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Abstract

Bioactive peptides and peptidomimetics play a pivotal role in the regulation of many biological processes such as cellular
apoptosis, host defense, and biomineralization. In this work, we develop a novel structural matrix, Index of Natural and Non-
natural Amino Acids (NNAAIndex), to systematically characterize a total of 155 physiochemical properties of 22 natural and
593 non-natural amino acids, followed by clustering the structural matrix into 6 representative property patterns including
geometric characteristics, H-bond, connectivity, accessible surface area, integy moments index, and volume and shape. As a
proof-of-principle, the NNAAIndex, combined with partial least squares regression or linear discriminant analysis, is used to
develop different QSAR models for the design of new peptidomimetics using three different peptide datasets, i.e., 48 bitter-
tasting dipeptides, 58 angiotensin-converting enzyme inhibitors, and 20 inorganic-binding peptides. A comparative analysis
with other QSAR techniques demonstrates that the NNAAIndex method offers a stable and predictive modeling technique
for in silico large-scale design of natural and non-natural peptides with desirable bioactivities for a wide range of
applications.
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Introduction

Naturally occurring bioactive peptides such as amyloid peptides,

antimicrobial peptides, cell penetration peptides, and fusion

peptides play various biological roles (e.g. hormones, enzyme

substrates and inhibitors, neurotransmitters, drugs and antibiotics,

and self-assembly building blocks) in regulating various biological

processes and metabolisms [1–3]. Due to peptidic nature, most of

these native peptides suffer from poor bioavailability and poor

proteolytic stability, which greatly limit their in vitro and in vivo

applications. To address these limitations, using the existing

peptides as structural templates and high-throughput screening

approaches together with combinatorial library and analogue

chemistry synthesis have been widely used to brute-force search

and systematically design new stable and active peptide mimetics

[4]. Such approaches enable (i) to explore a vast population of

diverse chemical and biochemical sequences from other protein/

peptide families to increase sequence diversity and (ii) to introduce

non-natural, D-amino acids, or b-amino acids to improve

proteolytic stability [5,6]. The obtained potent peptide mimetics

usually have similar backbone structures to their original peptide

templates, but with key functional residues being modified for

improving biological or physiochemical properties, metabolic

stability, and sequence diversity and accessibility [7].

Cell-phage and mirror-phage approaches in combination with

mutationgenetics are powerful high-throughput techniques to

screen and identify active peptides and to construct combinatorial

synthetic peptide libraries. These approaches have produced a

number of FDA-approved peptide-based drugs including ACE

inhibitors, HIV protease inhibitors, and cancer immunotherapeu-

tics [3,8]. Another common structural-assisted design approach

lies in the replacement of individual amino acids with non-natural

amino acids or specific structural motifs to iteratively optimize

designs [7,9]. The inclusion of the non-natural amino acids (e.g.

isosteric replacements, cyclic peptide derivatives, and bond

surrogates) [10] and/or the specific structural motifs (e.g. b-turn,

helices, and b-sheets) [11] in the first-generation mimetics is

expected to induce conformational changes of backbones and/or

side chains, and thus to yield favorable bindings to targets. As the

design process continuously proceeds to next generations, amine

variants, side chain lengths, and conformational constraints can be

further optimized to achieve desirable activity. However, given a

large number of undetermined compounds and the limited

synthesis/purification/characterization ability by experiments, it

is almost infeasible to conduct a large-scale search for both

sequences and structures in a complete sequence space [12]. In

addition, such brute-force and high-cost screening methods would

be tedious, prone to experimental errors, and require tremendous

expense. More importantly, these experimental screening ap-

proaches provide little structural and binding information of
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designed peptides, which often lead to irrational design and many

inactive compounds.

Complement to experimental screening approaches, computa-

tional virtual screening methods including quantitative structure-

activity relationship (QSAR) and molecular docking provide

valuable alternatives for rapidly screening and selecting potent

compounds. More importantly, computational screening methods

strive to illustrate structural, dynamic, and binding information at

an atomic level, making it necessary for the better understanding

of sequence-structure-activity relationship and design principles

for peptides mimetics. The QSAR is currently an important

contributor to rational design of drugs, materials, catalysts, and

proteins/peptides with desirable activities and functions [13–17].

The underlying hypothetical principle of QSAR models is to

define mathematical relationships between a set of molecular

descriptors and a given activity (chemical, physical, or biological

activity) as an end point, to predict the activity of unknown ligands

[18–29]. In the past decades, a number of 2D-QSAR models for

peptides have been developed [14,22,24,30–32]. Most of the 2D-

QSAR models use local descriptors, e.g. structural and property

parameters, orthogonal binary codes, and principal properties,

etc., to sequentially characterize the sequence and 2D chemical

structure, of peptides based on their amino acid compositions and

positions. Principal component analysis and factor analysis are

often used to extract useful structural information from the

original parameter matrix of amino acids. As actual spatial

structural features (e.g. isotropic surface area, solvent-accessible

surface area, electronic charge index, secondary structural

population, etc.) of the ligands are well characterized [20,33],

the 3D-QSAR methods (e.g. CoMFA and CoMSIA) [34–36]

generally have a better prediction in ligand design than the 2D-

QSAR methods. However, in most cases, 3D atomic structures of

the ligands in the dataset are often not available experimentally;

thus structural homology modeling is required to predict 3D

structures for conformational alignment and structural parame-

terization. Due to the lack of reliable 3D structures of ligands or

misrepresented bioactive conformers, several studies have reported

that 2D descriptors, if appropriately selected, are actually superior

to 3D ones [37–39]. Additionally, high-dimensional QSAR

models usually require more structural information to construct

the structure-activity relationship, e.g. the conformational profile

of ligands for 4D-QSAR [40], the receptor-induced fit mode for

5D-QSAR [41], and solvation model for 6D-QSAR [42]. As

compared with those high-dimensional QSAR models, the 2D-

QSAR descriptors could be more amenable to interpret some key

structural features of small ligands without requiring more

undetermined conformations.

Rapid development and considerable progress have been made

to develop different QSAR models to produce more active

peptides and to better understand the mechanism of their actions.

However, most of the existing QSAR methods for peptide design

focus on the characterization of natural amino acids, but pay less

attention to non-natural amino acids [31,32]. On one hand,

inadequate data of non-natural amino acids provide rather limited

selection for structural modification and render the uncertainty of

predictive performance. On the other hand, recent progress

enables to simultaneously encode hundreds of different non-

natural sidechains in the same organism [43]. Another important

progress is that the recently constructed SwissSidechain database

[44] contains molecular and structural data for 210 non-natural

alpha amino acid sidechains, both in L- and D-conformations. Yet

it still remains a very challenging task to accurately describe non-

natural amino acids by QSAR models to date.

In our previous work [24], we have developed a new 2D-QSAR

index of factor analysis scales of generalized amino acid

information (FASGAI) to characterize natural peptides. The

FASGAI method clusters 335 physicochemical properties of each

of 20 natural amino acids into 6 factors of hydrophobicity, alpha

and turn propensities, bulky properties, compositional character-

istics, local flexibility, and electronic properties, which can be

generally used to characterize any given peptide. The FASGAI

method has successfully predicted the activity of a variety of

peptides, including the inhibitory activity of HIV type 1 protease

[45], the binding affinity between the human amphiphysin-1 SH3

domains and designed ligands [46] and between MHC class I and

binding peptides [14]. To continue developing peptide mimetics,

here we developed a novel structural matrix, Index of Natural and

Non-natural Amino Acids (NNAAIndex), to systematically char-

acterize a total of 155 physiochemical properties of 22 natural and

593 non-natural amino acids. We then developed different QSAR

models to design peptide mimics for three different classes of

bitter-tasting dipeptide (BTD), angiotensin-converting enzyme

(ACE) inhibitors, and inorganic-binding peptides with a specific

activity in silico.

Materials and Methods

NNAAIndex Characterization
We first computed a total of 384 physicochemical properties of

22 natural amino acids and 593 non-natural amino acids (http://

www.sigmaaldrich.com/chemistry/) using E-dragon [47] and

MOE programs [48]. Then we applied tentative exploratory

factor analysis to quantify the perceived structural features, which

guide to identify 155 out of 384 properties, involving topological

descriptors, physical properties, subdivided surface areas, Kier&-

Hall connectivity and Kappa shape indices, pharmacophore

features, partial charge, surface area, volume and shape,

conformation dependent charge, geometrical descriptors, etc., to

characterize the key structural features of 615 amino acids. Among

155 properties, some of them may be coupled or inter-correlated.

