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ABSTRACT
Objective To employ machine learning methods to
predict the eventual therapeutic response of breast
cancer patients after a single cycle of neoadjuvant
chemotherapy (NAC).
Materials and methods Quantitative dynamic
contrast-enhanced MRI and diffusion-weighted MRI data
were acquired on 28 patients before and after one cycle
of NAC. A total of 118 semiquantitative and quantitative
parameters were derived from these data and combined
with 11 clinical variables. We used Bayesian logistic
regression in combination with feature selection using a
machine learning framework for predictive model
building.
Results The best predictive models using feature
selection obtained an area under the curve of 0.86 and
an accuracy of 0.86, with a sensitivity of 0.88 and a
specificity of 0.82.
Discussion With the numerous options for NAC
available, development of a method to predict response
early in the course of therapy is needed. Unfortunately,
by the time most patients are found not to be
responding, their disease may no longer be surgically
resectable, and this situation could be avoided by the
development of techniques to assess response earlier in
the treatment regimen. The method outlined here is one
possible solution to this important clinical problem.
Conclusions Predictive modeling approaches based on
machine learning using readily available clinical and
quantitative MRI data show promise in distinguishing
breast cancer responders from non-responders after the
first cycle of NAC.

BACKGROUND AND SIGNIFICANCE
Chemotherapy for early stage breast cancer is most
often administered after surgery, in the adjuvant
setting. However, for patients with larger tumors,
tumors fixed to the chest wall, or those with clinic-
ally matted lymph nodes or skin involvement,
neoadjuvant chemotherapy (NAC) is often used. In
the neoadjuvant setting, patients receive chemo-
therapy before surgery to decrease the size of the
tumor to make it more amenable to surgery, that is,
to allow for a lumpectomy rather than a mastec-
tomy. NAC also provides an excellent opportunity
to observe whether a particular regimen is actually
beneficial. When chemotherapy is given in the adju-
vant setting, no ‘marker’ is available to determine
whether a treatment is eradicating micrometastatic
disease; neoadjuvant administration allows the
primary breast mass to function as this marker. If
the primary breast tumor responds to NAC, any

systemic micrometastases may also be responding.
If the primary tumor continues to grow, the treat-
ment can be changed to a regimen that could be
more effective for both primary and metastatic
disease. With the numerous options for neoadju-
vant treatment that have become available, develop-
ment of a method to predict response early in
the course of therapy is especially needed.
Furthermore, given the cumulative effect of chemo-
therapy toxicity, early identification of patients who
are not responding to a particular treatment would
allow for switching to a potentially more effective
regimen thereby avoiding unnecessary side effects.
Patients whose disease is chemorefractory could
be referred directly for surgery. Unfortunately, by
the time most patients are found not to be respond-
ing—often after 3–5 months of treatment—their
disease may no longer be surgically resectable.
The current standard of care radiological assess-

ment of tumor response to treatment is based on
the response evaluation criteria in solid tumors
(RECIST).1 RECIST offers a practical method for
assessing the overall tumor burden at baseline and
comparing that measurement to subsequent mea-
surements obtained during the course of therapy.
The data for a RECIST analysis are based on high-
resolution images (typically MRI or CT) acquired
at baseline before treatment has commenced. In
these image sets, ‘target lesions’ are determined
and the sum of their longest dimensions is
recorded. Additional scans are then acquired
during or after therapy and similarly analyzed. The
change in the sum of the longest diameters from
baseline to the follow-up studies are then calculated
and then used to divide treatment response into
one of four categories: complete response (dis-
appearance of all target lesions); partial response
(>30% decrease in the sum of the longest dia-
meters of the target lesions); progressive disease
(>20% increase in the sum of the longest dia-
meters of the target lesions); and stable disease
(none of the above). It is well recognized that this
approach needs to be significantly improved
because, for example, the metric for positive
response is based on one dimensional changes that
can be grossly misleading. Furthermore, this metric
is based on anatomical changes that are (tempor-
ally) downstream manifestations of underlying
physiological, cellular, or molecular changes. In
particular, RECIST-based evaluations generally do
not indicate whether a tumor is responding until
several treatment cycles of a therapy have been
given; a particularly important problem in the era
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of targeted therapies. We need newer methods to characterize
quantitatively the underlying changes as they are highly likely to
offer earlier and more specific responses to treatment indices
than changes in longest dimensions. One approach is to begin
to incorporate some of the more quantitative and specific non-
invasive imaging methods into clinical trials and practice; two
such examples are dynamic contrast enhanced MRI (DCE-MRI)
and diffusion weighted MRI (DW-MRI).

