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Abstract

We report a new class of thiophene (TP) compounds that kill Mycobacterium tuberculosis (Mtb) 

by the novel mechanism of Pks13 inhibition. An F79S mutation near the catalytic Ser-55 site in 
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Pks13 conferred TP-resistance in Mtb. Over-expression of wild-type pks13 resulted in TP-

resistance and over-expression of the F79S pks13 mutant conferred high-level resistance. In vitro, 

TP inhibited fatty acyl-AMP loading onto Pks13. TP inhibited mycolic acid biosynthesis in wild-

type Mtb, but to a much lesser extent in TP-resistant Mtb. TP treatment was bactericidal and 

equivalent to the first-line drug isoniazid, but it was less likely to permit emergent resistance. 

Combined isoniazid and TP treatment exhibited sterilizing activity. Computational-docking 

identified a possible TP-binding groove within the Pks13 ACP domain. This study confirms that 

Mtb Pks13 is required for mycolic acid biosynthesis, validates it as a druggable target and 

demonstrates the therapeutic potential of simultaneously inhibiting multiple targets in the same 

biosynthetic pathway.

INTRODUCTION

The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) is rapidly becoming a 

major global health concern1,2. The current pace of drug development is too slow to meet 

the clinical requirement for new anti-tuberculosis agents. Despite identification of several 

essential genes and pathways3, along with significant progress in the understanding of Mtb 

biochemistry and metabolism, few new drug targets have been validated. It is a well known 

fact that all essential metabolic processes do not represent good drug targets4–6. However, 

decades of drug development have proven that the bacterial cell wall is a rich source of 

druggable targets7–10. In the case of Mtb, isoniazid (INH), ethambutol (EMB), and 

ethionamide (ETH) all inhibit cell wall biosynthesis.

Mycolic acids are essential components of the mycobacterial cell wall. They are critical for 

the pathogenesis of Mtb and have been shown to be important in virulence and persistence in 

vivo11–13. Mycolic acids are C60–C90 branched-chain β-hydroxylated fatty acids that are 

covalently bound to arabinogalactan-peptidoglycan forming the mycolyl-arabinogalactan 

peptidoglycan complex (mAGP)14. They are also found non-covalently associated to the 

outer membrane as trehalose monomycolates (TMM) and trehalose dimycolates (TDM)15–17 

or as free lipids in mycobacterial biofilms18. Pks13 plays a critical role in mycolic acid 

biosynthesis in Mtb19,20 by joining the α-alkyl C26 fatty acid branch (originating from FAS-

I) and the meromycolic acid (C48–C64)13 branch (originating from FAS-II) activated by 

FadD3221 through Claisen-type condensation reaction to form α-alkyl β-ketoacids. Pks13 

belongs to the type I polyketide synthase (PKS) gene family and is essential for survival of 

Mycobacterium smegmatis but not for Corynebacterium glutamicum20. Mtb Pks13 contains 

ACP domains located at the N-terminus (N-ACP) and C-terminus (C-ACP), a ketoacyl 

synthase (KS), an acyl transferase (AT) and a thioesterase (TE) domain19,20. The ACP 

domains contain 4′-phosphopantetheine attachment (P-pant) sites at Ser-55 and Ser-1266 

respectively. For Pks13 to perform a condensation reaction, a meromycolic acid is converted 

to a meromycoloyl-AMP and loaded onto the P-pant binding site at N-ACP of Pks13 by 

FadD32, a fatty acyl-AMP ligase21. The meromycoloyl-AMP is then transferred to the KS 

domain and Pks13 completes the condensation reaction in a series of steps outlined in 

Supplementary results, Supplementary Fig. 119.
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Although the role of Pks13 has not been confirmed in vivo in Mtb, an activated recombinant 

Mtb Pks13 can catalyze fatty acid chain condensing activity in vitro19 and the Mtb operon 

containing accD4, pks13 and fadD32 genes is essential20,22,23. Herein, we identified and 

investigated the mechanism of action of a novel class of thiophene (TP) compounds with 

whole-cell activity against Mtb, and determined that they act by selectively inhibiting Pks13. 

Two inhibitors of this class were used to decipher the microbiological and biochemical 

consequences of Pks13 inhibition, to explore their potential as drug leads, and to 

characterize the structural requirements for activity against Mtb.

RESULTS

Whole-cell screen for new Mtb cell wall inhibitors

We searched for novel inhibitors of mycobacterial cell wall biosynthesis with the goal of 

identifying new drug targets and new classes of inhibitors with potent activity against Mtb. 

To search for inhibitors, we screened for compounds that induced expression of the Mtb 

iniBAC operon promoter (piniBAC, Supplementary Table 1). The iniBAC gene cluster is 

highly induced by a broad range of cell wall biosynthesis inhibitors24. We screened a library 

of 1,113 publically available compounds with known activity against Mtb on a whole-cell 

basis25,26. Interrogating experimental controls, the piniBAC screen correctly identified the 

known piniBAC inducers INH and EMB. Compounds that had a four-fold or greater 

induction were then selected for further study, resulting in the identification of a number of 

thiophene (TP) analogues (Table 1). Structural analogues of SQ109, another known inducer 

of piniBAC, were also identified27. The minimal inhibitory concentrations (MIC) of the TPs 

against Mtb H37Rv ranged from 0.5 μM to 20.2 μM, with TP2 and TP4 being among the 

most active. The three most potent compounds against Mtb (MIC values 0.5–1.0 μM), TP2, 

TP4 and TP626, also exhibited the largest fold inductions of the iniBAC reporter (10.1–

14.6). Importantly, TP2 and TP4 were equally active against laboratory, clinical drug-

susceptible and clinical multi drug-resistant (MDR) Mtb strains (Table 2). All non-

tuberculous mycobacteria (NTM) tested were highly resistant to TP2, including M. 

smegmatis (Supplementary Table 2). Structure-activity relationship (SAR) analysis indicated 

that replacement of the pentafluorophenyl amide in these most potent hits with a 2-

fluorophenylamide or 4-methylphenylamide (TP2 to TP175 or TP197) resulted in losses of 

≥20-fold the MIC versus Mtb (Table 1). Exchange of the 3-alkyl ester for a primary amide 

(TP2 to TP953) was not tolerated nor was the carboxylic acid functionality (TP4 to 

TP1735). Transposition of the 3-ester and 5-amide functionalities (TP4 to TP238) also 

caused a ten-fold loss of whole-cell activity.

