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Detailed measurement of cell phenotype information from digital fluorescence images has the potential to
greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the
complexity of cell conformations presents a major barrier preventing effective determination of cell
boundaries, and introduces measurement error that propagates throughout subsequent assessment of
cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require
user-interaction, prolonged computation time and specialized training cannot adequately provide the
support for high content platforms, which often sacrifice resolution to foster the speedy collection of
massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate
cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad
applicability to promote biotechnology.

he accurate determination of cell morphology is critical to many aspects of biomedicine'*. For instance,

histopathology can indicate the stage of cancer based on the organization and shape of cells present in a

patient biopsy; yet, it still relies on experienced physicians to visually recognize the qualitative differences in
cell phenotype*®. If morphological analysis could be performed quantitatively, the greater potential to reveal
subtle disparities in cell phenotype could radically improve the way we grade cancer’°. Meanwhile, the drug
screening industry has actively adopted computer-guided morphological assessment to uncover the potential of
new drugs’"’. High content screening (HCS) platforms allow us to gain access to rich phenotypic information that
can be quantitatively analyzed and statistically distinguished, but the priority of existing platforms is to foster the
speed of image processing so some measurement resolution is often conceded”*'. Therefore, an advance in
technology that improves our ability to rapidly and accurately quantify cell morphology can greatly impact the
biomedical community.

However, the complexity of the fluorescent signal from a typical cell within a digital image presents a major
barrier for the generation of accurate cell boundaries from segmentation'>'®. The fastest way to generate a cell
boundary is to compare the pixel values of an image to a single intensity threshold, which may be determined
quickly using histogram-based approaches'*"*. These kinds of segmentation strategies only roughly approximate
cell boundaries, and consequently produce a great amount of error in phenotypic parameters that would not
otherwise be present during subsequent measurement and statistical analysis>®. This diminishes the capacity to
advance cellular biophysics using detailed morphological information to support the previously mentioned
applications. In this regard, more sophisticated image processing methods were developed to offer better bound-
ary resolution, but they often require prolonged computation time, user-interaction or specialize training for
proper implementation and remain outside of the mainstream”*'**'. Hence, the development of a quick and
accurate segmentation strategy to deliver rich cell phenotype information could dramatically advance patient
diagnostics and drug discovery.

In a microscope system, the signal from a specimen first exists as emitted photons, which follow alight pathto a
photo-detector to be converted into a digital signal. During this process, several sources of error can obscure the
true signal and cause a loss of spatial resolution in raw images. Light gathered from a fluorescent specimen is
subject to the influence of the acquisition systems and its intensity is distributed spatially based on the system®.
The interference from the path as the light passes through the microscope system from the fluorescent specimen
to the detector makes the microscope essentially act as a physical spatial low pass (SLP) filter and blends fine
image features, like thin lines or edges, to reduce the local contrast™.
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This work introduces a segmentation scheme that takes advantage
of the concept of spatial filtering to effectively address segmentation
pitfalls that arise naturally during image acquisition. The method
requires minimal user interaction, is computationally inexpensive;
meanwhile, can produce accurate cell boundaries despite a range of
image conditions and cell morphologies. Hence, this approach can be
easily implemented as an add-on for existing open source software
packages to improve their ability to reliably segment fluorescent cell
images'®"!, and can directly promote high content quantitative mea-
surements of cell features, which are not accurately provided by
current methods.

Results
Intrinsic features of fluorescent cell images impede segmentation.
Cells expressing fluorescence proteins or dyed by a certain
fluorescence reagent emit a light signal that varies in intensity
spatially throughout the cell due to morphological features or
spatial exclusion by cellular organelles and lipid membranes.
Intensity profiles of raw images that capture the cell signal also
contain a variable noise that intrinsically arises during image
acquisition. In a histogram of the raw pixel intensities, the pixels
corresponding to the background region of the image typically
generate a large peak in occurrence at lower intensity values while
pixels corresponding to the cell signal are distributed broadly among
the higher intensity values, appearing as a ‘tail’ (Figure 1 a).
Segmentation is the process of identifying the pixels that corre-
spond to the cell signal in an image. For instance, segmentation by a

x

1500 2000 2500 3ooo 3500 4ooo
Intensity (au)

a 0.06

Count
o o
) S R
1 | |
1 Background

1000

(p}

Count

|
2500

|
2000
Intensity (au)