Thus, to improve the data interpretability, principal component

method with a Kaiser normalized promax algorithm was used to

identify and cluster a subset of numerical variables to map out the

entire constellation of 155 highly intercorrelated physiochemical

properties. The factor analysis method produced 6 new factor

scores, which accounted for ,82.70% variance of 155 variables

based on the relationship between component number and

eigenvalues. The 6 factor vectors, named as NNAAIndex, account

for most of structural information of the 155 properties, so they

can be used to represent the structural features of peptides. Since

each natural or non-natural amino acid is represented by 6

NNAAIndex factors, the sequence and structural features of any

peptide can be characterized by simply constructing a 66n

NNAAIndex matrix, where n is the number of amino acids.

Structural Feature Selection
A genetic arithmetic-partial least square method (GA-PLS) [49]

was used to select the variables related to their structural

attributions of the peptides studied. In the GA-PLS, the

chromosome and its fitness in the species corresponded to a set

of variables and the internal prediction ability of the derived PLS

model, respectively. The fitness of each chromosome is evaluated

by the internal prediction ability of the PLS model derived from a

binary bit pattern. The internal predictive performance of the

model is expressed by a cross validation square of cumulative

multiple correlation coefficient (R2) value (denoted by Q2) and

validated by the leave-one-out (LOO) procedure as follows:

A New Set of Descriptors for Amino Acids
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Q2~1{
Xn

i~1

(yi{ŷyi)
2

,Xn

i~1

(yi{�yy)2 ð1Þ

where yi and ŷyi represents the observed value and the predicted

value of the dependent variable, respectively; �yy is the mean

observed value of the dependent variable; n is the total number of

samples. The empirical parameters in the GA-PLS method were

set as follows: the number of populations was 200, the maximum

number of generations was 200, the generation gap was 0.8, the

crossover frequency was 0.5, and the mutation rate was 0.005.

Partial Least Squares (PLS)
To validate the predictive statistical model, PLS regression was

used to correlate variations in the biological activities with

variations in the respective descriptors for a given data set. The

PLS is particularly well suited to analyze biological data because

the algorithm can handle noisy or collinear signals [50–53]. In

PLS regression, a matrix of independent variables was regressed

against a dependent matrix as described below. The optimal

number of principal components (PCs), corresponding to the

smallest standard error of prediction, was determined by the LOO

cross-validation procedure, which yields a cross-validated Q2 to

measure the predictivity of the PLS model. Using the optimal

number of PCs, the final PLS analysis was carried out without

cross-validation to generate a predictive QSAR model with a

conventional R2. The PLS regression algorithm consists of an

outer relation (X and Y block individually) and an inner relation

linking both X and Y blocks:

xik~
XA

a~1

tiapakzeik ð2Þ

yim~
XA

a~1

uiacamzgim ð3Þ

where the t and u latent variables are correlated through the inner

relation given below, which leads to the estimation of the y from

the x.

ûu~bt ð4Þ

Linear Discriminant Analysis (LDA)
LDA realizes the process that how objects will be classified

according to many observed samples. The basic theory of LDA is

to classify the dependent by dividing an n-dimensional descriptor

space into two regions (two classes), which are separated by a

hyperplane defined by a linear discriminant function as follows:

Y = a0+a1X1+a2X2+…+anXn, where Y is the dependent variable,

X1, X2, …Xn represents the independent variable (observed

values), a1, a2,…an corresponds to weights associated with the

respective independent variable, which is discriminant coefficients.

Independent variable space is divided into two regions through the

hyperplane, then to discriminate which region each compound

belongs to. As inputs of the LDA model, the variables are chosen

according to F value of partial F test, i.e. the variable is accepted

by the model when F value is greater than 3.84, but rejected when

F value is less than 2.71.

Results and Discussion

Physicochemical Representation of NNAAIndex Model
It is generally accepted for the Anfinsen’s dogma that the native

structures and biological functions of peptides or proteins are

determined by their primary amino acid sequences [54]. Here, we

first selected a total of 155 properties, including topological

descriptors, physical properties, subdivided surface areas, Kier and

Hall connectivity and Kappa shape indices, pharmacophore

features, partial charge, surface area, volume and shape,

conformation dependent charge, geometrical descriptors, etc., to

characterize the structural features of 615 non-natural amino

acids. Considering that a large matrix containing much redundant

information is not suitable for characterizing the structural and

sequence properties of peptides and proteins, we used the promax

algorithm with Kaiser normalization to further cluster 155

variables into 6 independent factors. The 6 factor scores (Table

S1) accounted for ,82.70% structural information of 155

variables.

To explore the physicochemical meaning of 6 factors, we

summarized the loading and communality of 155 variables in

Table 1. The first factor is designated as a geometric index. The

parameters related to 3D-Wiener index, Wiener-type index from

electronegativity weighted distance matrix, and Z weighted

distance matrix, hyper-detour index, Gutman molecular topolog-

ical index, centralization, D/D index, Schultz molecular topolog-

ical index, Wiener W index, etc., produce positive loading on the

first factor; while the parameters, concerned with log of the

aqueous solubility, folding degree index, mass density, total

structure connectivity index, spherosity, Balaban-type index from

electronegativity and mass weighted distance matrix, etc., have

negative loading on this factor.

The second factor mainly represents as an H-bond index. The

parameters, e.g. H-bond donor capacity, hydrophilic volume,

hydrophilic-lipophilic, number of hydrogen bond donor and

acceptor atoms, etc. have large positive loading coefficients; while

the parameters, e.g. log of the octanol/water partition coefficien-

t(including implicit hydrogens), Ghose-Crippen and Moriguchi

octanol-water partition coeff.(logP), asphericity, number of hydro-

phobic atoms, approximation to the sum of VDW surface areas of

hydrophobic atoms, solvation energy, surface rugosity, van der

Waals component of the potential energy, aromaticity index, etc.

have large negative loading coefficients.

The third factor is a connectivity index, which is a set of

miscellaneous descriptors related to molecular size, shape, and

branching. Generally, the larger the connectivity index is, the

larger the corresponding molecular size and branching are. Here,

the third factor refers to the variables with high positive

coefficients of Narumi harmonic topological index, Narumi

geometric topological index, folding degree index, path/walk 5-

Randic shape index, quadratic index, Narumi simple topological

index (log), all-path Wiener index, unsaturation index, aromaticity

index, etc. Conversely, the third factor also involves the variables

with large negative loading coefficients on Balaban centric index,

3D-Balaban index, Balaban distance connectivity index, Balaban’s

connectivity topological index, Balaban-type index from mass

weighted distance matrix, etc.

The fourth factor belongs to an index of accessible surface area.

It basically represents water accessible surface area of all polar

atoms, water accessible surface area of all atoms with negatively

and positively partial charges, charge weighted surface area, dipole

moment calculated from the partial charges of the molecule, etc.

The variables vary inversely with the number of hydrogen-bond

donor atoms, approximation to the sum of VDW surface areas of

A New Set of Descriptors for Amino Acids
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Table 1. Loading and communality of 155 variables on 6 factors.

