4—6]. Thus, identifying biological mark-
ers, or biomarkers, that allow prediction of response to
therapy has become increasingly important [7-9]. Eventually,
this will lead to a personalized therapy for cancer patients
where the right drug will be selected for the right patient.

Currently, HNSCCs are classified according to the TNM sys-
tem, based on morphology and anatomic distribution. How-
ever, it is obvious that this classification lacks biological and
molecular markers [10], leading to the same treatment for
malignancies with a different biology [9].

The epidermal growth factor receptor (EGFR) and its ligands
play an essential role in proliferation, differentiation, antiapop-
toticsignaling, and the processes of angiogenesis and metastasis,
thereby driving the malignant behavior of thetumor[11,12]. The
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oncoprotein EGFR belongs to the ErbB family of cell surface re-
ceptors and is also known as ErbB1 or HER1 [11]. Expression of
EGFRis found in up to 90% of HNSCC cases, and it is an indepen-
dent prognostic marker, as high expression is associated with in-
creased tumor size, decreased radiation sensitivity, and
increased risk of recurrence [2, 13]. Asaresult, EGFR overexpres-
sion is related to decreased overall survival [14].

Because EGFR is overexpressed in a wide range of malig-
nancies, and initiates important signal transduction pathways
in carcinogenesis, it has emerged as a promising therapeutic
target (Fig. 1). Considering EGFR targeting therapies, two main
categories of molecules are of key importance: monoclonal
antibodies (mABs, such as cetuximab and panitumumab) and
tyrosine kinase inhibitors (TKls, such as gefitinib and erlotinib).
The therapeutic effect of the mABs is exerted by binding to the
extracellular domain of EGFR, thereby preventing ligands to
activate EGFR, while promoting EGFR internalization and
some by antibody-dependent cell-mediated cytotoxicity
(ADCC) [15, 16]. In contrast, the quinazoline-derived TKils di-
rectly inhibit the kinase function by blocking ATP binding to
the intracellular tyrosine kinase domain of EGFR, thereby pre-
venting downstream signaling [17]. Currently, the EGFR
monoclonal antibody cetuximab (Erbitux) is the only FDA-ap-
proved EGFR targeting strategy for HNSCC, in three specific
settings: either as a single agent for metastatic/recurrent dis-
ease (after failure of platinum-based chemotherapy), in com-
bination with radiation for locally or regionally advanced
HNSCC, or in combination with platinum/5-FU in the first-line
metastatic/recurrent disease setting [18—20].

Nevertheless, one main challenge in the targeted therapy of
HNSCC remains, namely (intrinsic and acquired) drug resistance.
Many HNSCC tumors remain nonresponsive to EGFR targeting
agents, as the response rate with such agents, as for instance ce-
tuximab as a single agent, is consistently lower than 15% [21].
Nevertheless, EGFR inhibition has shown to be promising also in
the clinical setting, when combined with conventional cytotoxic
approaches [18, 22]. Therefore, an improved understanding of
the molecular mechanisms of resistance to EGFR inhibitors might
allow identification of biomarkers that can be used clinically to
predict response to EGFR blockade and/or to establish new treat-
ment options to overcome resistance [7-9].

This applies not only to HNSCC, but also to other forms of
cancers where anti-EGFR targeting agents are used, such as
non-small cell lung cancer (NSCLC) and colorectal cancer
(CRC). Infact, inthese types of cancer, biomarkers of response
have already been identified (EGFR tyrosine kinase and K-Ras
mutations). However, as not all unresponsive CRC and NSCLC
cases could be clarified by these mutations, other genes must
be involved too.

Because cetuximab has been most successfulinimproving
clinical outcomes in HNSCC and is approved by the FDA and
EMEA for the treatment of HNSCC, this review focuses on
mechanisms of resistance to monoclonal-based anti-EGFR
therapy, mainly cetuximab.

POTENTIAL PREDICTIVE MARKERS FOR ANTI-EGFR
THERAPY IN HNSCC

Until now, the only clinical marker for response to cetuximab
therapy is the severity of skin rash, which is correlated with
outcome in HNSCC patients [22]. However, in the literature,
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Figure 1. EGFR signaling and anti-EGFR mAB. Left: Activation of
EGFR by binding of a natural ligand to the receptor and subse-
guent activation of signaling pathways. Right: Blockade of the
EGFR receptor by an anti-EGFR mAB preventing the subsequent
activation of the signaling pathway.

Abbreviation: EGFR, epidermal growth factor receptor.

several possible causes for altered responses to anti-EGFR
therapy in HNSCC have been described, and will be discussed
below. Therapeutic resistance to anti-EGFR therapy may
arise from mechanismsthat either compensate forreduced
EGFRsignalingand/or modulate EGFR-dependentsignaling
(Fig. 2).

The genes and proteins discussed below are involved in al-
tered response to anti-EGFR therapy in HNSCC patients, and
can be considered potential predictive biomarkers for anti-
EGFRtherapy. However, theirrole has not been crystalized yet
and more studies are warranted to identify new reliable pre-
dictive biomarkers and effective therapeutic combinations
that overcome treatment resistance and improve clinical out-
come in HNSCC patients.

Altered Response Elicited at the Level of EGFR
Sustained EGFR signaling can be elicited at the level of the tar-
get itself by ligand or receptor overexpression, amplification,
or mutation. Moreover, EGFR can escape lysosomal degrada-
tionroutes, and subsequently functions as a transcription fac-
torinthe nucleus, thereby inducing prolonged EGFR signaling
[23, 24].

Ligand Overexpression

Binding of ligands to EGFR drives homodimerization or het-
erodimerization with ErbB family members, resulting in the
initiation of downstream signaling pathways. Therefore, over-
expression of its ligands may contribute to cetuximab resis-
tance.

Hatakeyama et al. showed that cetuximab-sensitive
HNSCC cell lines become resistant to cetuximab when stimu-
lated with the ligand heparin binding EGF (HB-EGF), whereas
knockdown of HB-EGF reverses resistance to cetuximab in the
resistant HNSCC cell lines [25]. Additionally, activated EGFR
was evoked by three ligands, amphiregulin, HB-EGF, and
TGF-aeveninthe presence of cetuximab [25]. Transactivation
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Mechanisms of Resistance to Anti-EGFR Therapy in HNSCC
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Figure 2. Despite mAB-mediated anti-EGFR treatment, the signaling cascades induced by EGFR activation may still be active because of mo-
lecular resistance mechanisms at different levels, leading to proliferation, angiogenesis, antiapoptotic signaling, invasion, and metastasis.

