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Abstract

Aphanomyces astaci, the crayfish plague pathogen, first appeared in Europe in the mid-19th century and is still responsible
for mass mortalities of native European crayfish. The spread of this parasite across the continent is especially facilitated by
invasive North American crayfish species that serve as its reservoir. In France, multiple cases of native crayfish mortalities
have been suggested to be connected with the presence of the signal crayfish Pacifastacus leniusculus, which is highly
abundant in the country. It shares similar habitats as the native white-clawed crayfish Austropotamobius pallipes and, when
infected, the signal crayfish might therefore easily transmit the pathogen to the native species. We investigated the
prevalence of A. astaci in French signal crayfish populations to evaluate the danger they represent to local populations of
native crayfish. Over 500 individuals of Pacifastacus leniusculus from 45 French populations were analysed, plus several
additional individuals of other non-indigenous crayfish species Orconectes limosus, O. immunis and Procambarus clarkii.
Altogether, 20% of analysed signal crayfish tested positive for Aphanomyces astaci, and the pathogen was detected in more
than half of the studied populations. Local prevalence varied significantly, ranging from 0% up to 80%, but wide confidence
intervals suggest that the number of populations infected by A. astaci may be even higher than our results show. Analysis of
several individuals of other introduced species revealed infections among two of these, O. immunis and P. clarkii. Our results
confirm that the widespread signal crayfish serves as a key reservoir of Aphanomyces astaci in France and therefore
represents a serious danger to native crayfish species, especially the white-clawed crayfish. The prevalence in other non-
indigenous crayfish should also be investigated as they likely contribute to pathogen transmission in the country.
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Introduction

For more than 150 years, native crayfish in Europe have been

decimated by the crayfish plague, a disease caused by the

oomycete Aphanomyces astaci. The first presumed European

outbreak of crayfish plague was recorded in 1859 in northern

Italy, and another focus of the disease appeared in France in 1874

at Plateau des Langres [1,2]. In the following decades, the

pathogen continued to spread to other European countries

[1,2,3,4]. At present, the known carriers of the pathogen in

Europe are three North American crayfish species that were

introduced to the continent before 1975, the so-called ‘‘old’’ non-

indigenous crayfish species: the spiny-cheek crayfish Orconectes

limosus, the signal crayfish Pacifastacus leniusculus, and the red swamp

crayfish Procambarus clarkii [5]. Their presence in European waters

facilitates the persistence and spread of the parasite, and further

contributes to mortalities of native crayfish [4,5,6,7,8].

The largest mass mortalities of native crayfish in France took

place between the 1870s and 1912 [9,10], but after a relatively

calm period up until the 1980s, new outbreaks of crayfish plague

have again been reported [10,11,12]. Some of these mortalities of

native species were suspected to be connected with the presence of

the invasive signal crayfish Pacifastacus leniusculus [12,13,14,15,16].

The link between the presence of this species and crayfish plague

spread is also apparent in other European countries [6,17,18].

The signal crayfish was introduced to France in 1972 from

Sweden, and in 1974 more individuals were brought directly

from North America (Lake Tahoe and Lake Donner in

California); this was followed by numerous secondary introduc-

tions [19,20]. The species is now widely distributed in France

[3,4,19,21,22,23]. In 2006, it was estimated to be present at

about 1000 sites in 73 out of 96 French departments [23]

representing all 22 administrative regions of continental France.

Although several other non-indigenous crayfish species are

found in France, Pacifastacus leniusculus represents the largest

threat to native species, particularly to the white-clawed crayfish

Austropotamobius pallipes [23]. Signal crayfish may colonise similar

habitats in the headwaters of rivers and therefore easily come

into contact with A. pallipes populations [24]. This facilitates the
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ô
n

e
-A

lp
e

s
R

h
ô
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transmission of the pathogen to the native species if the invasive

one is infected.

The white-clawed crayfish Austropotamobius pallipes is the most

abundant indigenous European crayfish in France. In 2006, it

was still found at over 2200 sites in 76 out of 96 departments,

i.e., in all but one administrative region of continental France

(Fig. 1; [23]). However, the number of its populations has

significantly decreased recently and is substantially lower than

that of alien crayfish [23]. The crayfish plague is one of the

major factors that contribute to the decline of A. pallipes in

France [24]; eighty-nine per cent of crayfish mass mortalities

recorded in France between the years 2001 and 2006 affected

Austropotamobius pallipes, while only the remaining 11% of

mortalities concerned other species [23].