1000 1500

single intensity threshold aims to distinguish the cell signal from the
background by partitioning the image into two classes of pixels'>'*.
Setting the threshold near to the peak of the histogram may omit
much of the background and grant good segmentation for low
intensity cell features, such as cell protrusions; however, it also
includes some of the background noise and any background pixels
that have been influenced by the glare of nearby cellular fluorescence.
Alternatively, setting a threshold further from the histogram peak
will omit nearly all background pixels, but may also omit low intens-
ity regions of the cell signal.

Closer examination of the intensity profile of a cell image over the
cell body and one protrusion reveals that the peak intensity value of
the signal from the protrusion falls below the threshold value that
could properly segment the cell body region of the image (Figure 1 b).
This is a natural consequence of the image acquisition process, which
reveals that the pixels corresponding to the cell boundary in one
region of an image do not necessarily possess similar intensity values
to cell boundary pixels in another region of the same image, prevent-
ing accurate segmentation by a single threshold.

Furthermore, the intensity profile of a cell image can alter depend-
ing on the level of fluorescent protein expression, the current shape
configuration of the cell and/or the parameters of image acquisition.
For example, the exposure time of the camera can be manipulated to
allow more or less photons to reach the camera, resulting in images
with drastically different intensity profiles (Figure 1 c). As exposure
time is increased, the average intensity value of the image will
increase and a boundary determined solely by the statistics of the
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Figure 1 | Thelight signal from a fluorescent cell sample greatly affects digital image intensity profiles. (a) A histogram of the intensity distribution in a
typical fluorescent image of a NIH 3T3 fibroblast is shown. The raw image (both inset) was captured using T = 100 ms and 1000 bins were used to
construct the histogram. A segmentation threshold was calculated using the mixture of Gaussian (MoG) method and plotted as the vertical, red line,
separating the histogram into a background class (gray) and the remaining pixel intensities. The boundary that the MoG threshold produces is drawn in
red over the left inset image. A second segmentation threshold was calculated using Otsu’s method and plotted as the vertical, blue line. The boundary that
Otsu’s threshold produces is drawn in blue over the right inset image. Arrows indicate important regions of the image that were segmented differently by
each method. (b) Histograms of cropped images from two regions in the raw cell image are shown. The cropped image of one cell protrusion (left inset)
produces a histogram (gray) with a background class of pixels and small ‘tail’ corresponding to the cell protrusion signal. The boundary of a MoG
threshold is shown. The cropped image of the cell body (right inset) also produces a histogram (black) with a background class and a tail. The boundary of
an Otsu threshold is shown. The peak intensity (arrow) for the cropped image of the protrusion falls into the background pixel class of the cell body
histogram. (c) The intensity profile of a fluorescent image changes depending on the exposure time (t) during image acquisition. Images taken at T = 50,
100 and 300 ms (inset) generated histograms colored in red, black and blue, respectively. As T increases, the average image intensity also increases and the
background class appears to develop a wider and shorter intensity distribution. (d) The average background intensity of each different exposure was
subtracted to adjust the intensity of each histogram for comparison. A threshold (vertical red line) was chosen by eye to segment each adjusted image
(inset).
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background noise will progressively broaden (Figure 1 d). This effect
of average image intensity could cause some cells to seem larger after
segmentation only due to the apparent signal rather than physical
differences among cells for the aforementioned reasons. Segmenta-
tion strategies that do not account for this effect might generate
inaccurate boundaries from cell images, and further introduce error
into later phenotypic measurements.