Abbreviation: EGFR, epidermal growth factor receptor.

of EGFR and ERK signaling can be blocked by neutralization of
TGF-« [26]. Furthermore, an in vivo study showed that HNSCC
xenografts grown in the presence of cetuximab resulted in the
development of resistant tumor cells that expressed relatively
higher levels of TGF-3 compared with untreated tumor-bear-
ing mice [27]. Combination therapy with cetuximab and a
TGF- blocking antibody prevented the development of such
resistant tumor cells and induced complete regression [27].

A correlation with enhanced response to cetuximab therapy
and overexpression of the EGFR ligands amphiregulin and epi-
regulin in K-Ras wild-type metastatic colorectal tumors has been
reported [28].

In HNSCC patients receiving cetuximab-docetaxel treat-
ment, high amphiregulin levels were detected in 45% of the
patients. A significant correlation was found between high
amphiregulin levels and shortened overall survival and pro-
gression-free survival compared with patients with low am-
phiregulin expression [29].

Activating Mutations in the EGFR Gene

Until now, neither the expression level of the EGFR protein nor
the amplification status of the EGFR gene could be linked to ther-
apeuticresponse [30, 31].

Activating mutations have been observed in the tyrosine ki-
nase domain or in the extracellular ligand-binding domain of
EGFR[32]. The most common tyrosine kinase EGFR mutations in-
clude deletion of four conserved amino acids residues (leucine-
arginine-glutamic acid-alanine) in exon 19 and a point mutation,
L858R, in exon 21, which account for 90% of all EGFR tyrosine ki-
nase mutations in NSCLC [33—-35]. These EGFR tyrosine kinase
mutations are associated with an improved clinical response to
TKls (gefitinib or erlotinib) in NSCLC patients but they are rarely
found in HNSCC. Literature data suggest that the incidence of
such activating mutations in HNSCC patients range from 0 to
15.7% (Table 1) [33—48]. In these studies, a total of 889 HNSCC

©AlphaMed Press 2013

Table 1. Frequency of EGFR tyrosine kinase mutationsin
HNSCC patients

Origin of EGFR-TK

No. of HNSCC mutation

samples samples frequency References

24 Tonsil 0.0% Van Damme et al. [33]

24 Various 8.3% Willmore-Payne et al.
[34]

100 Various 1.0% Loeffler-Ragg et al. [35]

19 Various 5.3% Murray et al. [36]

82 Various 7.3% Hamaetal. [37]

31 Various 3.2% Hama et al. [38]

71 Various 0.0% Szabo et al. [39]

82 Various 0.0% Cohen etal. [40]

82 Various 0.0% Chungetal. [41]

41 Various 7.3% Leeetal. [42]

31 Various 0.0% Lemos-Gonzalez et al.
[43]

172 Oralcavity 0.0% Huang et al. [44]

127 Various 2.4% Schwentner et al. [45]

91 Various 0.0% Sheikh Ali et al. [46]

56 Oral cavity 3.6% Hsieh et al. [47]

108 Various 15.7% Na et al. [48]

Abbreviations: EGFR, epidermal growth factor receptor; HNSCC,
head and neck squamous cell carcinoma.

samples were screened for EGFR tyrosine kinase mutations, of
which 34 (3.8%) contained a mutation.

The EGFRvIIl Mutation
Next to the above-discussed activating mutation, the EGFR
variant lll (EGFRUVIII) is a truncated form of EGFR. The causing
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mutation consists of an in frame deletion of 801 base pairs
(exon 2-7) inthe coding sequence of the extracellular domain,
resulting in ligand-independent tyrosine kinase activity [49,
50]. Interestingly, the deletion creates a novel glycine epitope,
which might be used as a target for specific antibody-based
vaccines in the future [51]. Moreover, in contrast to wild-type
EGFR, EGFRvIII seems to preferentially activate the phospha-
tidylinositol-3 kinase (PI13K) pathway. The mutant EGFRuvlII
formisassociated withincreased proliferation, tumor growth,
cell motility and invasion in vitro, and resistance to anti-EGFR
therapy [50, 51]. Studies in glioma cells have shown that ce-
tuximab binds to EGFRVIII, attenuating its expression and re-
ducing its phosphorylation [52]. Furthermore, cetuximab
induces ADCC against EGFRuvIII expressing glioma cells [53].
However, treatment with cetuximab does not inhibit the acti-
vation of EGFRvIIl expressing cells, norits downstream Aktand
MAPK signaling pathways [53, 54].

The mutation frequency of EGFRvIII in HNSCC ranges
from 0 to 48%. However, this mutation frequency was re-
ported in only seven studies, of which five studies reported
an EGFRvIIl mutation frequency ranging from 17% to 48%
[29, 39, 51, 55, 56]. In contrast, the two other studies de-
tected alower frequency of EGFRvIII in HNSCC patients [37,

The presence of nuclear EGFR is not only associated
with poor prognosis, but also with treatment resis-
tance. For example, it has been reported that nuclear
EGFR expression plays a role in the therapeutic re-
sponse to cisplatin and radiation by modulation of
DNA repair kinetics and may have implications for
EGFR-targeted combination therapies. Moreover,
cells with acquired resistance to cetuximab have up-
regulated HER family ligands and this enhances the
translocation of EGFR to the nucleus.

57]. In these latter studies, the EGFRvIII could not be found
atall [37] or only in 2% of cases of oral squamous cell carci-
noma [57]. It has been suggested that the EGFRvIII might be
more available in the recurrent/metastatic disease setting
and be responsible for the lack of response to EGFR-tar-
geted therapies [57]. However, most of the time only archi-
val formalin-fixed paraffin-embedded primary tumor
biopsy material is available, as was the case in the study re-
ported by Tinhofer et al. Tinhofer et al. analyzed tumor bi-
opsies from 47 recurrent or metastatic HNSCC patients
relapsing after platinum-containing chemoradiotherapy or
after platinum-containing first-line chemotherapy who
were treatedinasingle-arm phase Il multicenter study with
cetuximab and docetaxel. High expression of EGFRvIII was
found in eight patients (17%) and was significantly associ-
ated with reduced disease control rate and shortened pro-
gression-free survival (HR: 3.3, p = .005), but not with
overall survival [29]. Consequently, more studies involving
the mutation frequency of EGFRvIII in HNSCC and its associ-
ation with response to anti-EGFR therapy are warranted.
The clinical implications of the presence of EGFRvIII in HN-
SCC patients have not been studied in prospective clinical
trials.

www.TheOncologist.com

Nuclear EGFR

Occasionally, a part of the EGFR receptor escapes the internal-
ization and lysosomal degradation route and translocates to
the nucleus [23, 24]. Nuclear EGFR functions either as a tran-
scription factor of cyclin D1, iNOS, b-myb, and COX-2, or as a
tyrosine kinase phosphorylating and stabilizing proliferating
cellnuclear antigen (PCNA), resulting in an activation of the ni-
tric oxide pathway and increased G, /S progression of the cell
cycle [58—-62]. Consequently, the proliferative potential of
the cancer cells is thereby enhanced. The presence of nuclear
EGFRis not only associated with poor prognosis, but also with
treatment resistance [13, 63, 64]. For example, it has been re-
ported that nuclear EGFR expression plays a role in the thera-
peutic response to cisplatin and radiation by modulation of
DNA repair kinetics and may have implications for EGFR-tar-
geted combination therapies [24]. Moreover, cells with ac-
quired resistance to cetuximab have upregulated HER family
ligands and this enhances the translocation of EGFR to the nu-
cleus [65]. Perinuclear and nuclear EGFR have been found in
gefitinib-resistant cancer cells [66, 67]. Furthermore, A341
epidermal carcinoma cells with acquired gefitinib resistance
also show increased levels of nuclear EGFR [68].