Despite the substantial impact the crayfish plague has on native

crayfish species, reliable information on the distribution of its

pathogen A. astaci in European waters is rather scattered. For

many years, mortalities of native crayfish, if noticed, suggested the

presence of the disease. However, the identity of the pathogen was

often assumed rather than confirmed, due to difficulties with its

cultivation and ambiguous morphological characteristics [25,26].

Recently, several molecular methods for the detection of

Aphanomyces astaci have been developed that do not require

cultivation [27,28,29,30,31]. Very low quantities of the pathogen

DNA in the sample are detectable by some of these methods,

enabling large-scale screening of populations of invasive crayfish

from different European countries.

Interestingly, recent molecular studies have suggested that some

populations of invasive crayfish in Europe might not be infected by

A. astaci or its prevalence is very low, and in those confirmed to

host the pathogen the prevalence and load may vary substantially

[32,33]. So far, the largest datasets have been obtained by

Kozubı́ková et al. [33,34], who studied crayfish plague prevalence

in more than 300 individuals of Orconectes limosus and more than

100 individuals of Pacifastacus leniusculus, representing 29 Central

European populations. In other studies focusing on the presence of

this pathogen in invasive crayfish in Europe, only one or a few

populations were analysed (e.g., [32,35,36,37]).

No data on the prevalence of the crayfish plague pathogen in

non-indigenous crayfish populations in France have been available

so far. Therefore, we tested in the present study numerous French

populations of Pacifastacus leniusculus as well as a few individuals of

other non-indigenous crayfish species for the presence of

Aphanomyces astaci. A quantitative TaqMan minor groove binder

(MGB) real-time polymerase chain reaction (PCR) designed by

Vrålstad et al. [30] was chosen for our analyses, as it has been

shown to be the most sensitive of the available detection methods,

and highly specific to this pathogen species [33,38].

Our aim was to evaluate the threat that signal crayfish

populations in different regions of France represent to native

crayfish species. We specifically focused on this invasive crayfish

species because its distribution and habitat preferences most

overlap with native crayfish in France [23]. Data on the

prevalence of A. astaci and infection intensities expressed as

pathogen levels in the hosts’ tissues may then allow targeting the

most infected invasive crayfish populations for potential future

eradication trials, and pinpointing native crayfish populations that

are at highest risk and could be translocated to safer areas, i.e.,

‘‘ark sites’’ [39]. Thus, data on the distribution and prevalence of

the crayfish plague pathogen in the country may contribute to

improving the efficiency of conservation management of indige-

nous crayfish species, in particular Austropotamobius pallipes.

Methods

Ethics Statement
All experimental procedures and animal manipulations, as well

as field sampling, conformed to French law. The analysed material

was provided by the French National Agency for Water and

Aquatic Environments (ONEMA), which is entitled to collect

samples in French watercourses, including those located on

privately owned land. No additional permits were required for

the described field studies. The project did not involve work with

endangered or protected species, apart from samples of dead

individuals collected from mass mortalities of the native crayfish

species Austropotamobius pallipes.

Sampling, DNA Isolation and Real-time PCR
In total, 513 signal crayfish Pacifastacus leniusculus individuals

were sampled from 45 localities in France (Table 1, Fig. 1) by hand

or by electrofishing. Although these sites represent only a small

fraction of invaded sites in the country (see [23]), they cover a

substantial part of most invaded regions. Most individuals came

from running waters, especially brooks and several rivers. In

addition, several individuals of other non-indigenous species were

also analysed. These were 19 individuals of Orconectes limosus from

two populations, seven individuals of O. immunis from one

population, and two individuals of Procambarus clarkii from one

population (Table 1). The sampled populations, their character-

istics, and the numbers of analysed individuals are summarised in

Table 1.