No. Property Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality

1 First Zagreb index M1 0.798 0.018 0.127 20.015 20.004 20.146 0.992

2 Second Zagreb index M2 0.776 0.010 0.156 20.008 20.010 20.211 0.989

3 Quadratic index 0.582 20.060 0.294 20.013 0.002 20.409 0.949

4 Narumi simple topological index (log) 0.774 0.066 0.255 20.011 20.017 20.072 0.991

5 Narumi harmonic topological index 0.204 0.089 0.787 20.020 20.016 0.001 0.918

6 Narumi geometric topological index 0.165 0.056 0.759 20.029 0.004 20.072 0.929

7 Total structure connectivity index 20.347 20.038 20.297 0.059 20.010 20.059 0.936

8 Pogliani index 0.822 0.068 0.025 20.014 20.004 20.022 0.992

9 Ramification index 0.658 20.082 20.111 20.018 0.027 20.352 0.932

10 Polarity number 0.794 20.021 0.027 20.003 20.031 20.239 0.978

11 Log of product of row sums (PRS) 0.904 0.046 0.058 20.006 20.003 20.010 0.997

12 Average vertex distance degree 0.991 0.042 0.067 20.002 0.018 0.072 0.996

13 Mean square distance index (Balaban) 20.204 20.043 20.059 0.074 20.041 0.761 0.946

14 Schultz molecular topological index (mti) 1.119 0.027 0.093 0.015 0.015 20.086 0.990

15 Gutman molecular topological index 1.122 0.034 0.115 0.017 0.008 20.096 0.989

16 Xu index 0.782 0.053 0.059 20.023 20.001 0.075 0.995

17 Superpendentic index 0.799 20.051 20.265 20.012 0.027 0.036 0.975

18 Wiener W index 1.118 0.021 0.066 0.014 0.022 20.073 0.989

19 Mean Wiener index 0.768 0.053 0.044 20.020 0.017 0.392 0.988

20 Harary H index 0.835 0.032 0.102 20.007 20.017 20.135 0.993

21 Quasi-Wiener index (Kirchhoff number) 1.110 0.037 0.038 0.007 0.038 20.062 0.983

22 Detour index 1.094 20.020 0.157 0.027 20.012 20.141 0.978

23 Hyper-detour index 1.122 20.055 0.191 0.030 20.014 20.126 0.929

24 Reciprocal hyper-detour index 0.834 0.122 20.330 20.013 0.033 0.069 0.974

25 Distance/detour index 1.028 0.077 20.063 0.000 0.023 20.050 0.975

26 All-path Wiener index 0.985 20.041 0.245 0.051 20.065 20.157 0.844

27 Wiener-type index from Z weighted distance matrix (Barysz matrix) 1.129 0.015 0.064 0.008 0.019 20.056 0.986

28 Wiener-type index from van der Waals weighted distance matrix 1.105 0.039 0.048 0.003 0.043 20.056 0.986

29 Wiener-type index from electronegativity weighted distance matrix 1.131 0.019 0.060 0.006 0.026 20.070 0.986

30 Wiener-type index from polarizability weighted distance matrix 1.098 0.040 0.045 0.005 0.041 20.046 0.984

31 Balaban distance connectivity index 20.127 0.053 20.925 20.008 0.000 20.146 0.968

32 Balaban-type index from mass weighted distance matrix 20.243 0.089 20.960 20.028 0.056 20.158 0.905

33 Balaban-type index from electronegativity weighted distance matrix 20.277 0.027 20.985 20.032 0.008 20.146 0.943

34 Maximal electrotopological positive variation 0.626 20.052 0.038 20.103 0.046 20.202 0.812

35 Molecular electrotopological variation 0.557 0.078 20.153 20.020 0.028 20.045 0.947

36 E-state topological parameter 0.827 0.015 20.240 20.003 0.091 20.092 0.854

37 Kier symmetry index 0.829 0.017 0.101 20.023 0.014 0.037 0.972

38 1-path Kier alpha-modified shape index 0.892 0.046 20.192 20.018 0.002 0.054 0.997

39 2-path Kier alpha-modified shape index 0.840 0.106 20.131 0.000 20.036 0.337 0.959

40 3-path Kier alpha-modified shape index 0.573 0.041 20.397 20.015 20.059 0.532 0.899

41 Kier flexibility index 0.785 0.086 20.296 0.002 20.038 0.388 0.955

42 Path/walk 5 - Randic shape index 0.027 0.040 0.341 20.078 20.115 20.176 0.795

43 Eccentric connectivity index 0.988 0.022 0.145 20.003 0.013 0.125 0.991

44 Eccentricity 0.987 0.017 0.101 20.003 0.018 0.154 0.991

45 Average eccentricity 0.738 0.006 0.116 20.016 0.011 0.500 0.981

46 Eccentric 0.649 20.092 0.137 0.006 20.015 0.711 0.914

47 Mean distance degree deviation 1.017 0.008 0.051 0.011 20.002 0.096 0.989

48 Unipolarity 0.965 0.028 0.086 20.007 0.027 0.156 0.989

49 Centralization 1.122 0.038 0.037 0.023 0.005 20.189 0.970

50 Variation 1.051 20.008 0.063 0.022 20.027 0.011 0.977
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Table 1. Cont.

No. Property Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality

51 Balaban centric index 0.628 20.105 20.659 0.009 0.046 20.066 0.930

52 Lopping centric index 0.203 0.050 20.122 20.031 0.151 0.727 0.817

53 Radial centric information index 0.544 20.035 0.176 20.012 20.030 0.627 0.934

54 Unsaturation index 0.102 0.034 0.237 20.079 0.065 0.082 0.893

55 Hydrophilic factor 0.022 0.352 20.186 20.172 20.103 0.093 0.874

56 Ghose-Crippen molar refractivity 0.854 20.006 0.038 20.023 20.013 20.043 0.991

57 Moriguchi octanol-water partition coeff. (logp) 0.072 20.263 0.068 20.056 20.137 20.266 0.887

58 Ghose-Crippen octanol-water partition coeff. (logp) 0.498 20.496 20.058 20.027 0.069 0.047 0.910

59 Verhaar model of Fish base-line toxicity from MLOGP 20.188 0.195 20.062 0.070 0.114 0.334 0.859

60 Sum of the atomic polarizabilities (including implicit hydrogens)
with polarizabilities.

0.929 20.032 0.022 20.028 20.017 20.036 0.992

61 Sum of the absolute value of the difference between atomic
polarizabilities of all bonded atoms in the molecule (including
implicit hydrogens) with polarizabilities.

0.937 20.041 20.103 20.049 20.005 0.007 0.911

62 Total charge of the molecule (sum of formal charges). 0.044 20.050 0.066 0.017 0.048 20.006 0.938

63 Molecular refractivity (including implicit hydrogens). This property
is an atomic contribution model

0.852 0.003 0.035 20.008 20.011 20.051 0.991

64 Molecular weight (including implicit hydrogens) in atomic mass
units with atomic weights.

0.765 0.103 20.019 20.001 0.007 20.090 0.962

65 Log of the octanol/water partition coefficient (including implicit
hydrogens)

0.313 20.440 20.017 20.077 20.289 20.080 0.829

66 Log of the aqueous solubility (mol/L). 20.564 0.208 0.077 20.073 20.083 0.062 0.920

67 Log of the octanol/water partition coefficient (including implicit
hydrogens).

0.481 20.573 20.048 0.058 0.007 0.091 0.901

68 Polar surface area (Å2) calculated using group contributions to
approximate the polar surface area from connection table
information only

0.282 0.488 20.165 0.089 0.003 0.025 0.930

69 Van der Waals volume (Å3) calculated using a connection table
approximation.

0.903 20.017 0.020 20.031 20.012 20.025 0.996

70 Area of van der Waals surface (Å2) calculated using a connection
table approximation.

0.895 0.033 20.119 20.021 0.001 0.005 0.993

71 Atomic connectivity index (order 0). This is calculated as the
sum of 1/sqrt(di) over all heavy atoms i with di.0.

0.850 0.035 20.038 20.016 0.000 20.028 0.996

72 Atomic valence connectivity index (order 0). This is calculated
as the sum of 1/sqrt(vi) over all heavy atoms i with vi.0.

0.887 20.003 20.044 20.009 0.004 20.078 0.988

73 First kappa shape index: (n-1)2/m2. 0.867 0.051 20.145 20.015 20.001 0.055 0.995

74 First alpha modified shape index: s (s-1)2/m2 where s = n+a. 0.881 0.046 20.241 20.003 0.025 0.019 0.969

75 Kier molecular flexibility index: (kiera1) (kiera2)/n. 0.705 0.073 20.343 0.020 20.015 0.313 0.907

76 Balaban’s connectivity topological index 20.136 0.051 20.926 20.009 0.000 20.147 0.969

77 Number of hydrogen bond acceptor atoms 0.373 0.627 0.039 20.068 20.050 20.073 0.845

78 Number of acidic atoms. 0.021 20.039 0.049 20.004 0.037 20.011 0.949

79 Number of hydrogen bond donor atoms 0.240 0.627 0.001 20.237 20.145 20.112 0.810

80 Number of hydrophobic atoms 0.806 20.252 0.078 20.026 20.020 20.007 0.980

81 Approximation to the sum of VDW surface areas of acidic atoms 0.022 20.039 0.051 0.002 0.039 20.018 0.945

82 Approximation to the sum of VDW surface areas of pure
hydrogen bond donors

20.085 20.027 20.182 20.211 20.160 20.010 0.758

83 Approximation to the sum of VDW surface areas of
hydrophobic atoms

0.869 20.240 20.083 20.053 20.014 0.013 0.974

84 Approximation to the sum of VDW surface areas (Å2) of atoms
typed as ‘‘other’’.

0.154 0.461 20.072 0.308 0.116 20.064 0.726

85 Approximation to the sum of VDW surface areas (Å2) of polar
atoms (atoms that are both hydrogen bond donors and acceptors),
such as -OH.