Besides its potential involvement in resistance mecha-
nisms, nuclear EGFR is also associated with local recurrence
[13]. In oral squamous cancers, nuclear EGFR was observed in
24.3% of patients [63].

The Protein Tyrosine Phosphatase Receptor S

The protein tyrosine phosphatase receptor S (PTPRS) directly
interacts with EGFR and phosphorylates and inactivates EGFR.
Loss of PTPRS has been reported to enhance EGFR-induced
transformation [69, 70]. Therefore, inactivating mutations or
other mechanisms responsible for loss of function could con-
tribute to anti-EGFR therapy resistance. One study detected
intragenic PTPRS deletion in 26% of HNSCC tumors, resulting
in loss of MRNA expression and promoting EGFR/PI3K path-
way activation [71]. Moreover, invitro results showed that PT-
PRS expression could predict response to cetuximab in HNSCC
celllines [71]. Evidently, more studies are warranted to define
the relationship between loss of PTPRS expression and resis-
tance to anti-EGFR therapy.

Molecular Alterations in Effectors Downstream of
EGFR

Stimulation of EGFR leads to activation of different signaling
pathways, which are probably among the best-studied path-
ways in cancer biology. Aberrant EGFR signaling can be pro-
voked by molecular changesin downstream effectors of EGFR;
particularly the K-Ras, PIK3CA, PTEN, and signal transducer
and activator of transcription (STAT) proteins have been
shown to contribute to resistance to EGFR-targeted therapies
in other malignancies.

K-Ras

K-Ras is a protein located downstream of EGFR in the Ras-
MAPK pathway. Somatic point mutations in K-Ras occur in a
variety of human malignancies, most frequently in pancreatic
cancer, NSCLC, and colon cancers [72, 73]. A mutation in
codon 12 or 13 in this gene leads to constitutive activation of
the protein, regardless of upstream activating signals. In colo-
rectal tumors, these mutations confer resistance to therapy
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Mechanisms of Resistance to Anti-EGFR Therapy in HNSCC

Table 2. Studies involving K-Ras mutations in HNSCC
patients

Origin of K-Ras
No. of HNSCC mutation
samples  samples frequency  References
22 Tonsil 9.1% Van Damme et al.
[33]
71 Various 2.8% Szabo et al. [39]
89 Various 5.6% Weber et al. [80]
37 Sinonasal 0.0% Lopezetal. [82]
26 Larynx 0.0% Ruiz-Godoy et al.
[83]
20 Various 0.0% Anderson et al. [84]
51 Various 0.0% Yarbrough et al. [85]
41 Larynx 4.8% Rizos et al. [86]
37 Oral cavity 0.0% Cohenetal. [87]
183 Larynx, 0.0% Fujii et al. [88]
oropharynx,
hypopharynx
47 Oral cavity 0.0% Wang et al. [89]

Abbreviation: HNSCC, head and neck squamous cell carcinoma.

with the EGFR targeting monoclonal antibodies cetuximab
and/or panitumumab [74-77]. Approximately 30%—40% of
colorectal tumors harbor a K-Ras mutation [78, 79].

In contrast, in HNSCC, these K-Ras mutations are infre-
quent; in different reports, the frequency of K-Ras mutations
in HNSCC is ranging from 0 to 9.1% (Table 2) [33, 39, 80, 82—
89]. In areas with a betel quid chewing habit, a higher K-Ras
mutation incidence (*+20%) has been noticed [81]. Overall,
these mutations are rare, and therefore little is known about
the predictive value of K-Ras mutations in HNSCC patients.

K-Ras expression could also be regulated by alterations in
binding of microRNAs (miRNAs). These are short, noncoding
RNAs, which bind the evolutionarily highly conserved 3" un-
translated regions (3’-UTR) of mRNAs, thereby preventing
translation of the mRNA. The family of let-7 miRNAs down-
regulatesthe Ras gene family, including K-Ras, after binding to
specificsitesinthe 3’-UTR of Ras mRNA. Recently, a functional
single nucleotide polymorphism (T > G) has been identified in
the let-7 complementary site (LCS6) in the K-Ras 3'-UTR,
which alters let-7 binding, resulting in increased K-Ras expres-
sionand decreased let-7 exposure. Several studies have inves-
tigated the role of this variant as a prognostic or predictive
biomarker for anti-EGFR therapy. However, the results were
contradictory. In NSCLC, Chinetal.reported an association be-
tween the Gvariantand increased risk for NSCLC among mod-
erate smokers [90], whereas Nelson et al. could not find any
association between the G variantand survival [91]. In HNSCC,
the variant is associated with poor prognosis and the progno-
sis was worst among cases of oral cancer [92]. Moreover, in
HNSCC patients, the G allele variant may be associated with
tumor progression rather than initiation [92]. Furthermore,
knockdown of let-7d promotes epithelial-to-mesenchymal
transition (EMT) traits and migratory/invasive capabilities in
oral SCC cells, whereas lentiviral-mediated let-7a overexpres-
sion significantly inhibited the stemness signature and the
chemoresistant abilities of head and neck cancer cells [93, 94].
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In CRC, LCS6 G-allele variant and response to cetuximab have
beenreportedinthreestudies. In 2010, it wasshownthat G al-
lele carriershad aworse overall survivaland ashorter progres-
sion-free survival [95]. Strikingly, early stage CRC patients with
the LCS6 variant had a better prognosis, whereas the opposite
was observed in advanced disease [96]. Additionally, LCS6 al-
lele G carriers seemed to have a better response rate than
wild-type carriers regardless of stage [97].