Isolation of resistant mutants and whole-genome sequencing

Mtb cultures (107 cells) were plated on solid agar containing 4× and 8× the MIC of TP2 or 

TP4. One mutant (DRM2) obtained on the 4× TP2 plate had a four-fold increase in MIC to 

TP2 in liquid media (3.8 μM) (Table 2). DRM2 also had a four-fold increase in MIC to TP4 

(1.9 μM), indicating an overlapping target with TP2; however, we failed to directly isolate 

resistant mutants by plating on TP4. Whole-genome sequencing of DRM2 revealed a 

solitary T236C single nucleotide polymorphism (SNP) in the pks13 (Rv3800c) gene, which 

produced a Phe79Ser (F79S) substitution.
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TP-resistance in Pks13 over-expressing M. bovis and Mtb

Over-expressing a gene encoding a drug target is expected to generate an increase in the 

MIC for that drug9. Therefore, to determine whether Pks13 is involved in TP2 and TP4 

activity, we over-expressed wild-type Mtb Pks13 (Pks13_WT) in Mycobacterium bovis 

BCG using two multi-copy plasmids expressing Pks13 with either a C-terminus (pVV16-

pks13) or N-terminus (pMK1-pks13) his6 tag driven by the hsp60 promoter. Pks13 

expression from pMK1-pks13 was confirmed (Supplementary Fig. 2a). This strain exhibited 

a four to six-fold increase in MIC to both TP2 and TP4 (Table 2). Results were similar when 

Pks13 was expressed from pVV16-pks13 (Table 2). Comparable resistance levels to TP2 

and TP4 were observed in Mtb mc27000 carrying pMK1-pks13 (Table 2). We were unable 

to stably express Pks13 in Mtb H37Rv or DRM2 from multi-copy plasmids. Therefore, we 

constructed integrative plasmids to express Pks13_WT and the mutant Pks13 (Pks13_F79S) 

under the hsp60 promoter (H37Rv::pMV306H-pks13 and H37Rv::pMV306H-pks13_F79S, 

respectively). The over-expression of Pks13 proteins was verified by SDS-PAGE 

(Supplementary Fig. 2b). Over-expression of Pks13_WT in H37Rv resulted in only a two-

fold increase in resistance to TP2. However, over-expression of the TP-resistant 

Pks13_F79S mutant resulted in very high-level resistance to TP2 (64 μM) in both H37Rv 

(H37Rv::pMV306H-pks13_F79S), and DRM2 (DRM2::pMV306H-pks13_F79S). These 

results closely parallel a previous study that validated embB as the target of ethambutol in 

Mtb28. Resistance to TP4 was also increased, although at a lower level (4-fold in H37Rv and 

8-fold in DRM2). Importantly, over-expression of Pks13 failed to increase resistance to 

unrelated drugs such as INH, ethambutol, rifampicin, DA5 (a recently identified MmpL3 

inhibitor27), or cephalexin (Table 2 and Supplementary Table 3), thus highlighting the 

specificity of the TP inhibitory mechanism.

TP2/TP4 inhibit mycolic acid biosynthesis in Mtb

To test whether treatment with TP2 or TP4 alters mycolic acid synthesis in Mtb through 

Pks13 inhibition, H37Rv and the TP2-resistant mutant strain (DRM2), were either treated 

with increasing concentrations of TP2, TP4, or the control anti-TB drugs INH and 

ciprofloxacin, prior to labeling the cultures with 14C-acetate. Radiolabeled total lipids were 

then extracted, methyl esterified and analyzed by thin layer chromatography (TLC)/

autoradiography. Treatment with either TP2 or TP4 suppressed all mycolic acid methyl 

esters (MAMEs; α-, methoxy- and keto-) in wild-type Mtb starting at a concentration of 

0.5× MIC. Complete suppression of mycolic acid synthesis occurred at higher 

concentrations with concomitant accumulation of fatty acid methyl esters (FAMEs, Fig. 1a 

and Supplementary Fig. 3a). In contrast to their effect on H37Rv, neither TP2 nor TP4 

showed substantial suppression of mycolic acid biosynthesis in the DRM2 strain, except for 

TP4 at very high concentrations (125× MIC). As expected, mycolic acid synthesis was also 

inhibited by INH (Fig. 1b), but not by the DNA gyrase inhibitor ciprofloxacin29 (CIP) used 

as a control (Supplementary Fig. 3b). The FAMEs from TP-treated cultures were further 

analyzed by reverse phase-TLC (Fig. 1c and d). This analysis showed accumulation of all 

fatty acids upon treatment with TP2 including C16, C18, C20 as well as C26 fatty acid a FAS-

I end-product, which is also a Pks13 substrate. The exact chain lengths of the compounds 

observed on RP-TLC were determined by their co-migration (identical Rf values) with 
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synthetic FAMEs as shown in the Supplementary Fig. 4. Furthermore, analysis of polar 

lipids upon treatment with TP2 showed a decline in the levels of TMM and TDM, similar to 

the effect of INH and consistent with Pks13 inhibition (Fig. 1e and f, Supplementary Fig. 5). 

In contrast, DA5 suppressed only TDM, and ethambutol resulted in a slight accumulation of 

both as expected27 (Fig. 1e and f). To further confirm the specificity of TPs, we also 

examined the apolar lipid fraction of H37Rv treated with up to 20× the MIC of TP2. A 

comprehensive analysis of extractable lipids (Fig. 1 e–f and Supplementary Fig. 6) did not 

reveal loss of other lipids such as PDIMs or sulfolipid-1. Together, with the over-expression 

results, these findings strongly suggest that the anti-TB activity of TP2 and TP4 occurs via 

inhibition of Pks13 and mycolic acid biosynthesis.

TPs inhibit FadD32-dependent loading onto N-ACP of Pks13

Our observation that the TP-resistant DRM2 strain had a F79S mutation near the essential 

residue of the Pks13 N-ACP domain suggested that TP compounds act by interfering with 

this site. We postulated that TP compounds block loading of the meromycoloyl chain onto 

the Pks13 N-ACP domain. We purified Pks13_WT and Pks13_F79S by co-expressing with 

the Bacillus subtilis sfp gene19 to ensure phosphopantetheinylation at Ser-55 (confirmed by 

nano-LC-MS/MS analysis which showed a 340 Da increase in mass, Supplementary Fig. 7). 