Going forward, early response assessment is especially rele-
vant as targeted therapies have found increasing use in the
neoadjuvant setting.2–4 In this contribution we seek to combine
two emerging, quantitative MRI methods (DCE-MRI and
DW-MRI) with routine clinical data to provide input to the
machine learning framework with the overall goal of developing
an algorithm to predict accurately the eventual therapeutic
response after a single cycle of NAC.

Machine learning approaches have the capability to generate
models for prediction by extensively searching through the
model and parameter space. Traditional statistical approaches
typically consider a limited finite set of hypotheses and evaluate
them, while machine learning methods generate a large number
of models and search through them. Machine learning methods
have been embraced by the biomedical informatics community
for predictive modeling and decision making in biomedicine.
For example, machine learning methods have been employed
for breast cancer screening,5 to discriminate malignant and
benign microcalcifications,6 for predicting breast cancer sur-
vival,7 and to model prognosis of breast cancer relapse.8

Machine learning methods have been shown to substantially
improve the accuracy of determining cancer susceptibility (risk),
as well as outcome (prognosis).9 As machine learning methods
can build models from large and complex datasets by identifying
the most relevant subset of features and combining them to
maximise predictive accuracy they are appropriate for model
building using a combination of clinical and imaging data.

Researchers have begun investigating the application of
machine learning techniques to imaging data for predicting
response to NAC in breast cancer.10 For example, using data
from 96 patients with tumor sizes assessed by positron emission
tomography at various stages of their chemotherapy treatment
Gyftodimos et al10 demonstrated the efficacy of machine learn-
ing methods for differentiating low responders to treatment
from high responders at an early stage of treatment. The posi-
tron emission tomography imaging data were manually pro-
cessed by a domain expert in their study while we use
automated feature extraction methods from magnetic resonance
images in our work. Two recent studies have used MRI for pre-
dicting therapeutic response following NAC.11 12 The second
study12 also considered gene expression profiles in addition to
MRI. However, both these studies used traditional statistical
methods for predictive model building.

In this study, we use Bayesian logistic regression (BLR) with
feature selection within a machine learning framework and inte-
grate clinical and imaging data obtained before and after one
cycle of NAC to predict the eventual response in breast cancer
patients undergoing NAC.

MATERIALS AND METHODS
Patient population
Patients who were undergoing NAC as a component of their
clinical care were eligible for the study. No previous systemic
therapies for breast cancer were allowed. All patients had histo-
logically documented invasive carcinoma of the breast with a
sufficient risk of recurrence to warrant the use of NAC at the

discretion of their treating medical oncologist. Participating
patients provided written informed consent to our institutional
review board-approved study.

Treatment regimens
The selection of NAC protocol was at the discretion of the treat-
ing oncologist. Patients with HER2+ tumors had one of the fol-
lowing regimens: adriamycin/cytoxan followed by taxol/
trastuzumab; docetaxel, carboplatin, and trastuzumab; or lapati-
nib and trastuzumab. Patients with HER2 disease were treated
with one of the following regimens: adriamycin/cytoxan fol-
lowed by taxol, or cisplatin/paclitaxel ± RAD001. Patients who
had ER/PR+ tumor all received endocrine therapy at the com-
pletion of chemotherapy.

Study design
Twenty-eight patients with stage II/III breast cancer were
enrolled in the study and completed at least two of the three
scans to provide usable data for the analysis. Quantitative MRI
data were acquired at baseline before initiating NAC (t1), after
one cycle of NAC (t2), and at the conclusion of NAC but just
before surgery (t3). The median age of the patients was 45 years
(range 28–67 years). The median time between t1 and t2 was
14 days (range 5–28 days) and the median time between t2
and t3 was 109 days (range 57–209 days). The post-therapy
tumor size was determined from the surgical specimen, and the
patients were classified according to the residual tumor size
found at the primary tumor sites; 11 patients were defined as
responders as there was no residual tumor in the breast or
lymph nodes (ie, they achieved pathological complete response),
while 17 patients were defined as non-responders as there was
the presence of cancer in the breast and/or lymph nodes.