H-Ras

Another family member of the Ras proto-oncogenes is H-Ras.
Mutations in H-Ras have been reported in the literature and
vary between 0 and 22% [85, 98—-101]. Rampias et al. showed
that silencing of H-Ras in H-Ras mutant HNSCC cell lines re-
stored sensitivity to cetuximab and caused a direct downregu-
lation of pERK1/2 levels [101]. Furthermore, treatment of a
H-Ras mutated BB49 cell line with cetuximab and PI3K inhibi-
tor LY294002 led to a marked reduction of their viability,
whereas these same HNSCC cells were found to be resistant to
cetuximab [100]. Collectively, these data suggest that H-Ras
mutations might playarolein cetuximabresistanceandthere-
fore further studies are warranted.

Dual-Specificity Phosphatase (DUSP)

Further downstream of K-Ras in the MAPK signaling pathway,
amember of the dual-specificity phosphatase (DUSP) family is
located. DUSP proteins are involved in a negative feedback
mechanism of the MAPK signaling pathway by dephosphory-
lation of the threonine-glutamic acid-tyrosine motif on MAP
kinases [102]. Therefore, DUSP proteins can be seen as tumor
suppressor proteins, and loss of their expression may pro-
mote constitutive activation of ERK and uncontrolled cell
growth. Moreover, inhibition of the MAPK pathway can be
compensated by suppression of the DUSP enzymes [103].
Both the cytoplasmic DUSP5 and the nuclear DUSP6 can de-
phosphorylate ERK1/2, thereby blocking the MAPK signal
transduction cascade [104].

A recent study investigated DUSP6 expression in esopha-
geal squamous cell carcinoma (ESCC) and nasopharyngeal
carcinoma (NPC) tumor tissue. Reduced expression was ob-
served in 40% and 75% of ESCC and NPC tumor tissue, respec-
tively [105]. Reduced expression of DUSP6 can be
accomplished either by loss of heterozygosity of the DUSP6 lo-
cus or by promoter methylation [106]. Moreover, regulation
of DUSP6 is mediated at the promoter level by Ets1, a nuclear
target of activated ERK [107]. Furthermore, suppressive ef-
fects of DUSP6 in tumor formation and cancer cell mobility
were seen in vitro and in vivo, and DUSP6 overexpression im-
pairs EMT-associated properties [105]. Finally, using microar-
ray analysis, Oliveras-Ferraros et al. reported that molecular
functioning of cetuximab in A431 epidermoid cancer cells was
dependent on EGFR ligands, reduced expression of DUSP6,
and EMT-associated proteins [108].

Taken together, the exact function of the DUSP family pro-
teinsin relation to cetuximab resistance in HNSCC needs to be
further elucidated.

The PI3K/Akt Pathway

Besides activation of the Ras/Raf/MAPK signaling pathway,
EGFR can also mediate activation of the PI3K/Akt pathway.
Consequently, alterations in proteins involved in the PI3K/Akt
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pathway might also play a role in resistance to anti-EGFR
therapy.

Mutations in the PIK3CA protein occur in 6%-11% of
HNSCC patients [71, 109, 110] and are associated with activa-
tion of the Akt signaling pathway [111]. Treatment of cetux-
imab-resistant HNSCC cells with cetuximab did not result in
the decreased levels of Akt phosphorylation that were seenin
cetuximab-sensitive HNSCC cells. A mutation in exon 20 of the
PIK3CA gene was identified ina HNSCC cell line, leading to per-
sistent Akt activation [112]. Furthermore, persistent activa-
tion of either MAPK or Akt, or both, was observed in HNSCC
and colon celllines showing limited efficacy of cetuximab ther-
apy [113].

Inaddition, loss of the tumor suppressor protein PTEN also
resulted in persistent activation of the PI3K/Akt pathway. Re-
introducing PTEN in PTEN null prostate cancer cells was asso-
ciated with restoration of cetuximab-induced cell growth
inhibitionand apoptosisinduction. Strikingly,in HNSCC cells, it
was reported that treatment of PTEN-silenced Cal27 cells with
cetuximab led to decreased pAkt and pERK1/2 levels [114]. Al-
though screening of 16 HNSCC cell lines for mutations in
PIK3CA and PTEN identified two mutations for each gene
(12.5%), no correlation was found between these mutations
and the response to cetuximab therapy [115].

To define the exact role of mutations in the PI3K/Akt path-
way, regarding response to anti-EGFR therapy, more in-depth
studies are needed.

Src Kinases

Src kinases are upstream as well as downstream activators of
EGFR and other receptor tyrosine kinases. Upon EGFR stimu-
lation, Src kinases are activated and associate with EGFR. As
such, they can affect cellular proliferation and survival by acti-
vation of STAT family of transcription factors, especially STAT3
and STATS [116, 117].

In vitro studies showed reduced activity of Src kinases fol-
lowing EGFRinhibition [118]. Elevated Srclevelsand/or kinase
activity have been shown in HNSCC and other malignancies
[117, 119]. Therefore, activation of Src kinases by EGFR up-
stream or downstream signaling might result in resistance to
anti-EGFR therapy.

Src-specific inhibitors resulted in decreased activation of
STAT3 and STATS and reduced growth rates in vitro [117].
However, sustained Src inhibition resulted in only a transient
inhibition, because of a compensatory mechanism leading to
altered JAK-STAT3 binding and JAK kinase activity [116]. Fur-
thermore, Koppikar et al. reported that mutual inhibition of
Src by AZD0530 and EGFR by gefitinib resulted in an increased
inhibition of invasion and growth, compared with nonmutual
blockade of eithertyrosine kinase alone [120]. The effect of sa-
racatinib, a Src inhibitor, was examined in vitro as well as in
vivo. These results showed inhibition of growth, cell cycle pro-
gression, and transwell Matrigel invasion using HNSCC cell
lines. However, this drug had no significant growth inhibitory
effectin an orthotopic mouse model [121].

As mentioned earlier, nuclear translocation of EGFR is a
possible mechanism of resistance to therapy andthis has been
observed in patients treated with cetuximab and radiother-
apy. Phosphorylation of EGFR on tyrosine 845 by the Src ki-
nases enhanced EGFR-mediated mitogenesis by binding and
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phosphorylating the STATSb transcription factor, and this has
been described as the underlying mechanism responsible for
nucleartranslocation of EGFR[122,123]. Indeed, dasatinib, an
Src inhibitor, blocked EGFR translocation to the nucleus in
HNSCC cell lines and, therefore, might be a potential way to
evade resistance to anti-EGFR therapy [124]. Moreover, da-
satinib enhanced radiosensitivity of the HN5 HNSCC cell line
by interfering with nuclear localization of EGFR and by block-
ing DNA repair pathways [125]. In cetuximab-resistant NSCLC
cells, EGFR was shown to be responsible for activation of Src
kinases, and the cells were highly dependent on this activity
for proliferation and survival. Accordingly, dasatinib de-
creased HER3 and PI3K/Akt activity and resensitized these
cells to cetuximab therapy [126].