The N-ACP loading step is FadD32-dependent21 and has been previously demonstrated 

using 14C-labeled C12 (lauric acid) and C16 (palmitic acid) fatty acids as substrates19. We 

developed a non-radioactive assay to measure meromycoloyl loading using a fluorescent 

analog of palmitic acid (BODIPY® FL C16). The loading of FL C16 onto Pks13 was specific 

and FadD32 dependent as demonstrated by the observations that negative controls BSA, 

NS5B and heat inactivated proteins failed to load FL C16 onto Pks13. Furthermore, we 

showed that the phosphopantetheinylation of Pks13 was required for FL C16 loading 

(Supplementary Fig. 8). We next examined whether the TP compounds inhibited FL C16 

loading onto Pks13. The results showed that TP2 inhibited loading of Pks13_WT in a dose-

dependent manner (Fig 2a). TP2 also inhibited FL C16 loading onto the TP-resistant F79S 

mutant protein (Fig. 2b). The difference in the ability of TP2 to inhibit loading of the wild-

type Pks13 versus the F79S mutant was modest, but it was most noticeable at equimolar 

concentrations (1 μM) of protein and inhibitors. Similar inhibition kinetics were observed 

with TP4 (Supplementary Fig. 9a–c). In contrast, TP1735, which had some of the poorest 

activity against live Mtb, also failed to inhibit loading on either Pks13_WT or Pks13_F79S 

(~10% inhibition against Pks13-WT and no inhibition against Pks13_F79S). M. smegmatis 

is highly resistant to the TPs (MIC >128 μM), and purified M. smegmatis Pks13 

(MsmPks13) was also highly resistant to inhibition of FL C16 loading by TP2 (Fig. 2c), 

although this comparison was best appreciated from the inhibition curves (Fig. 2d). We also 

ruled out any potential direct inhibition of FadD32 activity by TP2 or TP4 (Supplementary 

Fig. 10)30 Overall, these data further support our in vivo findings that TP compounds 

specifically and directly target Mtb Pks13.

Lack of cross resistance between the TP compounds and INH

Although INH does not share structural similarities to the TP class of compounds (Table 1), 

INH behaves like the TPs in that it is a strong inducer of piniBAC and a potent inhibitor of 

mycolic acid biosynthesis at the InhA step in the FAS-II pathway. We therefore tested for 
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cross-resistance between INH, TP2 and TP4 to confirm that these compounds inhibited 

different molecular targets. MIC values were determined against H37Rv-ΔkatG31, an Mtb 

strain where the gene encoding the activator of INH, katG, was deleted and is therefore 

deficient in INH activation. MICs were also determined against H37Rv PmabAinhA 

(mc24914)9, an Mtb strain that is INH-resistant due to a promoter-up mutation (c15t) in 

inhA, the gene encoding the INH target. Although each of these mutants were highly 

resistant to INH, neither of them showed an increase in MIC to TP2 or TP4 (Table 2). INH 

MICs values were also quantified for the TP-resistant mutant DRM2 and no increase in INH 

MIC was noted compared to wild-type controls (Table 2). The lack of cross-resistance 

between INH-resistant and TP-resistant mutants provides further confirmation that these two 

compounds involve different mechanisms of action within the mycolic acid biosynthetic 

pathway: INH by targeting InhA and TPs by targeting Pks13.

TP2/TP4 in combination with INH/RIF enhanced Mtb killing

It is not known whether inhibition of two distinct targets within the same mycolic acid 

biosynthesis pathway will have synergistic or antagonistic effects. The availability of TP 

compounds made it possible to investigate this question. MIC values of Mtb treated with 

varying concentrations of INH and either TP2 or TP4 were measured using a checkerboard 

format32. Neither synergy nor antagonism were noted when the MIC was used as the 

measure of a combined drug effect (Supplementary Fig. 11). We then determined whether 

the TP compounds were synergistic with INH with regard to bactericidal activity (as 

opposed to MIC). For this study, we treated actively growing Mtb cultures with TP2, TP4, 

INH or rifampicin (RIF) alone, or with varying combinations of these drugs. Killing was 

studied in liquid cultures by performing daily measurements of bacterial metabolic activity 

(growth index or GI) in the BACTEC 460TB system33,34 (Fig. 3a and b) or by plating for 

colony forming units (CFU) (Fig. 3c). We found that TP4 killed Mtb at rates similar to INH 

using metabolic activity measured by GI, while killing by TP2 was somewhat slower. 

Measured by CFU viability, TP2 and TP4 killed at slightly slower rates than INH during the 

initial time points; however by seven days, both TP compounds showed better killing than 

INH. This effect persisted out past 20 days (Fig. 3a and c).

The GI and CFU of INH-treated cultures typically increase after a brief period of decline 

due to the rapid emergence of INH-resistant clones35–39. The same phenomenon was 

observed in our study for INH. In contrast, the GI of cultures treated with the TP2 

compounds continued to fall, although viable cells were still detected after 30 days of 

treatment (Fig 3a). The CFU of TP treated cultures also continued to fall for at least seven 

days after INH treated CFU began to recover (Fig 3c). TP treated cultures did not begin to 

show an increase in CFU until 20 days after the compounds had been added to the growth 

media. Furthermore, while approximately half of the re-growth in INH treated cultures was 

due to INH-resistant clones (56% resistant to 1 μM of INH or 5× the wild-type INH MIC), 

only a small fraction of the growth in extensively TP-treated cultures were TP-resistant 

(9.7% TP2-resistant to 5 μM of TP2, or 5× the wild-type MIC; 1.7% TP4-resistant to 2.5 μM 

of TP4 or 5× the wild-type MIC). RIF caused more rapid and complete killing than the other 

compounds. Examining the effect of combined treatment, we noted that cultures treated with 

both INH and a TP compound showed initial killing rates that were moderately faster than 
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cultures treated with either drug alone (Fig. 3c). Furthermore, the killing curves of the dual-

compound treated cultures continued to decrease over time until both GI and CFU became 

undetectable (Fig. 3b and c). By the end of the culture period, all of the cells treated with 

INH plus TP2 or INH plus TP4 appeared to be sterile. Treatment with TP2 or TP4 plus RIF 

produced killing rates equivalent to INH plus RIF. Adding TP2 or TP4 to INH and RIF 

treatment did not result in a further enhancement in killing. However, no antagonism was 

noted.