Automated spatial filtering generates rapid and accurate cell
boundaries. Fluorescent cell images must be subjected to some
level of processing to avoid the pitfalls inherent in the intensity pro-
file of raw images and obtain a good segmentation result. Though
some sophisticated methods exist to segment cell images'®', we have
developed a new procedure that generates accurate segmentation
results without the need for high computational power or any
user-interaction (see Supplementary Figure S1 online for compari-
son). Briefly, a spatial low pass filter is applied to raw images, and the
resulting low pass result is re-scaled and then subtracted from the raw
image to produce the final processed image. This section describes
the process in greater detail.

In a raw image, edges of objects are visually apparent because they
possess high contrast from one pixel to the next; this contrast is
considered to be high spatial frequency content in the image. On
the other hand, the gradual changes in intensity that prevent good
segmentation are considered to be low spatial frequency content. In
plain terms, high spatial frequencies resemble tv static, edges or
narrow stripes that are close together while low spatial frequencies
appear as uneven illumination or blurriness. Thus, a potentially
effective approach to aid segmentation is spatial filtering, which
allows us to process images by enhancing or reducing only one type
of spatial frequency content'**.

For example, sharpening of raw images will enhance the high
spatial frequencies and improve contrast by making the intensity
differences between edge pixels more drastic. However, straightfor-
ward application of a high pass spatial filter also enhances the power
of the pixel noise, which also varies from pixel-to-pixel. On the other
hand, alow pass spatial filter can be applied first, and then subtracted
from the raw image values to achieve sharpening without aggravating
the pixel noise'>* (Figure 2 a). The applied low pass filter must match
the scale of the object it is meant to reveal through processing and its
dimensions can be calculated using an initial threshold to approx-
imate the size of a cell for sharpening applications (see Supple-
mentary Figure S2 online). However, without further processing,
such sharpened images often identify contrast within the region of
cell signal due to variability in cell morphology and could generate
false edges during segmentation'>*® (see Supplementary Figure S1
online).

This work introduces the key step of re-scaling the low pass
result before subtraction from a raw image to avoid the issue of
false edges and benefit segmentation greatly. In a cellular fluor-
escence image, the intensity profile of the low pass result always
exceeds the value of the raw image intensity profile at high contrast
regions in the image (Figure 2 b). After subtraction of the low pass
result from the raw image, this disparity generates a global min-
imum pixel value in the high pass image (Figure 2 c). At that pixel
position, the intensity value of the raw image and the low pass
result can be extracted to create a re-scaling factor. Then, direct
multiplication of the re-scaling factor with the entire low pass
image (subtracting the average background intensity beforehand)
reduces its intensity values so that its intensity profile can ‘fit’
underneath the original raw intensity profile (Figure 2 d).
Notably, the raw image and re-scaled low pass result will have
equivalent intensity at the point of the global minimum.
Ultimately, subtraction of the re-scaled low pass result from the
raw image intensity values yields a new image with boundary
pixels that are nearly within a single plane of intensity (Figure 2 e).

Inspection of a histogram for the final processed image reveals a
‘dip’ between the background peak and cell signal tail, and sub-
sequent segmentation of the new image reveals excellent agreement
with the apparent cell boundary (Figure 2 f). Further inspection of
two cropped regions within the original image demonstrates how the
respective histograms have automatically been ‘adjusted’ for differ-
ences in background level intensity. After processing, the cell signal is
clearly distinguished by a single threshold in both cropped images
(Figure 2 g). A closer look at each separate histogram suggests that
processing has augmented the raw image so that the mean back-
ground intensity has been adjusted locally due to the subtraction of
the re-scaled low pass result, greatly facilitating the ease of segmenta-
tion by a single threshold.

Automated spatial filtering is robust. Use of this automated
approach to process images taken at various exposure times re-
vealed segmentation results that were highly consistent (Figure 3a).
In addition, application of a de-noising algorithm, such as
anisotropic diffusion®, during the process before segmentation can
remove any remaining interference from the pixel noise at
boundaries and generates a highly accurate segmentation result. In
comparison to boundaries from raw images, boundaries determined
by this segmentation strategy are highly accurate and consistent
despite changes in image intensity profiles.

