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Abstract
The promise of genomic medicine has received great attention over the past decade, projecting
how genomics will soon guide the prevention, diagnosis, and treatment of human diseases.
However, this evolution has been slower than forecast, even where evidence is often strong (e.g.,
pharmacogenomics). Reasons include the requirement for institutional resources and the need for
the will to push beyond barriers impeding health-care changes. Here, we illustrate how genomics
has been deployed to advance the treatment of childhood leukemia.
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Health care is in the early stages of translating the promise of “genomic medicine” into
evidence-based strategies to enhance the use of medications and the treatment of human
diseases. This represents an evolution from the current strategy of selecting medications and
their dosages on the basis of population data (average dose) and “trial and error” (if not
marketing propaganda) to an approach that uses genomic criteria (among others) to make
decisions about what drug and what dosage are best for the individual patient.
Unfortunately, today there are many examples of genomic diagnostics that are well
established, yet rarely used, including many such examples in pharmacogenomics. Why are
diagnostics that are clearly helpful and relatively simple to perform still not routinely used
outside of academic medical centers? And why are there still many patients treated within
academic medical centers who do not routinely benefit from genomic medicine? Lack of
money, time, expertise, and evidence are some of the common explanations.1 Our
fractionated health-care system in the United States, the lack of robust decision-support
tools, and professional inertia may also be major contributing factors.2

When things are complicated and expensive, taking a stepwise approach can be the best way
forward. At our institution, we began to use genomics to individualize the treatment of acute
lymphoblastic leukemia (ALL) in the 1980s; we have added many new features in the
decades since (Figure 1), and the list continues to expand today. The first steps can be the
hardest in a journey that has no end in sight, but when the benefits to patients are clear, the
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way forward becomes easier. Here, we use the treatment of ALL to illustrate the often
stepwise process of translating genomics into diagnostics that guide treatment decisions and
to exemplify the potential it holds for improving the outcome of serious human diseases.
This review reflects our experiences as collaborators for the past 35 years and emanates
from our perspectives as principal investigators, as clinicians, as department chairs, and as
an institutional chief executive officer, each offering a slightly different view of how things
happened—or didn’t happen. We have had the advantage of doing all this at an institution
that encouraged treatment protocols to be conceptually driven and not compromised by
short-term medical economics. We acknowledge that working at such a place may not be the
“real world,” but we would argue that if this model represents a better way, then the real
world (e.g., “payers”) will find a way to embrace it.

As depicted in Figure 1, we began using genomics to guide treatment of childhood ALL
more than 30 years ago, shortly after it was discovered that specific chromosomal
abnormalities in leukemia cells have prognostic importance. In the 1990s, we began to also
use inherited genome variations to determine the optimal dosage of medications for
individual patients. Today, we continue to expand the discovery and clinical use of both
somatic and germline DNA variations that are emerging from a broad spectrum of genomics
research and clinical trials.3,4 We hope there is helpful information to be gleaned from our
“work in progress” that will prove useful to those working to translate genomics into clinical
diagnostics to improve the treatment of human diseases.

Identification of Non-random Chromosomal Abnormalitiesin Leukemia
Cells

In 1978, Secker-Walker et al.5 first showed that chromosome number (ploidy) of leukemic
cells at diagnosis had prognostic significance in childhood ALL, with hyperdiploidy
associated with the most durable response to treatment.By 1981, four chromosomal
translocations, including the Philadelphia chromosome, were described in adult ALL,6 and
in 1984 the first two phenotype-specific chromosomal translocations in childhood ALL—
t(1;19)(q23;p13.3) in pre-B ALL and t(11;14)(p13;q13) in T-cell ALL—were identified at
our center.7 Soon thereafter, specific chromosomal translocations were associated with an
increased risk of treatment failure.8 During that period, it was shown at our center that flow
cytometry could be used to identify hyperdiploid ALL, making the diagnosis of this
favorable genetic subtype relatively easy.9

RiskStratification and Treatment Based on Leukemia Cell Genotypes
On the basis of the aforementioned discoveries, the St. Jude ALL Study “Total Therapy XI”
(1984–1988) became the first treatment protocol in which genetic features (the presence of
chromosomal translocations or hyperdiploidy) were used to assign patients to risk-directed
treatments (higher-risk patients received more aggressive therapy).10