Captured crayfish were stored in 96% ethanol. Tissue from one

half of the soft abdominal cuticle and one uropod (body parts most

suitable for the detection of A. astaci, [36]) was dissected from each

crayfish using sterile tools. While processing each individual, we

noted the presence of black melanised spots, as possible visual

symptoms of immune reaction to pathogens [40] and a

characteristic used in the past to assess the infection status in

signal crayfish (e.g., [41,42]). Dissected tissues from each

individual were collected in a single 1.5 ml tube, dried and stored

in a deep freezer at 280uC. Before further processing, 360 ml of

Buffer ATL from the DNeasy tissue kit (Qiagen) was added to the

thawed dissected material. The mixture was then crushed by one

scoop (ca 50 ml) of stainless steel beads (1.6 mm diameter) using a

BBX24B Bullet Blender (Next Advance) for 10 min at maximum

speed. DNA extractions from the crushed cuticle then followed the

rest of the spin-column protocol of the DNeasy tissue kit, in double

volume (i.e., with 40 ml of the proteinase K solution and 400 ml of

Buffer AL).

The isolated material was then tested for the presence of

Aphanomyces astaci by the quantitative TaqMan MGB real-time

PCR [30], using a LightCyclerH 480 Instrument (Roche). A 59 bp

fragment of the internal transcribed spacer (ITS) region of A. astaci

nuclear rDNA was amplified using the primers AphAstITS-39F

(59-AAG GCT TGT GCT GGG ATG TT-39) and AphAstITS-

97R (59-CTT CTT GCG AAA CCT TCT GCT A-39), and

quantified with the pathogen-specific TaqManH minor groove

binder (MGB) probe AphAstITS-60P (59-6-FAM-TTC GGG

ACG ACC C-MGBNFQ-39). The 25 ml reaction volume consisted

of a 2x Universal PCR Master Mix (Applied Biosystems), both

primers (500 nM each), TaqMan MGB-Probe (200 nM), nuclease

free water, and template DNA (around 20 ng/ml). The PCR

program consisted of one cycle of 10 min at 95uC, 50 cycles of

15 sec at 95uC and 60 sec at 58uC, and one final cycle of 60 sec at

40uC. In each run, two replicates of four different standards were

included that served as positive controls and ensured the

comparability of different runs. The quantity of the pathogen

Crayfish Plague Pathogen in French Alien Crayfish
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Figure 1. Map of France with administrative division to regions (dark-bordered areas) and departments within them (light-
bordered areas), showing the distribution of the invasive signal crayfish Pacifastacus leniusculus (small empty circles; based on
[4,19,21,44]) and approximate location of analysed populations (triangles), and the recent status of the native white-clawed
crayfish Austropotamobius pallipes (green shading) and reported cases of its mass mortalities (red crosses and black dots).
Distribution of A. pallipes is based on a 2006 survey [23] (white: no known population in a department, pale green: 1–5, medium: 6–25, dark: 25–150
populations). Red crosses with years indicate mass mortalities most likely caused by crayfish plague reported since the 1990s ([10,12,13,14,15,45,46];
T. Duperray and T. Pantarotto, pers. comm.); additional mortalities ascribed to crayfish plague were reported between 2001 and 2005 from
departments marked by black dots (according to [23]). Bold crosses mark outbreaks in which A. astaci has been confirmed by molecular detection
and genotyped (see Discussion). The prevalence of Aphanomyces astaci in sampled signal crayfish populations is expressed by colour: no reliable
detection of the pathogen (white triangles), low prevalence (1–30%, yellow), medium prevalence (31–60%, orange) and high prevalence (61–100%,
red triangles); the number of analysed individuals in the respective population is indicated by symbol size (small triangle: ,10 individuals, large
triangle: 10+ individuals). Regions discussed in the text are abbreviated: Al – Alsace, Au – Auvergne, Ba-No – Basse-Normandie, Ce – Centre, Ch-Ar –
Champagne-Ardenne, La-Ro – Languedoc-Rousillon, Li – Limousin, Lo – Lorraine, Po-Ch – Poitou-Charentes, Rh-Al – Rhône-Alpes; Lake Geneva (Lac
Léman) is marked by L within the triangle. The distance scale depends on latitude (top: 51.5uN, bottom: 41uN) and reflects the map projection.
doi:10.1371/journal.pone.0070157.g001
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DNA in these standards, expressed in PCR forming units (PFU),

were 36410, 3648, 3644 and 3642, respectively [30]. Two

negative controls (which remained negative in all runs) were

included in each run to detect possible contamination. For each

isolate, undiluted and a 10-fold diluted replicate were analysed to

test for the impact of inhibition that might influence the efficiency

of detection [30,43]. When some effects of inhibition were

occasionally detected (mostly in samples with low agent level),

the PFU values were estimated as described in [33].