Collectively, these results indicate that Src inhibitors may
be useful in overcoming anti-EGFR resistance by decreasing
activated STAT3 and STATS.

Signal Transducer and Activator of Transcription (STAT)
Proteins

When considering resistance to anti-EGFR therapy, the family
of STAT proteins are also important downstream EGFR effec-
tors. This family plays an important role in transmitting sur-
vival signals and antiapoptotic signals that are initiated through
activation of EGFR; especially activation of STAT3 and STATS has
been linked to phosphorylation of EGFR [117, 127, 128]. There-
fore, dysregulation of the STAT signaling pathway has been pro-
posed to be implicated in malignant transformation.

Activation of STAT3 leads to the activation of several sur-
vival proteins, including bcl-xl, bcl-2, and survivin [129]. In
HNSCC, STAT3 activation can be mediated by JAK and Src sig-
naling, and partially by EGFR signaling [124, 130]. Conse-
quently, STAT3 can be inhibited via EGFR blocking in vitro as
well asin vivo [131]. However, recent work reported that the
mutant EGFRvIIl increased STAT3 activation in vitro [50].

It has been shown that the antiproliferative effects of ce-
tuximab, as well as cetuximab-induced apoptosis, are more
pronounced in STAT3 knockdown cells compared with control
cells [129]. These antitumor effects were also seen in HNSCC
cells in vitro and in vivo using erlotinib in combination with a
STAT3 transcription factor decoy [3]. Likewise, upon addition
of erlotinib, less growth inhibitioninduced by erlotinib was de-
tectedin HNSCC cells expressing constitutive STAT5 compared
with empty vector-transfected control cells [132]. Moreover,
the natural STAT3 inhibitor guggulsterone enhanced the effi-
cacy of erlotinib, cetuximab, and cisplatin treatmentin HNSCC
celllines by inducing apoptosis, cell cycle arrest, and inhibition
of invasion [133]. Additionally, similar results were found in
vivo [133]. However, guggulsterone failed to confer protec-
tion against oral-induced carcinogenesis in a murine model,
whereas erlotinib was able to decrease the incidence of pre-
neoplasticand neoplasticlesions by 69% [134]. On the basis of
these results, targeting STAT3 and EGFR together seems
promising in HNSCC carcinogenesis.

STAT1 s activated by interferon y (INF-v), independent of
STAT3 overexpression [135]. The INF-y-phospho STAT1 sig-
naling pathwayis able to downregulate components of the an-
tigen-processing machinery, involved in tumor antigen
presentation [135]. This pathway has been identified in chron-
ically adapted cetuximab-resistant vulvar squamous carci-
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noma cell clones, inducing prosurvival signals instead of
apoptosis[136]. Inaddition, another study showed that STAT1
is required to promote the tumor-killing effects of STAT3 inhi-
bition when cells were treated with JAK inhibitors [137].

Mechanism of Resistance Through Crosstalk with
Other Receptor Tyrosine Kinases

Selective stress of anti-EGFR therapy may lead to activation of
alternative parallel signaling pathways to compensate for the
reduced EGFR signaling, thereby promoting cell survival.
Other receptor pathways involving other ErbB family mem-
bers, insulin growth factor type 1 receptor, MET, and so forth
can activate common downstream EGFR effectors and there-
fore might also contribute to anti-EGFR resistance in HNSCC.

The ErbB Receptor Family

As mentioned earlier, EGFR is a family member of the ErbB re-
ceptor family, and activation of other members of this family
might result in resistance to anti-EGFR therapy. In the litera-
ture, activation of HER2 signaling has been associated with ce-
tuximab resistance because its signaling occurs through many
of the same downstream effectors of EGFR. With use of an in
vitro model of acquired cetuximab resistance, a marked in-
crease in the phosphorylation status of the C-terminal frag-
ment of HER2, 611-CTF, was observed. Combination therapy
of afatinib, an irreversible dual EGFR/HER2 inhibitor, and ce-
tuximab resulted in a dramatic reduction in cetuximab-resis-
tant tumor volumes compared with either agent alone in
monotherapy [138]. Therefore, it was suggested that dual in-
hibition of EGFR and HER2 could be an effective approach to
enhance the efficacy of cetuximab, to prevent and/or over-
come cetuximab resistance. Likewise, a study by Yonesaka et
al. has shown that cetuximab resistance could be induced by
activation of ErbB2 signaling [139]. The underlying mecha-
nism involved amplification of ErbB2 or upregulation of
heregulin, both leading to persistent ERK1/2 activation. More-
over, restoring cetuximab sensitivity was accomplished by in-
hibition of ErbB2 or by disruption of ErbB2/ErbB3
heterodimerization in vitro as well as in vivo.

Only one study investigated and reported the link be-
tween HER2 activation and response to TKI in HNSCC. Of four
evaluable cases of TKI-responsive HNSCC patients, one har-
bored a heterozygous V773A mutation in HER2 and this muta-
tion was not present in surrounding normal stromal tissue
[40]. Given the very small sample population, caution is
needed with regard to the association between HER2 muta-
tions and EGFR-TKI sensitivity. More studies are warranted to
determine the frequency of HER2 mutations in HNSCC and
theirrole in the response to TKls.

The Insulin Growth Factor Type 1 Receptor
Activation of the insulin growth factortype 1 receptor (IGF-1R)
leads to downstream activation of the Ras/Raf/MAPK and
PI3K/Akt pathway and enhances survivin expression, all con-
tributing to cell proliferation, altered cell adhesion, enhanced
motility properties, and impaired apoptosis [140, 141]. Further-
more, IGF-1R/EGFR heterodimerization has been reported in
multiple epithelial cancersas well asin several HNSCC cell lines af-
ter stimulation of these cells with IGF or EGF [142].

In nasopharyngeal carcinoma cell lines, cetuximab resis-
tance was associated with gene amplification and overexpres-
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sion of H-Ras, which was probably associated with increased
activity of the IGF-1R signaling pathway [143]. Moreover,
treatment with the anti-IGF-1R antibody A12 in combination
with cetuximab was more effective at reducing cell prolifera-
tion and migration of HNSCC cell lines than either agent alone
[142]. In addition, complete regression of tongue cancer cell
xenografts was more frequent in the combination group than
in the monotherapy group [142]. Similar results were ob-
servedin cutaneous squamous cell carcinoma cell lines and tu-
mor xenografts [144]. Concerning radiation therapy, this anti-
IGF-1R antibody was reported to enhance the radiosensitivity
of HNSCC cell lines and the radioresponse of FaDu xenografts
[145]. The IGF-1R pathway has also been proposed to be in-
volved in resistance to gefitinib and radiation [146, 147]. In
vitro results have shown that dual inhibition of EGFR and
IGF-1R by tyrosine kinase inhibitors is more efficacious com-
pared with single agents [148].