Cytotoxicity and intracellular activity

Several studies were performed to assess the suitability of the TP family as potential drug 

leads. TP2 was shown to have an IC50 versus monkey kidney Vero cells40 and human liver 

carcinoma HepG2 cells41 of 17.5 and 7.30 μM, respectively, corresponding to selectivity 

indexes (SIs) of 17 and 7.3. Mtb is an intracellular pathogen that resides within host 

macrophages; therefore we studied the efficiency of TP compounds using a macrophage 

infection model. Significant intracellular killing activity (90 % killing) within BCG-infected 

J774A.1 macrophage cells40 was observed at TP2 and TP4 concentrations of 12.8 μM and 

6.4 μM, respectively, (Supplementary Fig. 12). Overall, these results suggest that the TP 

compounds display properties suitable for a drug lead, but further work will be needed to 

increase the potency of these compounds.

A possible TP-binding groove on the N-ACP domain of Pks13

To explore the structural basis of Pks13 inhibition by the TP compounds, we performed 

computational docking42,43 studies with a comparative model44 of the Pks13 N-ACP 

domain (Supplementary Fig. 13a). The vast majority of the lowest free energy binding 

modes for the compounds listed in Table 1 positioned them in a deep largely neutral and 

hydrophobic groove separating Ser-55 (P-pant site) and Phe-79 whose mutation to Ser in 

DRM2 confers resistance to TP2 and TP4 (Supplementary Fig. 13a). In fact, most of the 

computationally determined binding modes placed the TP compounds in van der Waals 

contact with Phe-79, which forms the central portion of one face of the TP compound-

binding groove. Substituting serine for Phe-79 replaces a bulky aromatic hydrophobic side-

chain with a smaller polar hydrophilic side-chain that would alter the hydrophobicity and 

shape of the TP binding groove by lowering the height of one face (Supplementary Fig. 13b 

and c). Thus, the results of the docking studies provide a plausible binding site for TP2 and 

TP4 as well as a reasonable structural explanation for the resistance of the Pks13_F79S 

mutant to these compounds.

DISCUSSION

Here, we demonstrate that the TP compounds inhibit Mtb Pks13, an enzyme involved in a 

critical step of mycolic acid biosynthesis, establishing it as a vulnerable target for drug 

development. In this study, i) we isolated a TP-resistant mutant (DRM2) with a single SNP, 

introducing a F79S mutation in Pks13; ii) consistent with these findings, computational 

modeling placed this mutation in close physical proximity to the P-pant attachment site 

(Ser-55) involved in loading of meromycoloyl-AMPs by FadD3219; iii) Pks13_WT over-

expression in Mtb H37Rv led to moderate increases in TP2 MIC and over-expression of the 
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Pks13_F79S mutant caused high-level resistance; iv) we found that TP2 and TP4 treatment 

inhibited mycolic acid biosynthesis with the concomitant accumulation of mycolic acid 

precursors produced by FAS-I in a dose-dependent manner in Mtb H37Rv, while discernible 

mycolic acid inhibition required substantially higher TP concentrations in the TP-resistant 

DRM2 mutant; and v) TP compounds effectively inhibit the binding of FadD32-activated 

FL-C16 onto Pks13 in vitro of TP-susceptible Mtb, but inhibition is diminished in the 

presence of Pks13 derived from TP-resistant Mtb, or from highly TP-resistant M. smegmatis.

The identification of Pks13 inhibitors allowed us to explore, for the first time, the 

consequences of Pks13 inhibition in Mtb and to establish Pks13 as a druggable target. We 

noted that TP4 and INH displayed almost identical killing curves in vitro. Both compounds 

appeared to leave an unaffected persister population. In the case of INH, study of these 

persisters has been complicated by the rapid emergence of INH resistant clones that are 

either amplified from a pool of pre-existing mutants or generated by INH treatment35–39. 

TP2 and TP4 also generated resistant mutants, albeit to a much lower extent. Our plating 

studies confirmed that both INH and TP-treated cultures also contained drug-susceptible 

persisters. Interestingly, treatment with a combination of INH and TP compounds caused not 

only large decreases in cell viability but also appeared to kill persisters, leading to 

sterilization of the cultures. This is particularly remarkable because it suggests that treatment 

with two drugs that target different steps in the same metabolic pathway can overcome both 

persistence and drug resistance that develop in the presence of a single antitubercular agent. 

We also noted that TP2 was inactive against most NTM. However, this is consistent with 

previous studies showing that several drugs inhibiting mycolic acid biosynthesis in Mtb, 

including INH or isoxyl are less or even totally inactive against M. smegmatis45,46. TP2 was 

also inactive against C. glutamicum (a strain in which pks13 is dispensable) and C. 

diptheriae, further underlining TP2 specificity for Pks13 (Supplementary Table 2).

Although the TP compounds characterized so far have profiles that suggest they are suitable 

drug leads, their antitubercular activity, intracellular activity and cytotoxicity profile need to 

be further improved. Our mutation analysis, combined with SAR studies and computational 

modeling studies, suggests a route for drug optimization. Moreover, our simple and rapid in 

vitro FL C16 assay, validated with TP2 and TP4, makes it possible to easily screen for other 

Pks13 inhibitors or TP-analogues with improved potency. Complementing this in vitro 

assay, the in vivo piniBAC induction assay can be used to screen for whole-cell activity.

The F79S TP-resistance producing mutation in the DRM2 strain falls within the Pks13 N-

ACP domain near the P-pant site (Ser-55), which has been shown to be essential for loading 

meromycoloyl-AMPs by FadD32 (Supplementary Fig. 1, Step 2). We propose that TP2 and 

TP4 compromise the loading of meromycolyl-AMPs onto the Pks13 N-terminal P-pant site. 

Our in vitro studies showing that TP inhibits FL C16 loading onto wild-type Pks13 strongly 

support this hypothesis. The data is also consistent with our computational docking analyses 

in which the binding groove for TP2 is in between the P-pant site at Ser-55 and Phe-79. 

Furthermore, virtually all of the TP compounds we modeled displayed a qualitatively better 

fit for the wild-type protein (Phe-79) than the DRM2 mutant (Ser-79). Interestingly, the TP 

binding groove identified in our computational studies was previously proposed to be an 

acyl chain binding site on E. coli butyryl-ACP47 and a P-pant binding site on Bacillus 
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subtilis ACP48. It was hypothesized that the acyl chain interaction with the groove could 

protect the chain during cycles of fatty acid synthesis47. We speculate that the P-pant or acyl 

chain could interact with the Pks13 N-ACP domain, and that TP binding could function at 

least in part to displace the P-pant or acyl chain from the groove, hence affecting Pks13 

activity.