MRI methods
There are two emerging, quantitative MRI methods that are
employed in this study, DCE-MRI and DW-MRI. A brief intro-
duction to the two methods including how MRI data were
acquired and processed for this study is provided in supplemen-
tary appendix I (available online only). A total of 118 imaging
variables was derived from the DCE-MRI and DW-MRI data.
A listing of all the imaging variables with a short description is
provided in supplementary table A (available online only).

Figure 1 presents illustrative DCE-MRI and DW-MRI data at
the three time points for a patient who achieved complete
pathological response (panels a–f ) and a patient who was a non-
responder (panels g–l). Panels a–c display the kep map from the
Tofts–Kety (TK) model, while panels d–f display the apparent
diffusion coefficient (ADC) map. Similar data are presented for
the non-responder in panels g–l. Observe how, in the respond-
ing patient, there is a substantial decrease in kep from t1 to t2 as
well as an increase in ADC between these two time points.
Conversely, in the non-responding patient there is an increase in
kep and a decrease in the ADC between these two time points.

Clinical variables
Eleven clinical variables available before initiation of the first
cycle of NAC were used for generating the predictive models.
A list of the variables with a short description for each is pro-
vided in table 1. Clinical and pathological variables have been
successfully combined to predict outcomes for patients with
early stage breast cancer. These rely primarily on pathological
data obtained at the time of surgery. For patients with locally
advanced disease who will be receiving NAC, this information
(tumor size and nodal status) is no longer available. Therefore,
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Figure 1 Illustrative dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) data at the three time points for a patient
who achieved complete pathological response (a–f ) and a patient who was a non-responder (g–l). Panels a–c display the kep map from the
Tofts–Kety model, while panels d–f display the apparent diffusion coefficient (ADC) map. Similar data are presented for the non-responder in panels
g–l. Observe how, in the responding patient, there is a 21% decrease in kep from t1 to t2 as well as a 38% increase in ADC between these two time
points. Conversely, in the non-responding patient there is a 27% increase in kep and a 25% decrease in the ADC between these two time points.

Table 1 List of pretreatment clinical variables with a short description

Clinical variable Description

Age Age at the time of diagnosis
ER+ Estrogen receptor
PR+ Progesterone receptor
HER2+ Human epidermal growth factor receptor
Clinical grade Pretreatment clinical grade
Proliferative rate No of cells in mitosis per 10 high power fields
Nodal status Pathologically confirmed by fine needle aspiration or sentinel node evaluation
Clinical-T Pretreatment clinical size based on clinical imaging (ie, physical examination, ultrasound, mammogram, conventional MRI) judged to be most

accurate for each case. In patients in whom these measurements were discordant, the most reliable measurement (as deemed by the treating
physician) was utilized to determine tumor size before chemotherapy

Clinical-N Pretreatment nodal stage based on pathologically confirmed by fine needle aspiration of node or sentinel evaluation
Clinical stage Staging of the breast cancer before initiation of NAC. Clinical staging includes physical examination as well as standard imaging including ultrasound,

mammogram and clinical MRI
Physical
examination

Longest diameter by physical examination (cm)

NAC, neoadjuvant chemotherapy.
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prediction models in the setting of NAC are not as robust.
Nomograms have been developed to estimate the probability of
pathological complete response following preoperative chemo-
therapy. Clinical variables are based on these previously pub-
lished nomograms13 14 and data that would be available to the
clinician at the time of diagnosis.

Machine learning methods
We generated three datasets: (1) imaging with 118 variables plus
the outcome variable (ie, response as measured by surgical path-
ology); (2) clinical with 11 variables plus the outcome variable;
and (3) imaging plus clinical consisting of 129 variables plus the
outcome variable. All the three datasets were used for predictive
modeling.