MET

The MET proto-oncogene encodes a transmembrane recep-
tor tyrosine kinase MET, also known as c-MET or hepatocyte
growth factor receptor (HGFR). The MET pathway can be de-
regulated in two different ways: on the one hand, by mutation
and/or amplification of MET, and on the other hand, by in-
creased ligand expression and/or activity, both resulting in
persistent activation of the PI3K/Akt signaling pathway [149].
Approximately 80% of primary HNSCC tumors express the li-
gand hepatocyte growth factor (HGF), MET, or both, thus acti-
vating important downstream signals, which overlap with
EGFR signaling [55, 150]. Moreover, MET mutations or ampli-
fications have been observed in 13.5% and 13% of HNSCC tu-
mors, respectively [151]. As high MET expression could be
observed in 58% of patients with recurrent/metastatic HNSCC
[55], the role of MET in resistance to anti-EGFR therapy has
been investigated in a number of studies. Chau et al. did not
detect any association between response to erlotinib and
time to progression or overall survival in recurrent/metastatic
HNSCC patients with high MET expression [55]. In contrast, in
metastatic colorectal cancer, a significant correlation has
been reported between high MET expression and both
shorter median progression-free survival and median overall
survival in patients treated with cetuximab [152]. Likewise,
MET activation has been associated with cetuximab resis-
tance in gastric cell lines [153]. Interestingly, the MET muta-
tion frequency increases from 4% to 7% in untreated lung
tumors to 20% in tumors with acquired resistance to EGFR in-
hibition [154-159]. Moreover, in vitro results demonstrated
an additive effect of cetuximab plus a MET inhibitor in cetux-
imab-resistantlung cancer cell lines [160]. Similar results were
observed in colorectal cancer cells [161]. Furthermore, the in-
hibitory effect of cetuximab could be compensated by overex-
pression of the MET ligand HGF in colorectal cancer cells [161].
In a HNSCC xenograft model, a delay in tumor growth was ob-
served after administration of crizotinib, a MET TKI [150]. Col-
lectively, these data suggest that high MET expression might
play a role in cetuximab resistance.

Other Potential Mechanisms of Resistance

Not only alterations in proteins linked to the EGFR signaling
pathway but also proteins involved in more general cancer
characteristics, such as proliferation, apoptosis, invasion, and
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metastasis, might confer resistance to anti-EGFR therapeu-
tics. Moreover, alterations in these genes/proteins may also
lead to resistance to other anticancer agents.

Aurora Kinase

The Aurora kinases A and B are highly conserved serine/thre-
onine kinases that play an essential and distinct role in mitosis
[162, 163]. Overexpression of both kinases is frequently pres-
ent in many types of malignant tumors, and in the case of
HNSCC, overexpression of Aurora kinase A is found in up to
90% of tumors [163—165]. Overexpression of Aurora kinase A
is correlated with tumor progression, a metastatic phenotype,
and shortened survival, and is therefore regarded as a nega-
tive prognostic marker [162, 164, 165]. High expression levels
of Aurora kinase B are found in glioblastoma, ovarian carci-
noma, and hepatocellular carcinoma and are associated with
poor prognosis [166].

EGFR can elicit overexpression of Aurora kinase A at two
different levels, by increasing the translational efficiency of
AurorakinaseA, or by bindingtothe Aurora kinase A promoter
and thereby increasing its transcription, both resulting in
chromosome instability and tumorigenesis [61, 167].

Next to its role as a prognostic factor, recent studies indi-
cated evidence for a role of Aurora kinase Aiin the response to
therapy. Overexpression of Aurora kinase A triggered the acti-
vation of two important molecules involved in the regulation
of drug resistance, Akt and NF-«B [168]. Interestingly, knock-
down of Aurora kinase A in Hela cells resulted in sensitization
to cisplatin, and Aurora kinase A overexpression could over-
come cell death induced by paclitaxel [168]. Furthermore,
treatment of HNSCC cells with cetuximab and a pan-Aurora ki-
nase inhibitor R763 resulted in a rapid and efficient decrease
in the level of the Aurora kinase substrate SIOHH3. These re-
sults could not be confirmed by using a specific Aurora kinase
Ainhibitor, and therefore it was concluded that the effects of
the pan-Aurora kinase inhibitor were most likely mediated by
its blockage of Aurora kinase B activity [162].

Collectively, these results indicate that the Aurora kinases
may be an interesting target for HNSCC tumors resistant to
anti-EGFR therapy.

Cyclin D1

The G,/S-specific cyclin D1 forms a complex with CDK4 and
CDK6 and functions as a regulatory subunit of CDK4 and CDKS®,
the activity of whichisrequired for cell cycle G,/Stransition. As
previously mentioned, nuclear EGFR functions as a transcrip-
tion factor for cyclin D1. Moreover, constitutive activation of
STAT3isrequired for EGFR-mediated cellgrowthandresultsin
elevated levels of STAT3 targetgenes, including cyclin D1 [128,
169]. These observations make cyclin D1 an interesting poten-
tial marker for predicting anti-EGFR therapy.

The cyclin D1 A870G polymorphism was evaluated in 58
advanced colorectal cancer patients treated with a combina-
tiontherapy of cetuximab andirinotecan. This study identified
the Gallele as being associated with a shorter time to progres-
sion in wild-type K-Ras patients and a shorter overall survival
in all patients [170]. On the basis of these results, the authors
concluded that the cyclin D1 A870G polymorphism might be
used as an additional marker for predicting cetuximab effi-
cacy. In addition, cotargeting EGFR and cyclin D1 seemed
promising in lung cancer [171, 172], as combination therapy
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with erlotinib and the cyclin-dependent kinase inhibitor selici-
clib resulted in a synergistic effect in both in vitro and in vivo
studies [173]. With use of HNSCC cell lines, gefitinib resistance
was shown to be associated with deregulated cyclin D1 over-
expression [174]. However, more studies are warranted to re-
vealthe exactrole of cyclin D1inanti-EGFR therapy resistance.

p53

The tumor suppressor protein p53 hasacritical role in control-
ling cell cycle progression, and consequently, loss of its func-
tion is linked to the carcinogenic process. In response to a
variety of cellular stimuli, p53 can induce cell cycle arrest, ap-
optosis, or senescence.