Recognizing the favorable prognostic significance of the ETV6-RUNX1 fusion (also known
as TEL-AML1),11 we used this genetic abnormality in our subsequent Total Therapy
XVprotocol (2000–2007) to identify patients with a low risk of relapse to receive standard
(less aggressive) therapy, with subsequent treatment intensified in a small subset that
continued to have minimal residual disease (submicroscopic leukemia in the bone marrow,
detected by flow cytometry or PCR) at the end of 6 weeks of remission induction therapy.12

In this same protocol (Total XV), the presence of a Philadelphia chromosome containing the
BCR-ABL1 fusion, once associated with a dire prognosis, was used together with poor
treatment response to remission induction as determined by minimal residual disease level to
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identify patients to receive allogeneic hematopoietic stem cell transplantation, and more
recently to receive an ABL tyrosine kinase inhibitor (e.g., imatinib).13

Optimal use of existing antileukemic agents, more precise risk classification, and improved
supportive care have brought the 5-year survival rate of childhood leukemia to >85%. The
majority of US children with ALL receive contemporary therapy according to frontline
studies at St. Jude or the Children’s Oncology Group, which largely parallel the risk
stratification and treatment parameters of the St. Jude protocols. Only St. Jude protocols use
preemptive thiopurine methyltransferase (TPMT) genotyping for all patients, but the
Children’s Oncology Group studies include guidelines for using TPMT status for dosing
mercaptopurine (MP), although this is currently at the clinician’s discretion. By
individualizing therapy based on prognostic factors, the 5-year overall survival rate observed
in the St. Jude XV study (93.5%) compares favorably with those achieved in other
contemporary pediatric ALL trials worldwide (Table 1). This advancement in survival rate
has occurred despite the fact that there have been no new frontline antileukemic drugs
approved in the past 50 years, except for tyrosine kinase inhibitors, which are used in a
small minority of patients as frontline therapy (~2–3% of patients)13, and clofarabine, which
is used to treat infants with ALL (~1% of patients).14

Acquired (somatic)and inherited (germline)DNA variation can alterthe
pharmacokinetics and pharmacodynamics of antileukemic agents

From early studies showing that pharmacokinetic variability could influence treatment
outcome in ALL,15 we sought to understand why there were such large differences (greater
than 5-to 10-fold) in both the systemic and intracellular (leukemia cell) pharmacokinetics
and pharmacodynamics of antileukemic agents in children. We and others found many
sources of variation, some environmental (e.g., hydration, drug interactions) and some
genetic.16 Here, we focus on two examples of the latter, using two medications that every
child with ALL receives (methotrexate (MTX) and mercaptopurine (MP)).

The intracellular levels of the active form of MTX (MTX polyglutamates) were found to
vary 10-fold in leukemia cells across a population of children given the same intravenous
dosage of MTX (1μg/m2), with significant differences among specific genetic subtypes of
ALL; genome-wide analyses revealed distinct genomic mechanisms for these subtype
differences.17 We now use higher doses of MTX in patients with T-lineage ALL and B-
lineage ALL with the t(1;19) and TCF3-PBX1 fusion, and lower doses in patients with
hyperdiploid ALL who avidly accumulate MTX-polyglutamates in their leukemia cells.17,18

We have more recently identified germline polymorphisms in SLCO1B1 that significantly
influence MTX systemic clearance and alter the risk of gastrointestinal toxicity.19,20

The relation between inherited polymorphisms in TPMT and the metabolism and
hematopoietic toxicity of MP became a focus of our work after we encountered patients who
experienced severe hematopoietic toxicity whenever treated with MP.21,22 Building on early
work from the Weinshilboum lab,23 we identified three inherited single-nucleotide
polymorphisms that define the major variant alleles associated with inherited TPMT enzyme
deficiency.24,25,26 Patients who inherit one or two of these variant alleles are at significantly
higher risk of hematopoietic toxicity27 but could be safely treated with reduced doses of
MP.16 On the basis of this strong association we now preemptively genotype all ALLg
patients for TPMT before their first dose of MP, and adjust their MP dosages accordingly
(e.g., a 10-fold dose reduction for patients inheriting two variant TPMT alleles).

We have more recently found that de novo sensitivity of ALL cells to prednisolone,
vincristine, asparaginase, or doxorubicin is related to the expression of 20–40 genes (per
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drug) in ALL cells, and that their expression pattern is drug specific and predictive of
treatment outcome.28 Moreover, multidrug cross-resistance (two or more drugs) was related
to the expression of a different set of genes and identified patients at the highest risk of
relapse.29 Ongoing studies aim to elucidate the mechanisms responsible for these differences
in gene expression (e.g., DNA methylation, microRNA expression, DNA copy-number
variations, single-nucleotide polymorphisms) and to develop strategies for overcoming
resistance by targeting one or more of these genes.