Data Analysis
Based on their PFU values, samples were classified into semi-

quantitative categories of pathogen load, ranging from A0 (no

traces of A. astaci DNA) to A7 (extremely high amounts of A. astaci

DNA in the sample), as proposed by Vrålstad et al. [30]. Only

individuals with agent level A2 and higher were considered

infected. Agent level A1 falls below the limit of detection of the

method (corresponding to 5 PFU) and may not only indicate trace

amounts of pathogen DNA, but also false positives or minor

contamination during analyses. Therefore, agent level A1 should

not be considered a confirmation of the presence of A. astaci in the

sample [30,33].

We estimated the prevalence of A. astaci in studied populations

and its 95% confidence interval, using the function ‘‘epi.conf’’

included in the library epiR [47] for the statistical package R v. 3.0

[48]. Furthermore, we evaluated the relationship between the

prevalence of A. astaci in tested populations and the pathogen load

in infected individuals (with agent level A2 or higher, log-

transferred) from each population by calculating the logistic

regression with quasibinomial distribution of errors (due to

overdispersion) by generalised linear model (GLM) in R. Potential

outliers were identified using Cook’s distance and leverage of

residuals, and the analysis was also repeated with the dataset

excluding such populations.

Results

We detected the presence of the crayfish plague pathogen in

more than half of the studied signal crayfish populations across the

whole country (Fig. 1). The number of Aphanomyces astaci-positive

individuals in sampled populations, agent levels detected in

infected specimens and the crayfish plague prevalence for each

population are summarised in Table 1.

In total, 103 signal crayfish (20% of analysed individuals) from

24 populations (i.e., 53% out of 45 tested) were found to be

infected (with agent level A2 or higher) (Table 1). The pathogen

prevalence in samples from the studied populations was highly

variable, ranging from 0% to 80%; however, due to often low

number of individuals analysed per populations, the confidence

intervals for the prevalence estimates remain wide (Table 1). Thus,

lack of unambiguous detection of the pathogen at a particular site

cannot be considered as an evidence for its absence from the

population; substantially higher sample sizes are needed to test for

such scenario [49].

In 322 signal crayfish, no traces of Aphanomyces astaci DNA were

found (agent level A0), and 88 individuals were assigned to agent

level A1 (i.e., a very weak signal not considered as positive

pathogen detection). Most samples (73 individuals) that tested

positive contained a low amount of pathogen DNA (agent level

A2), while agent level A3 was found in 28 individuals and A4 in

two individuals (Table 1). Black melanised spots were observed on

the cuticle of 17 signal crayfish individuals from nine localities;

however, A. astaci DNA was detected in only three of such crayfish

from different localities: Sarthon, Lake Geneva (Lac Léman), and

Charpasonne.

The distribution of P. leniusculus populations with the highest

crayfish plague prevalence (over 50%) was rather scattered, as

these were located in Limousin (central France; Li in Fig. 1),

Rhône-Alpes (eastern France; Rh-Al), Basse-Normandie (north-

western France; Ba-No) and the Lorraine region (northeastern

France; Lo) (Table 1, Fig. 1). In some regions, A. astaci-positive

individuals were found in the majority of local populations, such as

in Limousin (6 infected out of 7 analysed populations), Rhône-

Alpes (4/6), and Basse-Normandie (4/5). On the other hand,

relatively low numbers of infected individuals were found in most

populations from the Lorraine region, where only 17 individuals

from 141 analysed signal crayfish tested positive for A. astaci (in 5

out of 13 analysed populations), or in populations from

Champagne-Ardenne (Ch-Ar) with five infected out of 68 tested

individuals, coming from a single population where 6 individuals

were analysed (Table 1). In Languedoc-Rousillon (La-Ro), none of

the signal crayfish tested positive for the presence of A. astaci;

however, only 20 individuals from two populations were analysed

from this region.

We observed a relatively weak trend of increase of A. astaci

prevalence in signal crayfish populations with the average

pathogen load per infected individuals from respective populations

(Fig. 2); this increase was nevertheless not significant (GLM; df = 1,

23; p = 0.12). Based on criteria used to define outliers, we excluded

two most influential points (populations with highest average

pathogen load, shown in Fig. 2); their removal neither improved

the significance of the model nor its general trend.