This study was enabled by the discovery that certain TP compounds inhibit Pks13. Starting 

with a series of compounds shown to have bactericidal activity in a whole-cell Mtb screen25 

and taking advantage of the observation that piniBAC is induced by a wide variety of 

compounds that inhibit Mtb cell wall biosynthesis24, we developed a relatively unbiased 

secondary screen for cell wall biosynthesis inhibitors. This approach already led to the 

discovery of SQ109 and other MmpL3 inhibitors27,49, as well as the new TP family of 

compounds reported here. Our discovery of two separate compound classes (DA5 and TP2) 

that inhibit two distinct steps in mycolic acid biosynthesis (MmpL3 and Pks13 respectively), 

clearly validates our function-specific promoter screen as a powerful tool for identifying a 

focused set of drug targets. This promoter will also be useful to characterize modified TP 

compounds for increased whole-cell activity, given our observed correlation between 

piniBAC activity and TP potency in our preliminary SAR analysis.

In conclusion, we present here a new mechanism for mycolic acid synthesis inhibition that 

rapidly leads to mycobacterial cell death. Pks13 appears to be a promising target for drugs to 

treat tuberculosis. The TP inhibitors that are likely to interfere with the function of the N-

ACP domain of Pks13 appear to have desirable properties including additive killing and 

resistance prevention.

ONLINE METHODS

Bacterial strains, culture conditions, primers and plasmids

Mtb strains were obtained from laboratory stocks. Clinical strains were obtained from a 

collection of clinical isolates established by UNICEF/UNDP/World Bank/WHO Special 

Programs for Research and Training in Tropical Diseases (TDR). All Mtb strains were 

grown at 37 °C in Middlebrook medium 7H9 (Becton Dickinson, Sparks, MD) enriched 

with 10% oleic acid-albumin-dextrose-catalase (OADC-Becton Dickinson) and 0.05% 

(wt/v) Tween 80 or Tyloxapol in liquid media. Middlebrook 7H10 agar (Becton Dickinson) 

supplemented with 10% OADC and 0.5% glycerol (v/v) was used to grow strains on solid 

media.

Reporter screen for cell wall biosynthesis inhibitors

A total of 1,113 compounds previously identified as having antitubercular activity in a 

whole-cell screen of a 100,997 compound library25,26 (performed at the Southern Research 

Institute for the MLPCN and the Tuberculosis Antimicrobial Acquisition and Coordinating 

Facility program under NIH contracts N01-AI-95364 and N01-AI 15449)25 were tested for 

their ability to induce the iniBAC promoter (piniBAC). The promoter screen used a BCG 

strain (BCGS(pG4697-6)) containing the iniBAC promoter sequence fused to a lacZ reporter 

(pG4697-6)24. The BCGS(pG4697-6) was grown to an OD600 of 0.6 and 90 μl was 

dispensed into each well of 96-well plates, then 10 μl of each compound (final concentration 
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1× IC90) was added. After incubation for 24 h at 37 °C, 100 μl of Lac Z buffer (60 mM 

Na2HPO4·7H2O, 40 mM NaH2PO4·H2O, 10 mM KCl, 1 mM MgSO4·7H2O, 50 mM β-

mercaptoethanol), 5 μl of chloroform and 2 μl of 0.1% SDS were added and incubated for 5 

min at room temperature (RT). Then, 40 μl of 4 mg/ml of 2-Nitrophenyl β-D-

galactopyranoside (Sigma Aldrich, St. Louis, MO) was added to each well and plates were 

incubated for 15 min. Following incubation, 100 μl of 1M sodium carbonate was added to 

each well and absorbance was read at 420 nm. Fold induction was determined by the OD420 

of compounds/OD420 of without drug controls (Table 1 and Supplementary Table 1). EMB 

and INH were used as positive controls.

Construction of over-expression strains

For the over-expression of Pks13 variants in mycobacteria, we used pVV1650, pMK151 and 

pMV306-Hyg52 vectors. All primer sequences and plasmids used in this study are given in 

Supplementary Tables 4 and 5 respectively.

Minimal Inhibitory Concentration (MIC), synergy and bactericidal activity assays

MICs were determined using the standard radiometric BACTEC 460TB method (Becton 

Dickinson)33,34. Antibiotics were purchased from Sigma Aldrich and thiophene analogs 

(Table 1) were purchased by Chembridge except for TP1735 that was synthesized as 

described below. Compounds were stored as stocks at 20 mg/ml in DMSO. For the 

BACTEC-based bactericidal activity assays, each vial of 12B media was inoculated with 

H37Rv at 2×105 CFU and grown to a GI of 200. Test drugs were then added to these vials 

either singly or in combination. The bottles were incubated at 37 °C and then the GI of each 

bottle was measured daily. Drug concentrations used for the bactericidal studies were 

calculated to be approximately 5× the MIC, for INH (1.1 μM), RIF (1.2 μM), TP2 (5.0 μM), 

and TP4 (2.5 μM) except where noted. The MIC assays in 96-well format were performed 

using the microdilution method53.

Synthesis of TP1735

Methyl ester (10 mg, 0.0237 mmol) was dissolved in 1.0 ml dioxane and subjected to the 

addition of aqueous lithium hydroxide (2.0 M solution, 5.0 equiv, 0.118 mmol, 60 μl). The 

brown, slightly turbid solution was stirred for 2 h at RT and then 2 d at 40 °C. At this point, 

TLC analysis demonstrated consumption of starting material. The basic solution was washed 

with 3×5 ml diethyl ether, acidified to ca. pH 1 with 1 N HCl(aq), and extracted with 3×5 ml 

ethyl acetate. The organics were washed with 5 ml saturated aqueous brine solution, dried 

over anhydrous magnesium sulfate for 5 min, and concentrated by vacuum to produce 8 mg 

of white solid. Recrystallization of this crude product from acetone at 0 °C produced 

analytically pure white crystals in the amount of 3 mg (0.00761 mmol, 33%). 1H NMR (400 

MHz, d4-MeOH) δ12.4 (br s, 1), 6.92 (br s, 2), 2.76 (s, 3); 19F NMR (376 MHz, d4-MeOH) 

δ - 141.8, - 151.8, - 162.8; LC-MS (ES+) - 1.73 min (96% purity @ 215 nm); HRMS : 

394.0067 amu; found; expect 394.0067 amu. NMR experiments were performed on a Bruker 

Avance 400 MHz NMR spectrometer. Low-resolution liquid chromatography-mass 

spectrometry experiments were achieved with a Shimadzu 2010 LC-MS instrument 

equipped with an electrospray source. High-resolution mass spectroscopy (HRMS) data 

were performed on an Agilent Technologies 6210 series Time-of-Flight mass spectrometer 
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coupled to an Agilent Technologies 1200 series High Performance Liquid Chromatography 

system using no HPLC column.