In 2007 we implemented a routine clinical genotyping test for cytochrome P450 2D6
(CYP2D6), a polymorphic gene involved in the metabolism of codeine (a prodrug) to
morphine; hence, the efficacy and safety of codeine have been shown to be influenced by
CYP2D6 polymorphisms.30,31 We genotype patients to identify CYP2D6 poor metabolizers
because these patients are at high risk for a lack of response to codeine, and many of our
patients require codeine during the course of their ALL therapy.32 Likewise, we identify
patients with a duplication of functional CYP2D6 alleles and alert clinicians at the time of
ordering that such patients may be “ultrarapid metabolizers” of drugs metabolized by
CYP2D6 and that these patients are at high risk for toxicity with “normal” doses of codeine.

For many years, our group has used single-gene tests for TPMT and CYP2D6 to
preemptively guide clinical prescribing decisions for thiopurines and codeine,
respectively.33,34 Because there are some inherent disadvantages (e.g., high expense and
long turnaround time) associated with determining genotypes one gene at a time, more
recently we have begun preemptive array-based pharmacogenomic testing of >200 genes on
a single array.4 Unlike single-gene testing, array-based preemptive testing can include a
large number of relevant genes that cover many “high-risk” drugs that may be prescribed to
a patient over the course of his or her lifetime, and its relatively low cost makes it feasible
for every patient entering the health-care system. Making these genotypes available prior to
any prescribing decision is consistent with our vision that patient genomes will be
considered in every prescribing decision as an inherent patient characteristic, as are gross
patient characteristics such as renal and liver function.

Genome-wide Analyses to Identify New Genotypes and Novel Treatment
Targets

With the advent of high-resolution genome-wide analyses, we performed some of the first
studies of gene expression,35 DNA copy-number alterations,36 and next-generation whole-
genome and whole-transcriptome sequencing3 in childhood ALL, providing new insights
into leukemogenesis, drug resistance, and potential novel treatment targets. We and others
observed that IKZF1 alteration is a hallmark of two high-risk ALL subtypes: Philadelphia
chromosome (BCR-ABL1)-positive ALL37 and a new subtype termed “BCR-ABL1-like”
ALL.38,39 Among genetic abnormalities identified in BCR-ABL1-like cases, EBF1-PDGFB
or NUP214-ABL1 fusions responded to ABL tyrosine kinase inhibitors (which also inhibit
PDGFB), and BCR-JAK2 or mutated IL7R responded to a JAK2 inhibitor in preclinical
studies.40 In separate analyses, we and others found rearrangement of CRLF2 in up to 8% of
childhood ALL and more interestingly in ALL cells of 50–60% of patients with Down
syndrome.41,42 In patients with or without Down syndrome, approximately 50% of cases
with CRLF2 rearrangements harbor concomitant activating mutations in the Janus kinase
genes JAK1 or JAK2, findings leading to a Children’s Oncology Group phase I clinical trial
of a JAK inhibitor (ruxolitinib). Whole-genome analysis has also disclosed the mutational
spectrum and global transcriptional profile in early T-cell precursor ALL, a recently
discovered subtype of T-cell ALL, similar to those of myeloid leukemia.43 To this end, the
identification of histone-modifying genes in early T-cell precursor ALL43 and relapsed ALL
cases44 suggested that epigenetic therapy may also play a role in the treatment of ALL in
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future clinical trials. We expect that future studies will further improve the ALL cure rate by
discovery of new molecular lesions, coupled with the development of novel targeted
treatment through high-throughput genomics and contemporary drug-screening systems.

Therefore, what was once considered a single disease, “ALL”, is now known to comprise
numerous subtypes when defined at the genetic level. Of note, every major treatment center
for childhood ALL now uses these somatic DNA alterations in ALL cells as diagnostics to
determinethe treatment regimen for a child with ALL. These genetic diagnostic tests will
become ever more comprehensive as new primary and cooperative genetic abnormalities
with prognostic and therapeutic relevance are discovered. Furthermore, ongoing genomic
studies are certain to lead to additional novel targeted therapies that are more effective and
less toxic than conventional chemotherapy.