A study investigating the difference between cetuximab-
resistant and their sensitive parental lung cancer cells identi-
fied p53 as the most downregulated and pERK1/2 as the most
upregulated cellular signaling protein. Downregulation of p53
was also observed in erlotinib-resistant cells. Furthermore, si-
lencing of p53in cetuximab-sensitive cells resulted in reduced
sensitivity tothe drug, whereas restoring p53 functionin resis-
tant cells resulted in enhanced cetuximab sensitivity [175]. In
vivo experiments, using a stable cetuximab-resistant clone
with tetracycline-inducible p53, showed that repair of p53 re-
stored cetuximab sensitivity in tumor xenografts resistant to ce-
tuximab [175]. Another study, investigating the role of p53in the
response to gefitinib, suggested that, in human lung cancer A549
cells, gefitinib-induced apoptosis was at least partly mediated by
phosphorylation of p53 at Ser15, resulting in activation of p53
[176]. A study investigating the p53 mutation status of 31 colo-
rectal cancer patients observed thatloss of functional p53 limited
the response to gefitinib and chemotherapy, particularly in tu-
mors withintact p21[177]. In addition, cetuximab was able toin-
hibit cell growth in p53 wild-type cells, but not in p53-mutated
cells [178]. In general, there isinsufficient experimental evidence
to unequivocally state that loss of functional p53 can be predic-
tive of resistance to anti-EGFR therapy.

Epithelial-to-Mesenchymal Transition
Epithelial-to-mesenchymal transition (EMT) is characterized by
loss of epithelial cell characteristics and acquisition of mesenchy-
mal phenotypic traits, causing tumor cells to detach from neigh-
boring cells and to migrate into adjacent tissue [179-181].
TGF-Bis, together with the Ras pathway, a potentinducer
of EMT [180]. Haddad et al. showed that erlotinib-resistant
cell lines exhibited a greater migratory capacity and invasive
potential compared with erlotinib-sensitive cell lines, and
response to erlotinib was correlated with an “epithelial”
molecular phenotype [182]. Furthermore, Skvortsova et al.
suggested that c-myc, E-cadherin, and vimentin might be con-
sidered to be predictive biomarkers for HNSCC patients
treated with cetuximab in combination with radiotherapy
[183]. Moreover, upregulation of vimentin and downregula-
tion of the EMT markers E-cadherin, claudin 4, and claudin 7
were associated with gefitinib resistance in HNSCC and NSCLC
cell lines [184]. Similar results were found in other studies inves-
tigating the effect of erlotinib in NSCLC [185, 186]. In addition,
pancreatic and colorectal tumor cell lines, resistant to EGFR inhi-
bition, showed features of EMT [187]. HNSCC cells with a mesen-
chymal-like morphology and elevated migratory potential were
found to be less sensitive to irradiation and cetuximab [188].
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However, when these treatment modalities were combined, the
authors observed an increased sensitivity [188].

Hypoxia and Hypoxia-Inducible Factors
Regions within solid tumors often experience mild to severe
oxygen deprivation (hypoxia) and it has been well-docu-
mented that poor oxygenation is a pathophysiological prop-
erty of the majority of human solid tumors, including HNSCC
[189]. Importantly, oxygen deficiency has a major impact on
clinical responses to cancer treatment, and it was shown that
hypoxic tumor regions often contain viable cells that are in-
trinsically more resistant to treatment with radiotherapy
and/or chemotherapy [190, 191]. Interestingly, preclinical
and clinical studies support an important link between hyp-
oxia and upregulation of EGFR in cancers that do not display
genetic alteration of the receptor [192]. For example, in afrac-
tion of aggressive human HNSCC, immunohistochemistry
data showed that hypoxia induced EGFR activation [193]. These
results were supported by a recent study, reporting colocaliza-
tion of EGFR and the hypoxia marker pimonidazole in patients
with HNSCC, predominantly at increasing distances from blood
vessels [194]. Subsequent EGFR signaling stimulates hypoxia-in-
ducible factor (HIF) signaling. As the HIF transcription factors play
a pivotal role in the cellular adaptation to hypoxic stress, EGFR-
induced HIF signaling thus augments the induction of proteins
that promote cellular survival in a hostile microenvironment.
Consequently, the presence of tumor hypoxia may contribute to
resistance to EGFR inhibitors. HNSCC patients with high levels of
hypoxia-associated factors indeed were more likely to relapse,
following induction therapy that included cetuximab [195].
Interestingly, recent data suggest that the lack of clinical
responses to EGFR-directed therapy may be circumvented by
supplementation of the anti-EGFR therapy with additional ap-
proaches targeting HIF. For example, downregulation of HIF-1
by siRNA or a small molecule inhibitor enhanced responses of
cetuximab-resistant HNSCC cells to cetuximab plus radiation
[196]. Findings from such studies may provide important guid-
ance for designing novel therapeutic strategies in which EGFR
inhibitors are combined with approaches targeting tumor
hypoxia to enhance the tumor response.

CLINICAL STUDIES TARGETING EGFR RESISTANCE
NETWORKS IN HNSCC

Overcoming mechanisms of intrinsic and acquired resistance to
current ErbB-targeted therapies is a critical area of investigation.
In general, more preclinical in vitro and in vivo studies, evaluating
the role of the above-described genes/proteins, are needed to
associate one or more of these mechanisms to sensitivity or resis-
tance to anti-EGFR therapy. As such, specific inhibitors of these
signaling cascades, showing promising results in preclinical stud-
ies, can be evaluated in clinical trials with HNSCC patients.

First, both monoclonal antibodies and tyrosine kinase in-
hibitors, targeting IGF-1R, have entered the clinic. The efficacy
and toxicity of the anti-IGF-1R antibody figitumumab was
evaluated in 17 palliative HNSCC patients. No significant clini-
cal activity was detected using figitumumab as a single agent
in unselected palliative HNSCC patients. In contrast, even an
acceleration in progression seemed to occur. Moreover, main
relevant grade 3—4toxicities (hyperglycemia, asthenia, anorexia,
infection, anemia, and gastrointestinal bleeding) were observed.
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Contrary to a downregulation of IGF-1R, the EGFR pathway was
found activated, leading to upregulation of pEGFR and an in-
crease in the plasma level of TGF-« [197]. Similarly, no antitumor
activity of the anti-IGF-1R antibody A12 as single agent was ob-
served in colorectal cancer patients. Additionally, the combina-
tion of cetuximab and A12 was investigated in a randomized
phase Il study and did not show a significant benefit in colorectal
cancer patients refractory to EGFR inhibitors [198]. Currently,
this combination is evaluated in a phase Il clinical trial in HNSCC
patients (ClinicalTrials.gov identifier: NCT00957853). In contrast,
treatment of cetuximab-refractory HNSCC patients with the
IGF-1R inhibitor AMG-479 did result in conversion of a gene-ex-
pression profile associated with cetuximab resistance to a profile
associated with cetuximab sensitivity [199].