0.287 0.486 20.092 20.112 20.016 0.017 0.915

86 Value of the potential energy 0.259 0.070 20.099 0.134 0.011 20.193 0.869

87 Angle bend potential energy 0.185 20.048 20.140 0.106 20.107 20.072 0.713
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Table 1. Cont.

No. Property Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality

88 Value of the potential energy with all bonded terms disabled 0.337 0.066 20.085 0.103 0.032 20.155 0.823

89 Solvation energy 20.093 20.198 20.131 0.008 0.028 0.033 0.836

90 Bond stretch-bend cross-term potential energy 0.187 0.088 0.057 20.200 0.009 20.103 0.859

91 Local strain energy 0.183 20.021 20.032 0.150 20.022 0.024 0.811

92 Van der Waals component of the potential energy 0.579 20.147 20.062 0.003 20.094 20.118 0.889

93 Water accessible surface area calculated using a radius of 1.4
A for the water molecule. A polyhedral representation is used
for each atom in calculating the surface area.

0.820 0.060 20.005 20.026 0.018 0.146 0.987

94 Mass density: molecular weight divided by van der Waals volume
as calculated in the vol descriptor.

20.349 0.338 20.061 0.035 0.027 20.181 0.819

95 Van der Waals volume calculated using a grid approximation
(spacing 0.75 A).

0.915 20.005 20.004 20.024 20.002 20.019 0.996

96 Van der Waals surface area. A polyhedral representation is used
for each atom in calculating the surface area.

0.906 0.013 20.033 20.021 0.008 0.050 0.995

97 Amphiphilic moment 0.077 20.119 20.048 0.013 0.897 0.069 0.939

98 Hydrophobic volume (8 descriptors) 0.559 20.008 0.059 0.022 0.090 20.010 0.974

99 Hydrophobic volume (8 descriptors) 0.569 20.023 0.052 0.031 0.065 0.004 0.980

100 Hydrophobic volume (8 descriptors) 0.605 20.054 0.018 0.031 0.076 20.030 0.983

101 Hydrophobic volume (8 descriptors) 0.604 20.053 0.016 0.019 0.104 20.051 0.985

102 Hydrophobic volume (8 descriptors) 0.578 20.028 0.035 0.012 0.132 20.056 0.985

103 Hydrophobic volume (8 descriptors) 0.521 0.030 0.127 0.014 0.128 20.034 0.973

104 Hydrophobic volume (8 descriptors) 0.390 0.046 0.161 0.031 0.025 0.118 0.942

105 Hydrophobic volume (8 descriptors) 0.245 0.063 0.070 0.083 20.046 0.025 0.900

106 Lowest hydrophobic energy (3 descriptors) 20.150 0.021 20.051 20.149 0.023 0.216 0.853

107 Lowest hydrophobic energy (3 descriptors) 20.129 0.030 20.050 20.153 0.020 0.216 0.864

108 Lowest hydrophobic energy (3 descriptors) 20.107 0.004 20.049 20.151 0.012 0.213 0.868

109 Surface globularity 0.582 0.223 20.024 20.015 0.021 0.411 0.901

110 H-bond donor capacity (8 descriptors) 0.283 0.518 0.154 0.209 20.153 0.296 0.843

111 H-bond donor capacity (8 descriptors) 0.338 0.340 0.116 0.186 20.185 0.347 0.922

112 H-bond donor capacity (8 descriptors) 0.302 0.456 0.033 0.140 20.096 0.213 0.957

113 H-bond donor capacity (8 descriptors) 0.208 0.786 0.016 0.081 0.020 20.004 0.973

114 H-bond donor capacity (8 descriptors) 0.075 1.067 0.021 0.017 0.085 20.169 0.967

115 H-bond donor capacity (8 descriptors) 20.002 1.205 20.007 20.039 0.141 20.316 0.940

116 Hydrophilic-Lipophilic (2 descriptors) 20.223 0.808 20.057 20.042 20.117 20.102 0.883

117 Hydrophilic-Lipophilic (2 descriptors) 20.237 0.909 20.071 20.058 20.082 20.175 0.844

118 Hydrophobic integy moment (8 descriptors) 20.123 0.224 0.018 20.019 0.928 0.137 0.895

119 Hydrophobic integy moment (8 descriptors) 20.065 0.194 0.012 20.083 0.889 0.136 0.866

120 Hydrophobic integy moment (8 descriptors) 20.060 0.367 0.052 20.054 0.514 20.005 0.730

121 Hydrophilic integy moment (8 descriptors) 0.153 20.080 20.026 0.035 0.829 20.058 0.903

122 Hydrophilic integy moment (8 descriptors) 0.112 0.003 0.045 0.008 0.805 20.070 0.952

123 Hydrophilic integy moment (8 descriptors) 0.116 20.085 0.014 0.007 0.759 20.059 0.957

124 Hydrophilic integy moment (8 descriptors) 0.156 20.281 20.037 0.013 0.665 0.046 0.916

125 Hydrophilic integy moment (8 descriptors) 0.187 20.592 20.050 0.064 0.413 0.282 0.792

126 Surface rugosity 0.714 20.206 20.017 20.005 0.016 20.168 0.917

127 Interaction field surface area 0.820 0.047 20.011 20.004 0.022 0.137 0.987

128 Interaction field volume 0.876 0.000 20.011 0.000 0.016 0.054 0.995

129 Hydrophilic volume (8 descriptors) 0.666 0.258 0.076 0.046 20.068 0.280 0.978

130 Hydrophilic volume (8 descriptors) 0.507 0.312 0.063 0.067 20.161 0.365 0.966

131 Hydrophilic volume (8 descriptors) 0.369 0.438 20.014 0.086 20.116 0.229 0.969

132 Hydrophilic volume (8 descriptors) 0.254 0.730 0.001 0.030 20.009 0.067 0.978

133 Hydrophilic volume (8 descriptors) 0.123 1.014 0.017 20.012 0.061 20.114 0.975
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hydrogen bond donors, bond stretch-bend cross-term potential

energy, spherosity, aromaticity index, hydrophilic factor, lowest

hydrophobic energy, water accessible surface area of all hydro-

phobic atoms, etc.

The fifth factor refers to an integy moments index, which

measures the imbalance between the center of mass of a molecule

and the positions of hydrophilic or hydrophobic regions around

the mass center. The parameters with relatively large positive

loading on the fifth factor include hydrophobic integy moment,

amphiphilic moment, hydrophilic integy moment, and hydropho-

bic integy moment, etc.; while the parameters with relatively large

negative loading involve log of the octanol/water partition

coefficient, H-bond donor capacity, hydrophilic volume, approx-

imation to the sum of VDW surface areas of pure hydrogen bond

donors, etc.

The sixth factor is related to a volume and shape index. The

parameters with positive contributions to the sixth factor include

the sum of spherosity, spherosity, mean square distance index,

lopping centric index, eccentric, radial centric information index,

span R, 3-path Kier alpha-modified shape index, folding degree

index, and average eccentricity, etc.; while the parameters with

negative contributions to the sixth factor are Quadratic index,

ramification index, H-bond donor capacity, Hydrophilic volume,

polarity number, gravitational index G1, maximal electrotopolo-

gical positive variation, etc.