Developing decision support in the Electronic Health Record
With the burgeoning amount of genomic data and the complexities of translating the data in
specific clinical situations, it will be difficult (if not impossible) for clinicians to remain
cognizant of all the genotype–phenotype associations that alter drug effects. In addition,
germline pharmacogenomic test results differ from other test results because they have
lifelong implications. It is plausible that a pharmacogenomic genotype could be diagnosed
many decades before a person is prescribed a medication that is affected by this trait. For
this reason, it is essential to deliver genomic information and guidance to clinicians at the
point and time of care.45 As implementation of genomics into routine clinical practice
progresses, results must be both available statically in the medical record and provided
actively as alerts to clinicians at the point of care. To this end, we have instituted both
passive clinical decision support such as result interpretations in our electronic health record,
and active rules and alerts that alert clinicians only when a high-priority genotype and a
prescription for a high-risk medication are both present.4,46

Conclusions
Today, approximately 90% of children with ALL can be cured with current therapy (Figure
2). Yet better treatment is needed for all children, the 10% who are not cured and the 90%
who are cured with cytotoxic drugs that are associated with substantial toxicities. Genomics
has played an important role in advancing ALL cure rates over the past 25 years and
likewise holds promise to radically change the nature of ALL treatment over the coming
decade by leading to more targeted medications and by providing diagnostics that will guide
the dosage and schedule of medications for each patient. We envisage the day when the
entire cancer and germline genomes of every ALL patient will be sequenced at the time of
diagnosis and used along with epigenetic variation to select the optimal treatment for each
child (until germline genomes are routinely sequenced early in life, we will have to sequence
both genomes in each cancer patient).3 Because most cancers have various subclones, the
ultimate genomic interrogation would be single-cell DNA sequencing. Interrogation of
epigenetic variations will also be increasingly important. Continuing advances in
technologies for assessing genome variation (e.g., DNA sequence, epigenetic changes,
messenger RNA and microRNA expression) coupled with lower cost and greater availability
will eventually make assessment of genome variation the principal diagnostic workup of
cancer patients. This, coupled with the discovery and development of additional agents that
target mutations underlying human cancers, will lead to greater individualization of cancer
treatment. Medications will no longer be selected primarily based on the tissue of origin of
the cancer (lung, liver, leukemia); instead, they will be based on the major mutations found
in each patient’s cancer cells, regardless of tissue of origin. For this to become a reality, we
need better and cheaper technology for genomic characterization, better tools for analyzing
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genomic data and translating it into actionable findings, and more medications that are
targeted to the mutations driving a larger spectrum of human cancers.

Our institution is fully committed to both the discovery and translation of genomics as a way
to improve treatment of all childhood cancers, seeing the additional short-term expenses as
merely a down payment on more cost-effective treatments of the future. For those who think
that one day the switch will be flipped and genomic medicine will be a reality, it is not going
to happen that way. Rather, this will occur in a stepwise fashion over time (as illustrated
here for ALL); those who sit and wait run the risk of looking back one day and seeing that
the genomic medicine “train” left the station years ago, without them. Now is the time to
come aboard.
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Figure 1.
A time line of discovery and clinical implementation of genomics to advance treatment of
childhood ALL. A (orange): corresponds to time line for studies Total XI–XII in Figure 2; B
(purple): corresponds to time line for studies Total XIII–XIV in Figure 2; C (blue):
corresponds to time line for study Total XV in Figure 2; D (green): denotes future clinical
use of genomics. ALL, acute lymphoblastic leukemia; SNP, single-nucleotide
polymorphism; TPMT, thiopurine methyltransferase.
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Figure 2.
Kaplan–Meier analysis of treatment outcome (survival) for children enrolled in successive
clinical trials at St Jude Children’s Research Hospital between 1962 and 2007. Advances in
the cure rate of childhood ALL have occurred over this time period despite the introduction
of only one new antileukemic agent (imatinib was developed for Philadelphia chromosome
(BCR-ABL1)-positive ALL, which constitutes only 3% of childhood ALL cases). Better
supportive care has been important (e.g., new antibiotics, new antifungals, and better
diagnostics). However, genomics has played an important role in determining the optimal
treatment based on both somatic and germline DNA variation. A: institution of use of
chromosomal number (or DNA content) and translocations to guide therapy;B:
implementation of TPMT genotype to dose mercaptopurine; C: institution of the use of the
presence of Philadelphia chromosome (BCR-ABL1) to guide treatment, preemptive
genotyping, and clinical decision support; D: use of next-generation sequencing for
discovery (2010), clinical sequencing begins (2013). Numbers on the curves denote overall
survival rates at 5 years. ALL, acute lymphoblastic leukemia; TPMT, thiopurine
methyltransferase.
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