The real-time PCR analyses also confirmed the presence of A.

astaci in two out of three other crayfish species analysed. None of

the analysed individuals of Orconectes limosus from either of the two

sampled populations (Rhône-Alpes and Centre regions) showed

traces of the pathogen. However, two out of seven tested

individuals (29%) of Orconectes immunis from Alsace tested positive,

as did one of the two analysed individuals of Procambarus clarkii

from the Centre region (Table 1).

Discussion

Our results provide the first insight into the prevalence of the

crayfish plague pathogen in invasive crayfish in France. We

confirmed that the signal crayfish Pacifastacus leniusculus serves as an

important reservoir of this disease in France, which strongly

supports the notion of the key role of this invasive species in

mortalities of native crayfish. We also showed independently on a

recent study by Schrimpf et al. [50] that Orconectes immunis, a

crayfish invader established only in the early 1990s [5], can be a

carrier of A. astaci. This is the first of the ‘‘new’’ non-indigenous

crayfish species in Europe, i.e., those introduced to the continent

after 1980 [5], tested for this pathogen presence. Its positive

infection status calls for investigating of other established North

American crayfish species as well.

Our study confirms that a substantial proportion of signal

crayfish from France carried Aphanomyces astaci. Despite the fact

that the pathogen’s DNA was unambiguously detected in no more

than 20% of analysed individuals, A. astaci presence was confirmed

in 24 out of 45 studied host populations, representative for a

substantial part of the invaded range in France. Furthermore, it

may be assumed that the proportion of infected populations is

substantially higher, given the wide confidence intervals for

pathogen prevalence in individual populations. In Central

European populations of this species (from the Czech Republic,

Slovakia, and Hungary), Kozubı́ková et al. [33] also showed that a

Crayfish Plague Pathogen in French Alien Crayfish
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substantial proportion of analysed individuals tested positive for A.

astaci, with 32 infected out of 153 analysed individuals, coming

from 8 out of 9 sampled populations. In one population from

Norway analysed by Vrålstad et al. [36], 38 out of 44 signal

crayfish (86%) were infected; such high prevalence within a

population was only rarely found in France. In contrast, no traces

of the pathogen DNA were detected in 44 individuals from the

river Alling Å in Denmark [51]. The number of infected

individuals of another intensively studied invasive crayfish in

Central Europe, Orconectes limosus, was found to be generally higher

than in signal crayfish [33]: 116 out of 307 tested individuals (38%)

were infected, coming from 16 out of 20 analysed populations

[33]. Our results are also consistent with findings that crayfish

infected by A. astaci may not show any macroscopic melanisation

suggesting visually the presence of a pathogen [34,35], and, on the

contrary, that crayfish individuals (of various species) exhibiting

strongly melanised spots may not test positive as A. astaci carriers

[37,52,53].

The present results, although clearly demonstrating the

widespread presence of the crayfish plague pathogen, should be

interpreted carefully because the real prevalence of A. astaci is

almost certainly underestimated in many cases. As only a small

number of individuals could be tested from some sites, lack of

detection of A. astaci cannot be interpreted as the absence of the

pathogen from the population (see the 95% confidence intervals

for the prevalence in Table 1). Providing conclusive evidence that

some populations of potential A. astaci hosts (North American

invasive crayfish) are likely to be uninfected requires much more

intensive sampling effort [49]. Temporal fluctuations of the

pathogen prevalence (or detectability) could also influence our

results, as was shown for a Czech Orconectes limosus population

studied over several seasons [54]. Thus, low A. astaci prevalence

detected in some French signal crayfish populations does not mean

that those pose a lower threat than other more infected

populations of the same species.

Moreover, only certain parts of the crayfish cuticle (from the

abdomen and uropod) were analysed, the isolation efficiency

might have differed among samples, and just a part of DNA isolate

was used in the real-time PCR. All these factors might further

contribute to underestimations. However, as uropod tissue seems

to be generally more infected than other parts of the crayfish body

in signal crayfish [36], we assume that some pathogen DNA

should have been present in samples from most infected crayfish

individuals analysed in our study. Other characteristics and limits

of this method (such as its specificity against other closely related

species of Aphanomyces, or its sensitivity) are discussed in detail

elsewhere [33,38]. In general, however, the real-time PCR

detection of A. astaci can be considered well validated [33,38].