Taking together, once the scores of the 6 NNAAIndex factors

(i.e. geometric characteristics, H-bond, connectivity, accessible

surface area, integy moments index, and volume and shape) for

615 amino acids were determined, these scores can be used to

characterize structural features of any peptide, to predict and

design new peptides with desirable activity, along with other

modeling methods. As shown in Table 1, the averaged commu-

nality value for a total of 146 out of 155 variables is ,0.929 and

most of communality values are greater than 0.8, except for 9

variables, e.g. Path/walk 5-Randic shape index, approximation to

the sum of VDW surface areas of pure hydrogen bond donors,

approximation to the sum of VDW surface areas of atoms typed as

‘‘other’’, angle bend potential energy, hydrophobic integy

moment, hydrophilic integy moment, spherosity, asphericity,

folding degree index. This indicates that most variables are well

presented by all the factors jointly with a high degree of reliability.

Table 1. Cont.

No. Property Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality

134 Hydrophilic volume (8 descriptors) 0.020 1.188 20.004 20.050 0.126 20.310 0.943

135 Polar volume (8 descriptors) 0.696 0.123 0.035 20.020 20.026 0.230 0.963

136 Polar volume (8 descriptors) 0.497 0.176 20.010 20.072 20.080 0.255 0.910

137 Water accessible surface area of all atoms with positive partial
charge (strictly greater than 0).

20.080 20.009 0.037 0.959 20.025 0.026 0.833

138 Water accessible surface area of all atoms with negative partial
charge (strictly less than 0).

20.083 20.014 20.018 0.997 20.002 0.023 0.977

139 Water accessible surface area of all hydrophobic (|qi|,0.2) atoms. 0.826 0.061 20.004 20.151 0.019 0.142 0.987

140 Water accessible surface area of all polar (|qi|. = 0.2) atoms. 20.084 20.013 20.010 1.007 20.005 0.024 0.982

141 Positive charge weighted surface area, ASA+ times max. 20.063 0.002 0.017 0.996 20.011 0.004 0.914

142 Negative charge weighted surface area, ASA2 times max. 20.045 0.002 20.036 0.921 0.018 20.004 0.872

143 Dipole moment calculated from the partial charges of the molecule. 20.105 20.019 20.049 0.931 0.005 0.033 0.899

144 3D-Wiener index 1.166 20.074 0.007 20.018 20.001 0.022 0.973

145 3D-Balaban index 0.138 20.062 20.810 0.038 20.065 0.050 0.953

146 3D-Harary index 1.084 20.105 20.045 20.013 20.056 20.084 0.969

147 Average geometric distance degree 1.033 20.038 0.009 20.034 0.004 0.145 0.979

148 D/D index 1.121 20.079 20.006 20.015 20.026 20.018 0.978

149 Gravitational index G1 0.808 0.098 20.004 0.005 20.016 20.209 0.968

150 Span R 0.718 20.071 0.040 20.033 0.021 0.600 0.951

151 Spherosity 20.328 20.110 0.031 20.162 0.019 0.836 0.781

152 Asphericity 0.005 20.254 0.206 0.041 0.024 1.160 0.797

153 Folding degree index 20.519 0.010 0.464 20.019 0.158 0.512 0.762

154 Aromaticity index 20.030 20.126 0.236 20.165 0.052 0.186 0.819

155 HOMA total 0.310 20.025 0.229 20.075 20.017 20.031 0.892

doi:10.1371/journal.pone.0067844.t001

Table 2. The correlation coefficients among six factors.

No. Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Factor 1 1.000 0.324 0.097 20.004 0.247 0.382

Factor 2 0.324 1.000 20.358 0.241 20.251 0.306

Factor 3 0.097 20.358 1.000 20.076 0.173 20.128

Factor 4 20.004 0.241 20.076 1.000 20.232 20.017

Factor 5 0.247 20.251 0.173 20.232 1.000 0.178

Factor 6 0.382 0.306 20.128 20.017 0.178 1.000

doi:10.1371/journal.pone.0067844.t002
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Correlation and Difference among Six Factors of
NNAAIndex

Due to the peptidic nature, certain correlation could exist

between various attributes of natural amino acids and non-natural

amino acids. As an oblique solution, here we used a promax

algorithm with Kaiser Normalization to rotate the factors for

improving the interpretation ability of the factors obtained. The

correlation coefficients among the 6 factors are summarized in

Table 2. It can be seen that most of the correlations show a weak

or non- dependence on one another, as evidenced by very small

correlation values of ,0.4. However, a relatively significant

intercorrelation value of 0.382 was observed between the

geometric characteristics (the first factor) and the volume and

shape factor (the sixth factor). This is not surprising because the

volume and shape partially reflects the geometrical characteristics.

The characterization abilities of the 6 factor scores for 22

natural amino acids were assessed by 2- and 3-dimensional

distributions of 22 natural amino acids on the first 2 and the first 3

factors (Figure 1), respectively. It can be seen that 22 amino acids

are diversely distributed on the basis of hydrophobicity (polarity),

size, and electrostatic charge, e.g. the geometric score of the first

factor of Gly was less than that of other amino acids, simply

because the Gly is the only amino acid without side chain, which is

likely to minimize the potential steric hindrance upon interacting

with other amino acids. The second distinct character was the Pro,

a cyclic amino-acid, which can easily forms amide linkage with

carboxyl groups of other amino acids, resulting in a cis-peptide

bond that could influence its stability and steric conformation. It is

simply due to the remarkable characteristic that Pro is far from

other amino acids as shown in Figure 1.

Figure 2 showed that the score distribution of each NNAAIndex

factor for both 22 natural amino acids and 593 non-natural amino

acids. The scatter score distribution of 593 non-natural amino

acids was able to well cover the 22 natural amino acids, indicating

peptide mimetics can be specifically obtained by the structural

modification with non-natural amino acids. Upon establishment of

the 6 factor scores, we are able to apply the NNAAIndex method

to develop three predictive QSAR models to design peptide

mimics for three different types of BTDs, ACE inhibitors, and

inorganic-binding peptides, as follows.

NNAAIndex QSAR Model for BTDs
Taste, which is often classified into four types of sweet, bitter,

salty, and acid, plays a very important role in all mammals.

Among them, bitter taste and sensitivity help to protect humans

and organisms from being harmed by toxic substances [19]. A

dataset containing 48 bitter tasting dipeptides (BTDs) [55], which

has been widely used to test new structural characterization

method in many different QSAR models [18–27], was used to

train the NNAAIndex QSAR model. A total of 12 independent

structural-based descriptors for each BTD were determined using

the NNAAIndex scales, while the activity of these BTDs was

expressed by the negative logarithm of bitter-tasting threshold

concentrations (pT) as an end point [20] (Table S2). Both 12

structural-based descriptors and 1 activity-based end point were

used to build a QSAR model using PLS regression. The predictive

performance of the NNAAIndex QSAR model was measured by

the LOO cross-validated procedure and then compared with other

13 different 2D- and 3D-QSAR methods, including z-scales [18],

ISA-ECI [20], MS-WHIM [21], FASGAI [24], SZOTT [26], etc.

To achieve an objective comparison, we used the same training

dataset and modeling methods for all QSAR models. Final R2, Q2,

and root-mean-square (RMS) error values were listed in Table 3.

The results showed that the NNAAIndex/PLS model (entry 14)

achieved satisfactory R2 = 0.863 and Q2 = 0.765. The results of the

NNAAIndex/PLS model are comparable to or even superior to

the results as reported by most of 2D-/3D-QSAR methods/PLS

(Table 3). Upon removal of 7 redundant variables using the GA

algorithm, the predictive Q2 of the GA-PLS model (entry 15) was

improved from 0.765 (entry 14) to 0.830 by ,8.5%. Overall,

different approaches for the PLS and GA-PLS models show good

and consistent predictivity. Further comparison of Q2 values across

all QSAR models clearly shows that our NNAAIndex QSAR

models performed better than most of existing 2D and 3D-QSAR

models using 1 or 2 PCs.

To further validate the characterization ability of NNAAIndex,

we used k-means cluster analysis [56] to divide 48 BTDs into two

groups. Each group samples were sorted from low to high activity.