The boundaries extracted by this method can be directly compared
to other types of cell images taken at higher resolution to help sup-
port the segmentation accuracy. Variable pressure scanning electron
microscopy (VpSEM) was performed on the same exact fixed cells
that were imaged by fluorescence microscopy. This SEM technique
does not require surface modification or coatings and was chosen for
its ability to generate ultra-high resolved images of cells without
damaging their integrity*®. The boundary acquired from a fluor-
escent image was expanded and rotated (an affine transformation)
to overlay onto the vpSEM image, showing excellent agreement with
the apparent vpSEM image boundary (Figure 3 b). Similarly, com-
parison to a differential interference contrast (Nomarski) image of
the same cell, taken without using the binning feature of the camera,
showed very close agreement with the visually apparent boundary
(Figure 3 c). From the cross-comparison, it suggests that the pro-
posed method could detect subtle differences in cell morphology that
may have been previously undetectable.

Discussion
Even ideally prepared samples, free of debris or out-of-focus objects,
produce images that still contain segmentation pitfalls as a con-
sequence of the image acquisition process. Various imaging process
techniques have been developed to attack this issue from different
perspectives depending on the training and tools available to indi-
vidual researchers, each aiming to provide an acceptable measure-
ment of relevant cellular information. However, image processing
algorithms that are not capable of effective segmentation without
prolonged computation or user-interaction only provide a roadblock
to HCS applications; hence, less precise segmentation strategies are
chosen to promote speed. Our work presents a straightforward seg-
mentation strategy to automate the processing of raw images and
tackle the existing issues that hinder the development of a more
powerful class of assays based on morphology and localization.
The developed segmentation strategy possesses several advantages.
Firstly, it utilizes parameters taken directly from images so that user
involvement is minimal. Secondly, it is not iterative so that a stopping
criterion is unnecessary and it can be performed rapidly. Thirdly, this
method results in consistent boundaries even for heterogeneous
intensity profiles and for a wide range of signal-to-noise ratios from
various acquisition conditions. Hence, this method possesses the
capacity to capture highly dynamic cell behavior, regardless of cell
types that exhibit a wide range of morphologies and protrusions.
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Figure 2 | Subtraction of a re-scaled spatial low pass result from a raw image drastically improves subsequent segmentation. (a) Three images are
shown: a raw fluorescence image (left), the result of applying a spatial low pass filter to the raw image (middle), and the result of subtracting the low pass
image values from the raw image values (right), which produces a sharpened image, increasing contrast at the edges of the cell (arrows). (b) Selected
intensity profiles for the raw image (black) and the low pass result (red) are plotted according to the index of the global minimum in the sharpened image.
Part of the low pass intensity profile exceeds the raw image intensity (arrow). (c) Once the low pass result is subtracted from the raw image values (black),
the sharpened image intensity profile (red) will contain a global minimum (red arrow). The vertical blue line demonstrates the index of the minimum
point in the sharpened image. (d) The ratio of values between the raw (black) and low pass (red) image at the pixel index corresponding to the global
minimum (vertical blue line) is set as a scale factor to reduce the intensity of the low pass result (blue arrows). The scaled low pass result (blue curve) now
appears to ‘fit’ below the raw image intensity profile. (e) Subtraction of the scaled low pass result from the raw image values generates a new profile (black)
drastically improving the ability to perform segmentation by a single MoG threshold (red dotted line). This process treats the index of the global
minimum (vertical blue line) as part of the background since the value of the final image at that point equals the mean background intensity. (f) After
processing, the histogram of the final image appears to feature two distinct distributions (arrow). The boundary that a MoG threshold (vertical red line)
generates is shown (inset). (g) Histograms of two cropped regions in the final image are shown. Both the cropped image corresponding to one cell
protrusion (left inset) and part of the cell body (right inset) can now be segmented by a single MoG threshold.