Thus, although our results are based on this method only, and we

did not use alternative methods to confirm the pathogen (e.g.,

amplification and sequencing of a longer DNA fragment), we are

convinced that the positive results indeed reflect the detection of A.

astaci. Furthermore, we used some of the individuals from our

study to test performance of newly developed microsatellite

markers for this pathogen (F. Grandjean et al., in prep.), and the

allele sizes obtained from infected French P. leniusculus matched

perfectly those obtained from pure culture of A. astaci strain

isolated from the same host species (F. Grandjean et al., unpubl.

data). We consider this a convincing evidence that such crayfish

individuals were infected by the same or very closely related strain

of the pathogen.

One of the localities that deserves particular attention is Lake

Geneva (Lac Léman) on the Swiss-French border (marked by L in

Fig. 1), where the signal crayfish has been intensively harvested

Figure 2. Relationship between the prevalence of A. astaci (in %; estimated as the proportion of individuals testing positive) in
analysed French signal crayfish populations and the average pathogen load (expressed as log-transformed PFU-values) detected
in infected individuals (with agent level A2 or higher) from each population. The equation characterising the model estimated by logistic
regression (dashed line) is given in the upper right corner; removal of two outlier populations with highest average pathogen load (indicated by
empty circles) did not change the model substantially (dotted line, equation not shown). Note that when a quasibinomial instead of binomial
distribution of errors is used (due to overdispersion in data), the increasing trend is non-significant.
doi:10.1371/journal.pone.0070157.g002
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[55]. In this lake, over 31% of analysed P. leniusculus individuals

tested positive for A. astaci. Although French law does not permit

the transport and selling of invasive species, special prefectoral

regulations allow fishermen to sell crayfish from Lake Geneva

anywhere in France. They may therefore be exported alive to the

rest of the country under the label ‘‘crayfish from Lac Léman’’

[23,55]. Such commercial activities may contribute to the spread

of the crayfish plague. Indeed, one French aquaculture company

who offers P. leniusculus from Lake Geneva also sells A. leptodactylus

that do not seem to live long after purchase (T. Duperray, pers.

comm.). More measures should therefore be taken to avoid the

further spread of signal crayfish from this lake to other parts of

France or beyond.

However, Lake Geneva is also interesting because of the

evidence for the extended coexistence between American and

European crayfish species. The signal crayfish has long been

established in the lake, since 1976 [55]. However, the narrow-

clawed crayfish Astacus leptodactylus (a European species not

indigenous to this region) was found in the lake at least until

2001 [55] and it seems that the native white-clawed crayfish

Austropotamobius pallipes was also present there at least until 2003 (C.

Bugnon, pers. comm.). Several cases of long-term coexistence

between native species and P. leniusculus have also been recorded in

other European countries. In England, A. pallipes coexisted with

signal crayfish for more than 5 years [4]. In Finland, Westman &

Savolainen [56] reported a 30-year coexistence of P. leniusculus

with another native species, Astacus astacus, although the latter was

finally outcompeted. In these cases, it has been suggested that the

invasive species was not infected by the pathogen, similarly as in

some Central European sites where native crayfish coexisted with

O. limosus [49]. The present situation in Lake Geneva, where we

demonstrated the presence of A. astaci in five out of 16 analysed

signal crayfish, seems thus different, although we cannot rule out

that the pathogen has been introduced to the local population of P.

leniusculus only recently.

It is probable that the signal crayfish as well as the spiny-cheek

crayfish O. limosus, also present in the lake [55], have contributed

to the decline of the susceptible species Astacus leptodactylus and

Austropotamobius pallipes at this locality. No information on mass

mortalities of these species in the lake exist, so we cannot assess if

this decline was caused by plague outbreaks, competition with

invasive crayfish, other reasons, or a combination of multiple

factors. Nevertheless, several recent studies have demonstrated

that chronic A. astaci infections of generally susceptible crayfish

may be possible at some localities, as was shown for A. leptodactylus

in Turkey [52,57] and Romania [37,58], for Astacus astacus in

Finland [59,60], and most recently for Austropotamobius torrentium in

Slovenia [61]. Kozubı́ková et al. [33] also reported from the Czech

Republic that the native noble crayfish A. astacus coexisted for at

least ten years with a P. leniusculus population in which a low A.