The 24 odd samples (i.e. the first, the third, the fifth, etc.) in each

group were selected for constructing a training set, which was used

to construct the QSAR model. The 24 even samples (i.e. the

Figure 1. The 2- and 3-dimensional distribution of 22 natural amino acids on the first 2 and 3 factors. The A and B present the 2- and 3-
dimensional distribution, respectively.
doi:10.1371/journal.pone.0067844.g001
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Figure 2. The difference of 22 natural amino acids and 593 non-natural amino acids on each factor. The A, B, C, D, E and F is the
difference for geometric characteristics, H-bond, connectivity, accessible surface area, integy moments index, and volume and shape, respectively.
doi:10.1371/journal.pone.0067844.g002

Table 3. The performance comparison among different QSAR models of BTDs.

No. Descriptors Data size Correlation methods Aa R2b Q2c RMSd

1 z-scales [18] 48 PLS 2 0.824 nd 0.260

2 GRID [19] 48 PLS 1 nde 0.780 nd

3 ISA-ECI [20] 48 PLS 2 0.847 nd nd

4 MS-WHIM [21] 48 PLS 3 0.704 0.633 nd

5 MS-WHIM(extended) [21] 48 PLS 3 0.754 0.710 0.320

6 VHSE [22] 48 PLS 3 0.910 0.816 0.200

7 MARCH-INSIDE [23] 48 PLS 3 0.858 nd 0.230

8 FASGAI [24] 48 PLS 3 0.886 0.723 0.220

9 FASGAI [24] 48 GA-PLS 3 0.907 0.848 0.198

10 FASGAI [24] 24/24f GA-PLS 2 0.936 0.761 0.172

11 3D-HoVAIF [25] 48 PLS 3 0.936 0. 849 nd

12 SZOTT [26] 48 PLS 2 0.908 0. 736 0.195

13 ST-SCALE [27] 48 PLS 5 0.855 0.774 0.400

14 NNAAIndex 48 PLS 2 0.863 0.765 0.238

15 NNAAIndex 48 GA-PLS 1 0.864 0.830 0.234

16 NNAAIndex 24/24f GA-PLS 2 0.898 0.772 0.198

aThe A is the number of principal component.
bThe R2 is the cumulative multiple correlation coefficient.
cThe Q2 is a cross validation square of cumulative multiple correlation coefficient by a leave-one-out procedure.
dThe RMS is the root mean square error of modeling simulation.
eThe nd shows that the correlative value is not given out.
fTwo numbers separated by slashes denote the number of samples in training and test sets, respectively.
doi:10.1371/journal.pone.0067844.t003
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second, the fourth, the sixth, etc.) as a test set were used to validate

the external predictive performance of the QSAR model. Table 3

shows that the Q2 and RMS for internal validation were 0.772 and

0.198 (entry 16), respectively, while the R2 and RMS for external

validation (Q2
ext) were 0.806 and 0.180, respectively. Although the

R2 of 0.898 in NNAAIndex/GA-PLS was slightly smaller than the

R2 of 0.936 in FASGAI/GA-PLS, the Q2 and Q2
ext in

NNAAIndex/GA-PLS were larger than those in FASGAI/GA-

PLS (Q2 = 0.761 and Q2
ext = 0.797 [24]), indicating that the

NNAAIndex/GA-PLS model has satisfactory external predictive

ability.

We also performed a response permutation (i.e. Y-randomiza-

tion response) test to assess the robustness of the NNAAIndex

QSAR model. Figure 3 displays the response permutation results

through 50-random-permutation tests for the GA-PLS model. The

interceptions of the R2- and Q2-regression lines with the ordinate

axis were 20.026 and 20.183, respectively, which were below the

limits of R2,0.300 and Q2,0.050 [57]. This is a clear evidence

that our model is not affected by any chance correlation, i.e. the

probability to obtain a similar or better model using random

numbers is zero, and it is likely to depict a true linear relationship

between the NNAAIndex descriptors and pT values.

Figure S1 shows the centered and scaled coefficients of the GA-

PLS model which are used to describe the extent of influence of 5

independent variables (integy moments index, and volume and

shape of the first residue, geometric characteristics, H-bond, and

integy moments index of the second residue) on the activity of

BTDs. A positive coefficient value indicates that the variable

prefers to improve the BTD activity, and vice versa for a negative

value. It can be clearly seen in Figure S1 that the 5th, 6th, 7th and

11th variables corresponding to integy moments index, and

volume and shape of the first residue, geometric characteristics

and integy moments index of the second residue have positive

coefficients, while only the 8th variable corresponding to H-bond

index of the second residue has a negative coefficient.

To enable the rational design of new peptidomimetics with high

bitter taste sensitivity, we developed an in-house C++ program to

map out amino acid preferences at different sequence positions

based on the GA-PLS coefficients (Figure S1), along with the

scores of 615 amino acids (Table S1). To obtain BTD

peptidomimetics with higher predictive activity, we alternatively

selected the first amino acid with the score of both integy moments

and volume and shape larger than 2.0, the second amino acid with

the score of geometric characteristics and integy moments larger

than 2.0, and H-bond less than 20.5. This design strategy led to

1178 new molecules with high potent predictive activity, and 613

out of 1178 new peptidomimetics (Table S3) achieved the higher

predictive activity than the 48 training peptides.

As a proof-of-concept, Figure 4 shows that 3 different designed

BTD mimetics (namely 206-108, 206-439, and 206-206) had

potential high activity. These three peptides were all derived from

the dipeptide (WW) by replacement of the first residue with the

206th non-natural amino acid and the second residue with the

108th, 439th, or 206th non-natural amino acid, respectively.

According to the relationship between the variables and the

activity of BTDs as discussed above, integy moments index of the

first residue, geometric characteristics and integy moments index

of the second residue contribute positively to the activity of BTDs.

The integy moments and volume and shape index of the 206th

molecule were 4.692 and 4.202 (Table S1), which are the largest

values in all 615 amino acids, respectively. The geometric

characteristics of the 106th, 437th, and 206th molecule were also

relatively large. By comparison with the structure of WW, we

observed that the activity of 3 newly designed peptide mimics was

greatly improved by substitution of two natural residues with non-

natural residues, which should be validated by future experiments.

NNAAIndex QSAR Model for ACE Inhibitors
Angiotensin-converting enzyme (ACE) inhibitors have been

used for over 30 years to treat cardiovascular diseases. In addition

to their antihypertensive effects, ACE inhibitors are now also

widely used for congestive heart failure, acute myocardial

infarction, and diabetic nephropathy [58]. However, ACE

inhibitor therapy may also cause some adverse effects including

dry cough [59] and activation of the renin-angiotensin system

[60]. To assess the structure-activity relationship of ACE

inhibitors, a dataset of 58 ACE inhibitor dipeptides as reported

by Collantes and Dunn [20] was used to build the second

NNAAIndex QSAR model for design of new ACE inhibitors. This

dataset has been often used as a model set to test and validate the

performance of different QSAR models [18–22,24,28,29]. In this

dataset, the dipeptide sequences were characterized by 12

NNAAIndex scores (i.e. each amino acid by 6 NNAAIndex

scores), with pIC50 values ranging from 1.77 to 5.80 as an end

point. The structures and bioactivity for the 58 ACE dipeptide

inhibitors are summarized in Table S4. To validate the predictive

performance of our NNAAIndex method, we collected the

modeling statistics from other 11 different QSAR models for

comparison (Table 4). The LOO cross-validated PLS analysis led

to R2 = 0.749 and Q2 = 0.719 using 2 PCs, which were comparable

Figure 3. Plot of the 50-random-permutation validation for the GA-PLS model of BTDs. The intercepts of the R2- and Q2-regression lines
with the ordinate axis are 20.026 and 20.183, which are below limits of R2,0.300 and Q2,0.050, respectively.
doi:10.1371/journal.pone.0067844.g003
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to those values from other QSAR/PLS methods in Table 4. To

further improve the quality of the NNAAIndex model, we used

GA to remove some redundant descriptors, resulting in the

improvement in both R2 = 0.803 and Q2 = 0.779 (entry 13,

Table 4). Consistent with the NNAAIndex model for the BTDs

as described above, the number of PCs used in the PLS analysis

has influence on the quality of the QSAR models. It appears that

the minimum number of PC yields the optimal results, due to the

minimization of data overfitting during the model training process.

Table 4 shows that the NNAAIndex/GA-PLS model had

relative higher Q2 than that of the NNAAIndex/PLS model.