In conclusion, this interdisciplinary work will directly impact the
transition from qualitative observation to quantitative measurement
of cell phenotype by not only providing effective segmentation, but
also fostering automated, high content cellular information. This will
grant the capability to generate the massive amount of biophysical
data necessary to identify important morphological subtleties and
propel biomedicine research into a new era.

Methods

Fluorescence microscopy. A Nikon TE-2000 microscope (Nikon, Melville, NY),
equipped X-Cite 120 PC fluorescent light source (EXFO, Ontario, Canada) and a

Cascade:1K CCD camera (Roper Scientific, Tucson, AZ), was used to acquire
microscopic images at 20X magnification. In addition, an on-stage incubator (In
Vivo Scientific, St. Louis, MO) with temperature control and a supplementary CO,
system was operated along with the microscope to maintain the experimental
environment at 10% CO, and 37°C.

Cell culture, plasmids and transfection. NIH 3T3 fibroblasts (ATCC, Manassas,
VA) were maintained in DMEM with 10% fetal bovine serum and 1% L-glutamine
(all purchased from Mediatech Inc., Manassas, VA) in a humidified incubator at 37°C
and 10% CO,. For transfection, cultured cells were prepared on fibronectin-coated
glass bottom dishes (MatTek, Ashland, MA) under normal culturing conditions for
24 hours. Then the cell culture was incubated in 1 ml Opti-MEM I Reduced Serum
Media (Invitrogen, Carlsbad, CA), which was supplemented with a premixed
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Figure 3 | Automated segmentation is robust and accurate. (a) Fixed cells imaged using progressively longer exposure times generate progressively
brighter images. A MoG threshold was used to segment each image and generate cell boundaries (top row) for images taken at T = 50, 100 and 300 ms,
colored red, white and blue, respectively. Each image was processed using the developed spatial filtering method and segmented by MoG thresholds to
generate cell boundaries (middle row). Pixel noise remained an issue after processing, especially for dimmer images with less signal-to-noise ratio.
Application of a de-noise algorithm (anisotropic diffusion) to the processed images before segmentation attenuated the pixel noise and greatly enhanced
the final cell boundaries. (b) Variable pressure scanning electron microscopy (vpSEM) was performed to image cell samples at a higher resolution than
fluorescence microscopy is capable without a coating such as gold. Segmentation was performed on raw images of the fluorescence signal (t = 100 ms)
based on the developed approach. The boundary of that segmentation was scaled and rotated to match the length scale of the vpSEM image and overlaid
onto it (dotted black line). (c) Dynamic interference contrast (DIC) microscopy was performed to capture an image of the cell sample for further
comparison. The same boundary generated from analysis of a fluorescence image was scaled to the length scale of the DIC image and overlaid onto it.

transfection solution, containing 4 pg pERFP-C-RS plasmid (Clontech, Mountain
View, CA) and 5 pl Lipofectamine 2000 (Invitrogen), for 1 hour to introduce the
plasmids into the cells. Afterward, the cells were then maintained in normal cell
culture media for further experiments.

Variable pressure scanning electron microscopy. Highly resolved cell images were
acquired by an S-3000N variable pressure scanning electron microscope (Hitachi, San
Francisco, CA). An acceleration voltage of 5 kilovolts and 10.3-mm working distance
were used. This type of scanning electron microscopy (SEM) uses a low vacuum
(60 Pa) to enable the imaging of samples without a special coating such as gold. Cells
expressing red fluorescence protein (RFP) were passed to glass slides and allowed to
adhere before being fixed in glutaraldehyde for 10 minutes, washed in phosphate
buffered saline and stored in de-ionized water. Cell samples were allowed to air dry
before the vpSEM experiments, and were imaged using fluorescence microscopy
immediately before and after the vpSEM to allow for direct comparison of the same
cells between the two techniques. In this case, sample shrinkage was not a concern
since only the fluorescent signal was of interest; hence, special freeze-drying was not
used to prepare samples.

Image analysis and threshold determination. Raw images were processed using a
custom-designed routine in Matlab (The MathWorks, Natick, MA) as described in
the results section.
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