Human carcinomas frequently express one or more
members of the ErbB family, and therefore, cross-
activation of EGFR downstream signaling might be
present. Agents that block other members of the
ErbB family simultaneously or that bind multiple ErbB
receptorsirreversibly are promising and are currently

investigated in clinical trials for HNSCC patients.

A recently started phase Il study will assess the progression-
free survival of HNSCC patients, treated with cetuximab plus the
dual kinase inhibitor of both IGF-1R andinsulin receptor, OSI-906,
and this treatment schedule will be compared with cetuximab
plus placebo (ClinicalTrials.gov identifier: NCT01427205).

Second, another promising molecular target in HNSCC treat-
ment is the family of Src kinases. The Src inhibitor dasatinib was
evaluated in a phase Il trial in advanced HNSCC patients. Despite
Src inhibition, no significant clinical activity was seen in single-
agent therapy [200]. Similar results were obtained with single-
agent saracatinib, another Src inhibitor, in a phase Il study of
patients with recurrent or metastatic HNSCC [201]. At the mo-
ment, clinical trials are ongoing with a combination therapy of da-
satinib and EGFR inhibitors. A phase Il study will evaluate the
objective response rate with this combination in recurrent
HNSCC patients who have recurred after cetuximab-containing
therapy (ClinicalTrials.gov identifier: NCT01488318). Further-
more, activity and toxicity of dasatinib will be assessed when
given in combination with cetuximab and radiotherapy or
incombination with cetuximab and cisplatin and radiother-
apy (ClinicalTrials.gov identifier: NCT00882583).

Third, human carcinomas frequently express one or more
members of the ErbB family, and therefore, cross-activation of
EGFR downstream signaling might be present. Agents that block
other members of the ErbB family simultaneously or that bind
multiple ErbB receptors irreversibly are promising and are cur-
rently investigated in clinical trials for HNSCC patients. The effi-
cacy and safety of afatinib, an aniline-quinazoline compound
bindingirreversibly to EGFR and HER2, is being assessed in differ-
entphase lland phase lll trials. The objective of one of these trials
is to explore different molecular pathways to identify tumor re-
sponse and resistance mechanisms (ClinicalTrials.gov identifier:
NCT01538381). Additionally, a phase Il trial (ClinicalTrials.gov
identifier: NCT00514943) has explored the efficacy of afatinib
versus cetuximab in patients with metastatic or recurrent HNSCC
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Figure 3. Possible mechanisms of resistance to EGFR-targeted therapy in HNSCC described in this review: (1) overexpression of ligands, (2)
activating mutations in EGFR, (3) translocation of EGFR to the nucleus, (4) loss of PTPRS, (5) activating Ras mutations, (6) downregulation of
DUSP, (7) activating mutationsin PIK3CA or inactivating mutations in PTEN, (8) activation of Src kinases, (9) dysregulation of the STAT pathway,
(10) heterodimerization with other ErbB family members, (11) parallel signaling of other receptors, IGF-1R or MET, (12) overexpression of the
Aurora kinase A and B, (13) deregulation of cyclin D1 or the A870G polymorphism, (14) loss of functional p53, and (15) activation of HIF-1 signaling.
Abbreviations: EGFR, epidermal growth factor receptor; HNSCC, head and neck squamous cell carcinoma; STAT, signal transducer

and activator of transcription.

and concluded that afatinib has at least comparable antitumor
activity to cetuximab in HNSCC that failed on platinum-based
therapy. Moreover, disease control rates were particularly nota-
ble for afatinib in stage 2 (crossover between treatment arms af-
ter disease progression or toxicity), 38.9% (afatinib as second
treatment) versus 18.8% (cetuximab second) by investigator re-
view, and 33.3% (afatinib as second treatment) versus 18.8% (ce-
tuximab second) by independent central review. Patients on
afatinib had more diarrhea and less rash/acne than those on the
cetuximabarm.

Lapatinib, another dualinhibitor of EGFR and HER2, has been
investigated in HNSCC also. In a phase Il study, lapatinib in mono-
therapy did not result in complete or partial responses, but only
in stable disease [202]. However, in a randomized phase Il study,
the activity and safety of concurrent chemoradiotherapy and
lapatinib followed by maintenance treatmentin locally advanced
unresected advanced HNSCC was assessed. This combination
proved to be well-tolerated with a numericincrease in complete
response at 6 months post-CRT and median progression-free sur-
vival in p16-negative disease [203]. However, very recently, the
combination of lapatinib with full dose docetaxel, cisplatin, and
5-fluorouracil showed unexpected renal toxicity and needs fur-
ther evaluation [204]. The combination of lapatinib with cetux-
imab is under evaluation in an ongoing phase | trial to determine
the maximum dosages patients can tolerate when these two
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drugs are given at the same time (ClinicalTrials.gov identifier:
NCT01184482).

Finally, although the STAT family of proteins has attracted
interest as therapeutic targets in HNSCC, no STAT inhibitors
have been tested in the clinic yet. Especially the combination of
STAT3 inhibitors with EGFR inhibitors might be an attractive
therapeutic strategy. Currently, four phase | clinical trials are on-
going in patients with advanced cancers to evaluate the safety
profile and recommended dose for use in subsequent studies
and to investigate the pharmacokinetics and antitumor effect
of the compound (ClinicalTrials.gov identifier: NCT01184807,
NCT00657176, NCT01423903, and NCT01563302).

CONCLUSION

Most HNSCC tumors rely on activation of the EGFR pathway
fortheir proliferation, differentiation, antiapoptoticsignaling,
angiogenesis, and metastasis. Therefore, targeted therapies
inhibiting this pathway are promising. However, intrinsic and
acquired resistance to anti-EGFR therapies is a serious prob-
leminthetreatment of HNSCC. Althoughin other cancer types
certain mechanisms of resistance have already been identi-
fied, it is becoming clear that what is relevant in one cancer
type may not necessarily apply to other forms of cancer. In HN-
SCC cancer, mechanisms of resistance at the level of EGFR or
its downstream effectors are potential causes, but also activa-
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tion of alternative parallel signaling pathways might result in
resistance to anti-EGFR therapeutics. Figure 3 gives an over-
view of all described mechanisms of resistance in this review.

In addition, inhibiting the EGFR pathway at multiple steps or in
parallel signaling pathways might overcome intrinsic and/or ac-
quired resistance. The findings discussed illustrate the complexity of
the EGFR cascade. Further unraveling of this cascade will undoubt-
edly reveal markers for anti-EGFR therapy resistance and combina-
tions of targeted therapies able to overcome this resistance.
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