Besides, the Q2 of the NNAAIndex/GA-PLS model was merely

smaller than 3D-HoVAIF [28] as a 3-dimentional structural

characterization approach and T-scale [29] as a topologically

structural characterization approach. This may provide some hints

to improve the characterization ability of the NNAAIndex model

by considering 3D structural and/or other topological information

in our future work.

Figure 4. The newly designed peptide mimetics for BTDs. The forty-sixth sample in training set, WW, is regarded as a template to design
molecules. The activity of WW, 206-108, 206-439 and 206-206 is 3.60, 9.78, 9.20, and 9.17, respectively.
doi:10.1371/journal.pone.0067844.g004

Table 4. The performance comparison among different QSAR models of ACE inhibitors.

No. Descriptors Data size Correlation methods Aa R2b Q2c RMSd

1 z-scales [18] 58 PLS 2 0.770 nde nd

2 GRID [19] 58 PLS 1 0.744 nd 0.500

3 ISA-ECI [20] 58 PLS 2 0.700 nd nd

4 MS-WHIM(rotameric) [21] 58 PLS 6 0.657 0.541 nd

5 MS-WHIM(extended) [21] 58 PLS 2 0.708 0.637 0.540

6 VHSE [22] 58 SMR-PLS 1 0.770 0.745 0.480

7 FASGAI [24] 58 PLS 1 0.760 0.728 0.495

8 FASGAI [24] 58 GA-PLS 1 0.796 0.775 0.456

9 FASGAI [24] 29/29f GA-PLS 1 0.869 0.835 0.357

10 3D-HoVAIF [28] 58 GA-PLS 3 0.857 0.811 0.376

11 T-scale [29] 58 SMR-PLS 2 0.845 0.786 0.390

12 NNAAIndex 58 PLS 2 0.749 0.719 0.511

13 NNAAIndex 58 GA-PLS 2 0.803 0.779 0.453

14 NNAAIndex 29/29f GA-PLS 1 0.852 0.832 0.369

aThe A is the number of principal component.
bThe R2 is the cumulative multiple correlation coefficient.
cThe Q2 is a cross validation square of cumulative multiple correlation coefficient by the leave-one-out procedure.
dThe RMS is the root mean square error of modeling simulation.
eThe nd shows that the correlative value is not given out.
fTwo numbers separated by slashes denote the number of samples in training and test sets, respectively.
doi:10.1371/journal.pone.0067844.t004
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Following the same method to validate the characterization

ability of the BTD dataset, we equally divided 58 ACE inhibitors

into the 29 training samples for the development of the QSAR

model and the remaining 29 test samples for the validation of the

QSAR model using the NNAAIndex/GA-PLS. Q2 = 0.832 and

RMS = 0.369 for internal validation and Q2
ext = 0.731 and

RMS = 0.500 for external validation were obtained, respectively,

further confirming that the external predictive ability of our

NNAAIndex/GA-PLS model is superior to that of the FASGAI/

GA-PLS model as previously developed by our group

(Q2
ext = 0.706) [24].

The NNAAIndex model was further validated using the

response permutation test, which was performed by rebuilding

the models using randomized activities of the training set, followed

by the subsequent assessment of the model statistics. This test was

repeated 50 times to obtain reliable statistics on model robustness.

Figure 5 showed that the interceptions of R2 and Q2 were 0.029

and 20.270, respectively. This indicates the probability of chance

correlation is very low (p,0.001), reinforcing the validity of the

model. Figure S2 shows the GA-PLS regression coefficients for 8

variables. Two variables of 7 and 9, corresponding to geometric

characteristics and connectivity of the second residue, respectively,

had large positive regression coefficients. Conversely, 2 variables of

3 and 10 that represent the connectivity of the first residue and the

solvent accessible surface area of the second residue respectively,

exhibited large negative coefficients. Other 4 variables corre-

sponding to geometric characteristics, H-bond, accessible surface

area of the first residue, and H-bond of the second residue

appeared to have negligible effects on ACE inhibitory activity.

Based on the preferential variables in the GA-PLS model and

the scores of amino acids in Table S1 and Figure S2, a total of 616

potent peptide mimetics of ACE inhibitors was designed and their

inhibitory activities were evaluated by the GA-PLS model. A total

of 205 out of 616 peptides showed higher inhibitory activity than

that of 58 peptides in the training set (Table S5). Figure 6 shows

three new peptide mimics of ACE inhibitors with highly predictive

activity. The activity of ACE inhibitors has a negative correlation

with the connectivity index of the first residue, i.e. the smaller the

value is, the higher the activity is. The first residue of the dipeptide

(VW) is replaced by the 512th molecule with a smallest

connectivity index of 24.006 among all amino acids. Through

comparison, the connectivity index of the 512th molecule is

significantly less than that of the W residue (1.454) (Table S1), and

the side chain of the 512th molecule has multiple benzene rings,

which would lead to complicated spatially geometric features and

molecular branching as a reflection of connectivity. Thus, it is

expected that the 512-W mutant has a higher inhibitory ability.

The geometric characteristics of the second residue are positively

correlated with biological activity of ACE inhibitors. The second

residue was replaced by the 439th, 534th, or 524th molecule

separately, whose geometric scores are 5.484, 3.388, and 3.233,

respectively. It should be noted, although the geometric scores of

the 439th, 534th, or 524th molecule are not the largest ones in

factor scores of all 615 amino acids, the new designed molecules

(512-439, 512-534 and 512-524) rank as top 3 candidates in all 205

designed ACE inhibitors, together with a modification of the 510

molecule at the first residue, suggesting that single-residue

mutation is not sufficient enough to ensure the improved activity

of ACE inhibitors.

It is of great interest to screen and examine if some dipeptides

derived from a complete sequence space possess both BTD and

ACE inhibition activities. If any sequence possesses dual predicted

activities in BTD and ACE inhibition, this sequence is likely to be

served as a promising pharmaceutical lead compound for

experimental tests. To achieve this, we used the NNAAIndex/

GA-PLS model to predict new 436 (426) dipeptides, which exclude

48 (58) sequences in a training BTD (ACE inhibitor) set from a

complete dipeptide sequence space consisting of 484 sequences, for

their BTD activity (Table S6) or ACE inhibitory activity (Table

S7), separately. The results, however, showed that the predicted

pT values of 436 dipeptides using the NNAAIndex/GA-PLS

model of BTDs were lower than that of the 46th sample (WW)

with a relative largest activity in all 48 BTD training samples.

Similarly, the predicted pIC50 values of 426 dipeptides using the

NNAAIndex/GA-PLS model of ACE inhibitors were lower than

that of the 1st sample (WW) with a relative largest activity in all 58

ACE-inhibitor training samples. Moreover, we observed that the

activities of the designed peptidomimetics for BTDs and ACE

inhibitors were significantly higher than those of the designed

coded-amino-acid peptides, indicating the advantage of peptido-

mimetics theoretically designed using the NNAAIndex scales.

NNAAIndex QSAR Model for Inorganic-binding Peptides
Bioactive peptides binding to inorganic surfaces play a central

role in many scientific and technological applications including

nanoparticle synthesis [61], surface quality control [62], molecular

linkers [63], peptide sensors [64], and self-assembly nanostructures

[65]. Phage display approach has been widely used to discover

new inorganic-binding peptides with a wealth of data [62], but

such brute-force and high-cost method is very sensitive to

experimental conditions such as peptide purification, peptide

concentration, large-scale peptide production, and/or cellulose

support. Additionally, this method provides little structural and

binding information of peptides on solid surfaces, which negatively

Figure 5. Plot of the 50-random-permutation validation for the GA-PLS model of ACE inhibitors. The intercepts of the R2- and Q2- lines
with the ordinate axis are 0.029 and 20.270, which are below limits of R2,0.300 and Q2,0.050, respectively.
doi:10.1371/journal.pone.0067844.g005
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impacts the ability to rationally design or post-engineering new

sequences for further improving their activity. Here, a total of 20

heptapeptides with binding affinity to mica surface [66] (Table S8)

was used to construct the third QSAR model using LDA, which

was used to classify inorganic-binding peptides into two groups

(namely, strong and moderate groups) based on predicted binding

affinity.