We defined the predictive modeling task using machine learn-
ing methods as follows: can we predict if the patient will
achieve complete pathological response by the conclusion of
NAC given imaging and clinical measurements of this patient
obtained no later than t2? In our previous pilot study we used a
representative set of machine learning algorithms for our pre-
dictive modeling task and the best performer was BLR.15 To
increase predictive performance, feature (attribute) selection
algorithms are often used to select a subset of the features that
are highly predictive of the class. By selecting a small number of
the most relevant features one is able to reduce the risk of over-
fitting the training data, thereby generating a more parsimonious
model. Three state-of-the-art feature selection methods were
used in our experiments: HITON-MB,16 Gram–Schmidt ortho-
gonalization (GS) with a maximum number of 10 features
output (GS-10),17 18 and BLCD-MB.16 19 HITON-MB and
BLCD-MB are guaranteed to find the Markov blanket (MB) of
the class (outcome) variable in the large sample limit. The
MB of a node X is the set of nodes in a Bayesian
network, which when conditioned on makes all the other nodes
(V\(MB(X) U X)) independent of X where V denotes the set of
variables in a Bayesian network. The GS feature selection algo-
rithm is particularly useful in practice. It adds a greedy forward
search to the ranking of variables obtained by the Pearson cor-
relation coefficient by conditioning on the variables already
selected (hence orthogonal to the set of variables already in the
selected feature set).20

We applied the GS algorithm by using the CLOP package.21

The only parameter of GS is the maximum number of features.
We used 10 so that GS would output a maximum of 10 top
ranking features over the entire feature set. We used the imple-
mentations of HITON-MB and BLCD-MB in the causal
explorer package.22 For HITON-MB, we used Fisher’s z-test for
continuous variables and the G2 test for discrete variables
(all variables in both clinical and imaging datasets were
treated as continuous). For BLCD-MB, we set the maximum
size of MB at 12.

We used a modified version of the BLR described in Saria
et al.23 BLR is similar to the basic logistic regression in the
regression step, but uses a Bayesian modeling framework to
capture the non-linear relationships between variables and the
outcome. We assumed that all continuous variables have a
Gaussian distribution, and the variables were evaluated based on
the parametric distribution conditional on the outcome variable.
For binary variables, the class conditional probability was con-
sidered along with non-informative priors. The log OR for each
independent variable was incorporated into the BLR model. We
tested the Gaussian assumption for the variables using the
Lilliefors test. However, 75 variables out of the 118 imaging
variables and nine out of 11 clinical variables did not conform
to a normal distribution at the 0.05 significance level. The
details of the BLR logistic function are provided in
supplementary appendix II (available online only).

Because of the modest sample size (n=28) we implemented
the leave one out (n-fold) cross-validation method, which uses
one sample in the test set and all the others for training. This
was repeated 28 times using a different test sample for each run.
Predictive models were built using the training samples and eval-
uated on the test sample. The general schema for predictive
model building is shown in figure 2. For each test sample we
output the probability of the positive class and use a threshold
(>0.5) to classify the sample as positive class (otherwise, it is
labeled negative). Note that this threshold may not be optimal

Figure 2 A general schema for predictive model building and
evaluation showing that model evaluation is performed using test data
that are not used for model building. pCR, pathological complete
response.

Table 2 Results using only clinical parameters (11 variables)

FS method Accuracy (95% CI) Precision (95% CI) Recall (95% CI) Specificity (95% CI) AUC (95% CI)

No-FS 0.750 (0.571 to 0.893) 0.813 (0.619 to 1.0) 0.765 (0.550 to 0.947) 0.727 (0.444 to 1.0) 0.759 (0.678 to 0.841)
GS-10 0.750 (0.571 to 0.893) 0.813 (0.600 to 1.0) 0.765 (0.533 to 0.944) 0.727 (0.455 to 1.0) 0.759 (0.678 to 0.841)
HITON-MB 0.786 (0.643 to 0.929) 1.000 (1.000 to 1.0) 0.647 (0.417 to 0.857) 1.000 (1.000 to 1.0) 0.647 (0.581 to 0.713)
BLCD-MB 0.786 (0.643 to 0.929) 1.000 (1.000 to 1.0) 0.647 (0.421 to 0.875) 1.000 (1.000 to 1.0) 0.647 (0.581 to 0.713)