Isolation of DRM2 and whole-genome sequencing

The TP2-resistant Mtb mutant, DRM2, was isolated by plating ten-fold serial dilutions of 

liquid cultures at OD600 ~ 1.5 onto 7H10 plates containing 3.8 μM and 7.6 μM of TP2. 

Plates were screened for resistant colonies after 3–6 weeks at 37 °C. The genomic DNA was 

isolated54 from DRM2 and subjected to whole-genome sequencing and single nucleotide 

polymorphism (SNP) analysis27.

Analysis of mycolic acids and other lipids

For the analysis of MAMEs and FAMEs55, the compounds were added to 4 ml of Mtb 

cultures (OD600 of ~ 1.5), incubated at 37 °C for 15 h and 1 μCi/ml of 14C-acetate (56 mCi/

mmol) was added to each culture. Following incubation at 37 °C for another 8 h, the 14C-

labeled cells were harvested, washed with PBS and sterilized by autoclaving. The lipids 

from cell pellets were hydrolyzed by adding 2 ml of tetra-n-butylammonium hydroxide 

(TBAH) by incubating overnight at 100 °C. Fatty acids were esterified by adding 4 ml 

CH2Cl2, 300 μl CH3I, and 2 ml distilled water (dH2O) and mixing at RT for 1 h. After 

centrifugation, the upper phase was discarded and samples were washed twice with dH2O. 

The lower phase was dried, resuspended in 3 ml of diethylether, after centrifugation, the 

organic phase was dried and lipids were resuspended in 200 μl CH2Cl2. Equal counts 

(75,000 cpm) were loaded on a silica gel 60 F254 thin-layer chromatography (TLC) plate 

and resolved using hexane/ethyl acetate (19:1, v/v, 2 runs). The FAMEs and MAMEs were 

detected by autoradiography. To determine the chain length distribution of FAMEs, the Mtb 

cultures (4 ml each at OD600 of 0.3) were treated with compounds for 2 h followed by 14C-

acetate incorporation for another 2 h, then MAMEs/FAMEs were prepared as above. The 

samples (5 μl each) were analyzed on a C18 reverse-phase TLC, developed with acetonitrile/

dioxane (1:1, v/v) and analyzed by phosphorimaging. To study the effect of compounds on 

polar lipids including TMM/TDM, labeled cell pellets were extracted overnight at 50 °C 

with 4 ml of CHCl3/CH3OH (2:1, v/v)27. After centrifugation the supernatants were dried 

and dissolved in 200 μl CHCl3-CH3OH (2:1). Equal volume (5 μl) of each sample was 

analyzed on normal phase TLC plates, developed with CHCl3/CH3OH/H2O (62:25:4, v/v/v). 

For the analysis of apolar lipids, Mtb cultures 10 ml each (OD600 of ~1.0)56 were treated 

with TP2 or orlistat (Sigma Aldrich) for 6 h followed by 5 μCi 14C-propionate (American 

Radiolabeled Chemicals, Inc., St. Louis, MO). After incubation for 16 h at 37 °C, the cell 

pellets were extracted with 2 ml CH3OH/0.3% NaCl (10:1) and 1 ml petroleum ether by 

vigorously mixing over 15 min. After centrifugation, the upper layer was dried, resuspended 

in 200 μl of petroleum ether, spotted (5 μl each) on normal-phase TLC plates and developed 

either with CHCl3/CH3OH/H2O (62:12:1, v/v/v) or petroleum ether/ethyl acetate (98:2, v/v, 

three times)57,58. The TLCs were visualized using a phosphorimager.

Synthesis of fatty acid methyl ester standards (FAMEs) for RP-TLC analysis

One millimole of each fatty acid was dissolved or suspended in 4 ml of 50% ethyl ether/

methanol at RT. Trimethylsilyldiazomethane (2 M in hexanes, Sigma Aldrich) was added at 
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a rate such that insoluble acids dissolved and the rate of gas evolution was controlled. When 

a yellow color persisted, the mixture was aged for one hour. The reaction was quenched by 

the dropwise addition of glacial acetic acid until the solution was colorless. The solution was 

then partitioned between ethyl ether and saturated aq. sodium bicarbonate. The organic layer 

was decanted, washed with brine, dried over magnesium sulfate, concentrated and purified 

via flash chromatography with a 4 gram silica cartridge (RedisSep) on an Isco Combiflash 

Companion using a 1–>5% ethyl acetate/hexanes gradient. Fractions containing product 

were identified using silica gel 60 TLC plates eluted with 10% ethyl ether/hexanes and 

visualized by dipping in a solution of 10% phosphomolybdic acid in isopropanol and heating 

on a hot plate. Analyzed on an Agilent LC/MS, the products were not detectable by UV in 

positive or negative ion mode. All gave satisfactory NMR spectra.

FadD32 dependent loading of BODIPY® FL C16 in Pks13

The loading assay of the N-term ACP domain was adapted from previous study19. The 14C- 

palmitic acid (C16) substrate was substituted with flourescein labeled palmitic acid. The 

Pks13 protein was incubated with 50 μM BODIPY® FL C16 (Invitrogen, D-3821) in 1× 

Pks13 reaction buffer (50 mM HEPES, pH 7.2, 7 mM trehalose, 7 mM glucose, 2 mM ATP, 

8 mM MgCl2) at 30 °C with and without FadD32 (1 μM) in 20 μl reactions. After 2 h 

incubations the reactions were terminated by adding 5 μl of 6× Laemmli sample buffer and 

quantified as described below.