astaci agent level (A2) was recently found in two out of 23 analysed

individuals (although a recent confirmation of the pathogen

presence does not necessarily mean the host population has been

infected during the whole period of coexistence). The presence of

the crayfish plague pathogen apparently does not always result in

the complete disappearance of native species at a locality. Such

coexistence seems facilitated both by an increased resistance of

some populations or species of European crayfish to the pathogen

and a reduced virulence of some A. astaci strains [62,63], the

relative contributions of these (and possibly other) factors probably

differing from site to site.

In some areas in France, Austropotamobius pallipes is still relatively

abundant (although the sites occupied by invasive American

crayfish are already much more numerous than those with native

species [23]). In other regions in the country, this native species is

only rare or even absent (see Fig. 1 and [23]). The main centres of

distribution are in central and south-eastern France, the former

being also occupied by many signal crayfish populations [23]. At

several sites in Rhône-Alpes and Auvergne (Rh-Al and Au in

Fig. 1), regions where mortalities of A. pallipes occurred in the past

(T. Duperray, T. Pantarotto, pers. comm.), we found that nearby

signal crayfish populations had individuals infected by A. astaci.

High priority should therefore especially be given to the protection

of those localities where A. pallipes is abundant but infected P.

leniusculus populations are nearby.

Apart from screening for the presence of the pathogen,

molecular methods may also be used to assess the pathways and

likely sources of Aphanomyces astaci. We have directly demonstrated

the pathogen by real-time PCR detection in samples of A. pallipes

from two crayfish plague outbreaks from France (indicated by

thicker red crosses in Fig. 1). The first took place in 2001 in the

Saint-Christophe river, Poitou-Charentes region, Western France

(Po-Ch in Fig. 1), and was described in detail in [46]. The second

outbreak took place in July 2008 in the river Le Jabron, Rhône-

Alpes region (Rh-Al in Fig. 1). In both regions, all three

widespread North American crayfish species (Pacifastacus leniusculus,

Orconectes limosus, and Procambarus clarkii) are present [23], so any of

them might have been the source of the pathogen causing these

mass mortalities. However, as different genotypes of A. astaci have

been isolated from different host species [64,65], genotyping of the

pathogen might indicate its source. We characterised A. astaci from

both French outbreaks using several variable microsatellite

markers that are being developed for this species (F. Grandjean

et al., unpublished), and confirmed that the first mortality was

caused by the genotype group B, which is associated with P.

leniusculus [64], and the other one by the genotype group E,

originally isolated from O. limosus [65]. Although the reliability of

the pathogen genotyping approach needs thorough evaluation,

these results indeed suggest that signal crayfish has been the

original source of A. astaci in at least some mass mortalities recently

recorded in France.

The trend of increase in crayfish plague prevalence and the

pathogen load of local infected individuals in French P. leniusculus

populations corresponds to findings of Kozubı́ková et al. [33], who

observed similar but much more pronounced patterns in Central

European O. limosus and P. leniusculus populations. This relation-

ship might be due to increased concentrations of A. astaci zoospores

in the environment released from infected individuals, increasing

the likelihood of pathogen spread. However, the pattern observed

in French signal crayfish populations studied by us was not

significant, unlike those reported in [33].

Eradication of P. leniusculus from large areas is not yet possible

[4]. However, our results can contribute to the development of

more efficient conservation management strategies for native

crayfish in France. More attention should be paid to areas where

high prevalences of the crayfish plague in tested P. leniusculus

populations have been found, as these represent a greater danger

to native species. The fact that we found infected individuals in

more than half of the studied populations confirms that the signal

crayfish plays an important role in the transmission of the crayfish

plague pathogen in France, and that it represents a serious threat

to native crayfish, especially to the endangered Austropotamobius

pallipes. Our analysis also confirms that other non-indigenous

crayfish species, including the recently established invader

Orconectes immunis, likely serve as sources of the disease in France.

Further studies of the prevalence of the crayfish plague in other

non-indigenous host species would therefore also be important for

evaluating the risk they represent for native crayfish.
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