Skip to main content
. 2013 Jul 24;7:129. doi: 10.3389/fnins.2013.00129

Table 1.

Classification accuracy based on different runs of tactile BCI use.

Data set Classifier trained on runs # Classifier tested on runs # 800 ms post-stimulus 1000 ms post-stimulus 1200 ms post-stimulus 1400 ms post-stimulus
Long stimulus, short ISI [1 2 3 4] [5] 50 75 75 75
[1 2 3 5] [4] 25 25 75 100
[1 2 4 5] [3] 50 75 100 75
[1 3 4 5] [2] 100 100 100 100
[2 3 4 5] [1] 50 100 100 100
Mean ± STD 55.5 ± 27.4 75.0 ± 30.6 90.0 ± 13.7 90.0 ± 13.7
Long stimulus, medium ISI [1 2 3 4] [5] 75 100 100 100
[1 2 3 5] [4] 75 50 100 100
[1 2 4 5] [3] 50 50 75 50
[1 3 4 5] [2] 0 0 50 25
[2 3 4 5] [1] 50 50 75 50
Mean ± STD 50 ± 30.6 50 ± 35.4 80 ± 20.9 65 ± 33.5
Short stimulus, long ISI. Number of stimulations reduced offline for direct comparison [1 2 3 4] [5] 75 75 50 75
[1 2 3 5] [4] 75 50 75 100
[1 2 4 5] [3] 75 75 75 75
[1 3 4 5] [2] 25 75 50 0
[2 3 4 5] [1] 75 75 75 75
Mean ± STD 65 ± 22.4 70 ± 11.2 65 ± 13.4 65 ± 37.9
Short stimulus, long ISI. Full data set with twice as much stimuli. [1 2 3 4] [5] 100 75 100 100
[1 2 3 5] [4] 75 75 75 100
[1 2 4 5] [3] 75 75 75 75
[1 3 4 5] [2] 75 75 75 100
[2 3 4 5] [1] 75 75 50 50
Mean ± STD 80.0 ± 11.2 75.0 ± 0.0 75.0 ± 17.7 85.0 ± 22.4

We trained SWLDA classifiers on every combination of four of five runs and tested them on the remaining run. The table furthermore presents classification outcome for classifier weights trained on 800 ms of data, 1000 ms, 1200 ms, and 1400 ms respectively.