Due to the relatively small number of available peptides, to

achieve meaningful model statistics, the validation process was also

ensured using the LOO cross-validated procedure. The discrim-

inant performance was evaluated using a variety of statistical

values: (1) accuracy, characterizes the percentage of all chemicals

which is correctly identified in each group; (2) sensitivity, measures

the percentage of biologically active chemicals (in this case, i.e.

strong-binding peptides) which is correctly identified; (3) specificity,

measures the percentage of biologically inactive (i.e. moderate-

binding peptides) which is correctly identified; and Matthews

correlation coefficient (MCC) accounting for over- and under-

predictions indicates how the predictions relate to the target

observations [67,68]. The discriminant performance by the LOO

cross validation achieved a performance of accuracy = 75.00%,

sensitivity = 75.00%, specificity = 75.00%, and MCC = 0.492. This

confirms that the NNAAIndex QSAR model has a favorable

predictive ability for mica-binding peptides.

To investigate how the variables influence the activity of mica-

binding peptides, we analyzed the standardized canonical

discriminant function coefficients of the LDA model (Figure S3).

We observed that only 2 out of 42 variables were selected by the

LDA model. Two variables with positive coefficients corresponded

to geometric characteristics and accessible surface area of the sixth

residue. The interpretation of the QSAR model indicates that the

use of large geometric characteristics and solvent accessible surface

area of the sixth residue of the heptapeptides can improve their

mica-binding ability. We designed a total of 54 mica-binding

peptidomimetics in silico modified by non-natural amino acids

(Table S9). Among these designs, 37 peptidomimetics exhibited

strong predictive binding affinity. We also found the newly-

designed peptide mimics with an increased predictive mica-

binding activity being acquired by modifying main chain and side

chain (Figure 7). The 108th, 439th, 534th, and 524th molecules

had complicated geometric features such as extended lateral

aromatic moieties and branching, which are positively contributed

to the mica-binding affinity of peptide mimics. Moreover, large

solvent accessible surface area of those molecules enables to

improve the binding affinity of the newly designed peptide mimics.

It is of interest to compare the details and performance of

QSAR models between our previous FASGAI model [24] and

current NNAAindex model. The comparison between previous

work (FASGAI) and current work (NNAAindex) seems insufficient.

For instance, for BTDs, the Q2 value is 0.848 for FASGAI/GA-

PLS and 0.830 for NNAAIndex/GA-PLS, respectively (Table 3).

This could be due to the intrinsic differences as follows: (1)

FASGAI and NNAAIndex models used different sources to obtain

the physicochemical properties of amino acids, i.e., the FASGAI

used the AAindex database [69] to derive 516 experimentally-

based properties, while the NNAAIndex used the E-dragon [47]

and MOE programs [48] to acquire 384 computationally-based

properties, simply because there are no available physicochemical

properties for 593 non-natural amino acids by experiments.

Consequently, the computationally calculated properties may

Figure 6. The newly designed peptide mimetics for ACE inhibitors. The first sample in training set, VW, is regarded as a template to design
molecules. The activity of VW, 512-439, 512-534 and 512-524 is 5.80, 8.33, 8.04, and 8.04, respectively.
doi:10.1371/journal.pone.0067844.g006

A New Set of Descriptors for Amino Acids

PLOS ONE | www.plosone.org 13 July 2013 | Volume 8 | Issue 7 | e67844



inevitably bring some uncertainties to the model, thus leading to

the limited improvement of the NNAAIndex method to some

extents. (2) FASGAI and NNAAIndex models used different scale

factors to present amino acids, i.e., the FASGAI represents

hydrophobicity, alpha and turn propensities, bulky properties,

compositional characteristics, local flexibility, and electronic

properties, while the NNAAIndex represents geometric charac-

teristics, H-bond, connectivity, accessible surface area, integy

moments index, and volume and shape. Apparently, different

factor properties in both models reflect fundamental difference for

capturing and characterizing the structural features of natural and

non-natural amino acids, resulting in different results and

accuracies. (3) More importantly, the FASGAI characterized the

structural features of the peptides consisting of 20 natural amino

acids, while the NNAAindex characterized the structural features

of peptides and peptidomimetics consisting of 22 natural and 593

non-natural amino acids. Therefore, FASGAI and NNAAindex

models have different characterization ability for different peptide

datasets. Because of this, we can not arbitrarily deny the

characterization ability for any one of FASGAI and NNAAIndex

models.

Conclusions

In this work, a new index, NNAAIndex, was proposed to

represent the structures of 22 natural and 593 non-natural amino

acids. To test the applicability of the NNAAIndex method on

three different datasets, three predictive QSAR models were

developed to identify the contributing descriptors to the most to

the activity of BTD, inhibitory activity of ACE inhibitors, and

binding affinity of mica-binding peptides using a combination of

the NNAAIndex and PLS regression or LDA method. As

compared to the prediction power of other 2D- and 3D-QSAR

models, the NNAAIndex QSAR model using 6 field descriptors

yielded satisfactory statistical results. In addition, we provided a

large pool for BTD, ACE inhibitors, and inorganic-binding

peptides for experimental validation in the future. Our results

suggest that the NNAAIndex model can be generally applied to in

silico design any other new natural or non-natural peptidomimetics

in a high throughput manner since it only requires 2D fingerprints

as inputs.

Supporting Information

Figure S1 The centered and scaled coefficients for the
GA-PLS model of BTDs. Four positive coefficients for the

variables of 5, 6, 7, and 11 correspond to integy moments index,

and volume and shape of the first residue, geometric character-

istics and integy moments index of the second residue, respectively.

One negative coefficient for the variable of 8 corresponds to H-

bond of the second residue, respectively.

(TIF)

Figure S2 The centered and scaled coefficients of the
GA-PLS model of ACE inhibitors. Three positive coefficients

for the variables of 1, 7, and 9 correspond to geometric of the first

residue, geometric characteristics and connectivity of the second

residue, respectively. Five negative coefficients for the variables of

2, 3, 4, 8 and 10 correspond to H-bond, connectivity, accessible

surface area of the first residue, H-bond and accessible surface

area of the second residue, respectively.

(TIF)

Figure S3 The standardized coefficients of the LDA
model of mica-binding peptides. Two positive coefficients

for the variables of 31 and 34 correspond to geometric

characteristics and accessible surface area of the sixth residue,

respectively.

(TIF)

Table S1 Scores of six NNAAIndex factors for 22 natural and

593 non-natural amino acids.

(DOC)

Table S2 Sequences of BTDs with the observed and predicted

activities.

(DOC)

Table S3 Computationally designed peptidomimetics of BTDs.

(DOC)

Table S4 Sequences of ACE inhibitors with the observed and

predicted activities.

(DOC)

Table S5 Computationally designed peptidomimetics of ACE

inhibitors.

(DOC)

Table S6 Predicted activities of BTDs composed of 22 natural

amino acids by excluding the 48 training samples using the QSAR

model of BTDs.

(DOC)

Table S7 Predicted activities of ACE inhibitors composed of 22

natural amino acids by excluding the 58 training samples using the

QSAR model for ACE inhibitors.

(DOC)

Table S8 Sequences of 20 inorganic-binding peptides with

actual group and predicted group.

(DOC)

Figure 7. The newly designed mica-binding peptide mimetics. The 13th sample in training set, TLTRVGW, is regarded as a template to design
molecules. The predicted score of TLTRVGW, TLTRV108W, TLTRV439W, TLTRV534W and TLTRV524W is 0.94, 1.00, 1.00, and 1.00, respectively.
doi:10.1371/journal.pone.0067844.g007
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Table S9 Computationally designed mica-binding peptidomi-

metics.

(DOC)
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52. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of

chemometrics. Chemometrics and Intelligent Laboratory Systems 58: 109–130.

53. Helland IS (2001) Some theoretical aspects of partial least squares regression.
Chemometrics and Intelligent Laboratory Systems 58: 97–107.

54. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science
181: 223–230.

55. Asao M, Iwamura H, Akamatsu M, Fujita T (1987) Quantitative structure-

activity relationships of the bitter thresholds of amino acids, peptides, and their
derivatives. J Med Chem 30: 1873–1879.

56. Molina E, Diaz HG, Gonzalez MP, Rodriguez E, Uriarte E (2004) Designing
antibacterial compounds through a topological substructural approach. J Chem

Inf Comput Sci 44: 515–521.
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