Inhibition of BODIPY® FL C16 incorporation in Pks13 by TP2/TP4

The Pks13 protein (1.0 μM) was pre-incubated with indicated amounts of TP compounds at 

RT and ice for 15 min each in 10 μl (25 mM Tris pH 8.0, 25 mM NaCl). The reactions were 

initiated by adding 10 μl of 2× Pks13 reaction mixture containing 100 μM FL C16 and 

incubated at 30 °C for 2 h. The reactions were terminated by adding Laemmli sample buffer 

(100 °C for 5 min) and separated on 4–12% NuPAGE novex bis-tris gel (Invitrogen) using 

1× MOPS running buffer. After electrophoresis, the in-gel fluorescence was measured using 

Typhoon 9400. The total proteins in the gels were visualized with InstantBlue stain 

(Expedeon Inc., San Diego, CA). The fluorescence was quantified (RFU or relative 

fluorescence units) using ImageQuant software. For quantitative analysis, a common 

background correction was applied to all spots, and the activity was determined by 

subtracting counts corresponding to Pks13 only and FadD32 only from counts of both 

enzymes used together (ActivityRFU = RFU(Pks13+FadD32) –RFU(Pks13)-RFU(FadD32)). The 

percentage inhibition was calculated considering no inhibitor control as 100% activity 

(Inhibition % = 1− (100*(ActivityRFU in the presence of inhibitor/ActvityRFU in the absence 

of inhibitor).

Purification of Mtb and M. smegmatis Pks13 in E. coli

The E. coli expression constructs in pET26b vector were co-transformed with pLysS-sfp into 

E. coli BL21 (DE3). The purification was carried out as described previously19 using 

affinity (Talon resin, as detailed below for FadD32 below) and gel-filtration (Superdex-200, 

GE Healthcare) chromatography.
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Confirmation of P-pant modification in peptide containing Ser-55

The P-pant status of Mtb Pks13 at S55 was confirmed by trypsin digestion and nano LC-

MS/MS (Supplementary Fig. 3) as described previously19. Briefly, 5 μg Pks13 was 

precipitated with TCA digested with trypsin, peptides were desalted using C18 spin columns 

and capillary-liquid chromatography-nanospray tandem mass spectrometry (Nano-

LC/MS/MS) was performed on a Thermo Finnigan LTQ orbitrap velos mass spectrometer 

equipped with a nanospray source operated in positive ion mode. The LC system was an 

UltiMate 3000 (Dionex, Sunnyvale, CA) with a FAMOS autosampler. Solvent A contained 

2% acetonitrile and 0.1% formic acid. Solvent B contained 95.0 acetonitrile and 0.1% 

formic acid. Five microliters of each sample was injected onto a reversed phase 0.3 mm×5 

mm trapping column (LC-Packings A Dionex Co, Sunnyvale, CA) and washed with solvent 

A. The injector port was switched to inject, and the peptides were eluted off of the trap and 

resolved on a 75 μm×150 mm capillary PepMap column (3 μm, 100 Å, C18, Dionex). 

Peptides were eluted into the LTQ system using a gradient of 10–95% B over 60 min, with a 

flow rate of 250 nl/min. The scan sequence of the mass spectrometer was programmed to 

perform a full scan followed by 10 data-dependent MS/MS scans of the most abundant 

peaks in the spectrum. Dynamic exclusion was used to exclude multiple MS/MS of the same 

peptide. Data was searched against Pks13 sequence along with contaminants on mascot 

search engine with following parameters; trypsin as a protease, one missed cleavage, P-pant 

as variable modification. Precursor ion tolerance was set at 10 ppm and fragment ion 

tolerance was set at 0.5 Da. Matched spectra were manually verified for confirmation.

Purification and activity of Mtb FadD32

The pET26b-fadD32 was transformed into E. coli BL21(DE3) and grown in 500 ml 

autoinduction media (Overnight Express™ Autoinduction System 1, Novagen) 

supplemented with kanamycin (50 μg/ml) at 18 °C for 72 h. The cells were harvested and 

resuspended in 40 ml of lysis buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM 

imidazole, 0.1% Triton-Χ100, 1 mg/ml lysozyme, 1× EDTA free-protease inhibitor cocktail) 

and frozen overnight at −80 °C. The cells were lysed by sonication and the clarified 

supernatant was allowed to bind with 2 ml Talon resin (Clonetech) at 4 °C for 1 h. The resin 

was washed 3×30 ml wash buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM 

imidazole), eluted with 15 ml elution buffer (50 mM Tris-HCl pH 8.0, 50 mM NaCl, 500 

mM imidazole), concentrated by amicon centrifugal device, washed with 50 ml of 50 mM 

Tris-HCl pH 8.0–50 mM NaCl and dialyzed overnight in storage buffer (50 mM Tris-HCl 

pH 8.0, 50 mM NaCl, 50% glycerol). The activity and inhibition of FadD32 by TP2 and TP4 

was determined using a radioTLC assay30 performed under same the conditions as Pks13 

assays. The FadD32 (1 μM for TP2 and 2 μM for TP4) was pre-incubated with the indicated 

amount of TP compound at RT followed by incubation on ice for 15 min each. The reactions 

were initiated by adding 14C lauric acid (50 μM) as substrate in 1× reaction buffer and 

terminated by adding glacial acetic acid (final concentration 2%) after 2 h. Fractions of the 

reactions (2.5 μl) were analyzed on silica gel G-60 TLC plates in n-butanol/acetic acid/water 

(80:25:40, v/v/v) solvent system and visualized by phosphorimaging.

Wilson et al. Page 13

Nat Chem Biol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Determination of drug interactions (synergism and antagonism)

Mtb H37Rv was treated with two-fold serial dilutions of INH and TP2/TP4 with 

concentrations ranging from 0.05–0.40 and 0.125–1 μM, respectively. Growth was 

monitored using the Bactec 460TB method33,34. Compound concentrations that inhibited 

growth compared to the compound-free 12B media 1:100 dilution control were defined as 

negative (−) for growth. A checkerboard analysis32 was used to determine synergy and 

antagonism of the TP compounds with INH. The fractional inhibitory concentration (FIC) 

was determined by dividing the MIC of the combination of drugs by the MIC of the drugs 

independently. Fractional inhibitory index (ΣFIC) was determined by adding the FICs of 

each drug tested. Activity of compounds were defined as synergistic if ΣFIC ≤ 0.5, 

antagonistic if ΣFIC ≥ 4.0, and independent if ΣFIC >0.5 and <4.032.

Killing studies using CFU measurements

For the CFU-based bactericidal activity assays, H37Rv was grown in Middlebrook 7H9-

OADC-tyloxapol-glycerol to mid-log phase (OD600 of ~ 1.0). The cultures were diluted 1:50 

and incubated with TP compounds at 37 °C while stirring. At specific time points, aliquots 

were taken and serial dilutions were plated on Middlebrook 7H10-OADC-glycerol. The 

plates were incubated at 37 °C for 4 weeks and colony forming units were counted.

Measuring the emergence of drug resistance during BACTEC killing studies

To determine the proportion of resistant cells that emerged upon prolonged drug treatment, 

bacterial cells were removed from their BACTEC vials after forty-eight days drug treatment, 

spun down and serial diluted for CFU determination onto 7H10 plates containing varying 

concentrations of the relevant drug.

Cytotoxicity assays

Cytotoxicity studies were performed by a commercial vendor (Pharmaron Inc.). In brief, 

Vero (African green monkey kidney epithelial) and HepG2 (human liver carcinoma) cells 

were grown to exponential growth phase and seeded on 96-well microplates at a final 

concentration of 5×104cells/ml in media containing 10% FBS. Three fold serial dilutions of 

TP2 with a starting concentration of 20 mM were added to wells and plates were incubated 

for 72 h in a 37 °C, 5% CO2 incubator. After incubation, 150 μl XTT solution (0.33 mg 

XTT/ml free phenol red RPMI 1640 medium) was added per well and incubated for an 

additional 2 h in CO2 incubator (5%, 37 °C). Following incubation, plates were shaken for 5 

min at 200 rpm and absorbance was read at 450 nm. Paclitaxel, a mitotic inhibitor, was used 

as a positive control.

Intracellular activity in J774A.1 murine macrophages

J774A.1 macrophages were seeded onto 24-well clear plates at 1×105 cells/well, incubated 

at 37 °C for 16 h, and infected with BCG at an MOI of 5. After incubation at 37 °C for 1 h, 

cells were treated with amikacin (200 μg/ml) for 2 h. The cells were washed 3× with Hank’s 

Balanced Saline Solution (HBSS) and incubated at 37 °C for ~16 h. After incubation, 

compounds were added. On day 6, cells were washed with 3× HBSS to remove excess 

compounds, lysed with dH2O, serially diluted and plated on 7H10 media for CFU.
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Comparative modeling and thiophene compound docking

Comparative models of the wild-type and F79S mutant Pks13 N-ACP domain were 

generated using MODELLER44. The high resolution X-ray crystal structure of an acyl 

carrier protein (PDB ID 1X3O) from Thermus thermophilus was used as the modeling 

template. The Pks13 N-ACP domain model (residues 18–95) yielding the lowest DOPE 

score and a GA341 score of 0.99975 was selected for the thiophene compound docking 

studies. AutoDock Tools42 was used to prepare the thiophene compound models and the 

Pks13 N-ACP domain model for docking in AutoDock Vina43. The docking grid 

encompassed the entire Pks13 N-terminal ACP domain and no residues were selected as 

flexible. Molecular graphics were produced with PyMOL59.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of Thiophene 2 and 4 on mycolic acid biosynthesis in Mtb.
(a, b) Normal-phase TLC analysis of MAMEs/FAMEs from wild-type Mtb (H37Rv) and the 

TP-resistant Mtb (DRM2) after treatment with increasing concentration of TP2 (a) or 

isoniazid (b) (INH). Equal counts were loaded and the TLC was developed using hexane/

ethyl acetate (19:1, v/v, 2 runs) solvent system. Similar TLCs upon TP4 or Ciprofloxacin 

treatment are shown in Supplementary Fig. 3. (c, d) Reverse-phase TLCs using acetonitrile/

dioxane solvent (1:1, v/v and equal volumes of samples) showing the fatty acid chain length 

of the FAS-I derived products following treatment with TP2, INH or DA5 from H37Rv (c) 

or DRM2 (d). Cold methyl esters of fatty acids were used as standards as shown in 

Supplementary Fig. 4. (e–f) Normal-phase TLCs showing TMM (TM) and TDM (TD) from 

polar lipids extracted from H37Rv (e) or DRM2 (f) upon treatment with increasing 

concentrations of TP2, or 5× MIC of INH (H), DA5 (D), or ethambutol (E). Equal volume 

(5 μl) of each sample was analyzed on a silica gel 60 F254, developed with CHCl3/

CH3OH/H2O (62:25:4, v/v/v).
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Figure 2. Inhibition of fatty acyl-AMP loading onto purified Pks13 by TP2
The loading of FadD32-activated FL C16 on Pks13_WT (a), Pks13_F79S (b) and 

MsmPks13 (c) was determined by separating the reaction mixtures on SDS-PAGE gels. 

Activities were determined by measuring in-gel fluorescence (top panels of a, b and c) and 

total protein by coomassie blue staining (bottom panels of a, b and c). SeeBlue Plus2 Pre-

stained marker (Invitrogen) was used as molecular weight standard and approximate 

molecular weights in MOPS running buffer are indicated. The loading of FL C16 on 

Pks13_WT (a), Pks13_F79S (b) and MsmPks13 (c) was quantified using ImageQuant 5.2 

(GE healthcare) and quantitation from 5-replicates (mean ± SD) each was used to generate 

inhibition curve (d). The full length images corresponding to these figures are shown in 

Supplementary Fig. 14.
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Figure 3. Bactericidal Activity of TP2, TP4 and other anti-TB drugs against Mtb.
Killing curves of Mtb strain, H37Rv after incubation with TP2, TP4, isoniazid (INH), 

rifampicin (RIF) or various combinations of these drugs. Killing activity was monitored 

using the BACTEC 460TB method at 5× the MIC for all drug compounds (a and b) or by 

plating for CFU (c) after incubation at 5× and 10× (as indicated) the MIC. “ϕ” indicates out 

of range growth. The arrows indicate the time when drugs were added to the cultures (a and 
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b); for panel c drugs were added on day zero. The data represented (mean ± SD) is from two 

independent experiments performed in triplicates.
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Table 1

Thiophenes: structures, MICs against Mtb and piniBAC induction levels.

Compound Structure MIC (μM) piniBAC Fold Induction

1. TP2 1.0 14.6

2. TP4 0.5 10.8

3. TP238 4.9 10.1

4. TP506 2.1 8.6

5. TP338 7.1 8.8

6. TP626 1.0 10.1

7. TP464 3.5 4.3

8. TP514 1.9 8.2

9. TP953 15.3 2

10. TP584 10.6 0.8
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Compound Structure MIC (μM) piniBAC Fold Induction

11. TP175 20.2 1.4

12. TP197 >20.2 1 ND

13. TP1735 78.4 1 ND

14. EMB 7.2 14–39

15. INH 0.2 11–18

16. DA5 10 21

Fold induction of piniBAC was determined by the OD420 of compounds divided by the OD420 of without drug controls. Ethambutol (EMB) and 

Isoniazid (INH) were used as controls.

1
ND: Not determined.
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