FS, feature selection.
Each row represents the result by each feature selection method (no-FS means no feature selection or using all features).
Using only clinical parameters HITON-MB and BLCD-MB selected ER+ variable as the best and only predictor for 27 out of the 28 cross-validations runs.
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to obtain the best binary prediction. However, it is typically
used in machine learning and has the advantage of not overfit-
ting the data. To evaluate the probability output, we used the
area under the curve (AUC) score (ie, area under receiver oper-
ator characteristic curve). To evaluate the binary output, we
used accuracy, precision (positive predictive value), recall (sensi-
tivity) and specificity; 95% CI for all the outcome measures
were estimated using bootstrapping.

We also compared the BLR method with a non-BLR. The
comparison results reported are based on the use of
HITON-MB for feature selection as it performed the best
among the feature selection algorithms used in the study.

RESULTS
Three datasets were used for prediction (with and without
feature selection) and the results for clinical, imaging, and clinical
plus imaging datasets are shown in tables 2–4. The two
MB-based feature selection algorithms HITON-MB and
BLCD-MB were parsimonious in selecting only two (ER+, PR+)
from clinical, only two (mean ADC post one cycle of treatment,
mean of the change of the top 15% of kep as estimated by the TK
model) from imaging, and four (listed earlier for clinical and
imaging) when clinical and imaging variables were combined. On
the other hand, GS-10 selected all the 11 clinical variables (range
15–28 folds), 58 imaging variables (range 1–24 folds) and 60
(range 1–27 folds) when clinical and imaging variables were com-
bined. The range denotes the number of times a feature was
selected over the 28 cross-validation runs for each dataset.

Table 3 shows that feature selection played a key role and two
of the feature selection algorithms (HITON-MB and
BLCD-MB) selected only two (mean ADC post one cycle of
treatment, mean of the change of the top 15% of kep as esti-
mated by the TK model) of 118 features for all the cross-
validation runs. HITON-MB and BLCD-MB generated an
accuracy of 0.82 (23/28).

When both clinical and imaging features were combined the
accuracy increased to 0.86 (24/28) as shown in table 4. The top
two predictors were ER+ and the mean of the change of the
top 15% of kep as estimated by the TK model.

The comparison results of BLR with logistic regression are
presented in table 5. BLR outperformed logistic regression in all

the evaluation parameters for all the three datasets except the
AUC for the clinical variables only dataset.

We used bootstrapping to generate CI to compare the results
presented in tables 2 and 4, as well as for tables 3 and 4. If the
95% CI of the performance difference includes 0, then the dif-
ference is not significant, otherwise the difference is significant.
Our significance testing results (see tables 6 and 7) show
that 95% CI of accuracy and AUC include 0, therefore these
differences are not significant. The details are provided in
tables 6 and 7.

We assessed the calibration of BLR output by calculating the
Hosmer–Lemeshow (H-L) goodness-of-fit statistic. The H-L stat-
istic tests the hypothesis that the observed data are significantly
different from the predicted values of the model. A lower H-L
statistic and a higher p value (p > 0.05) indicate better calibra-
tion (degrees of freedom equal to 2 for χ2 distribution). Note
that the direction of the p value to indicate significance is differ-
ent than many standard statistical tests. BLR models with no
feature selection and GS-10 using clinical data were well cali-
brated. Likewise, BLR models with HITON-MB and BLCD-MB
using imaging data and imaging plus clinical datasets were also
well calibrated. The detailed results are shown in table 8.

We also evaluated the response to the first cycle of chemo-
therapy using the current state-of-the-art RECIST criteria as
follows. We calculated the percentage change of the longest
dimension as measured by MRI from t1 to t2 and then per-
formed the receiver operator characteristic analysis. The AUC
was 0.67, and the sensitivity, specificity, accuracy, and precision
were 81.8%, 64.7%, 71.4%, and 60.0%, respectively. We used
the Youden index to calculate these measures.

DISCUSSION
With the numerous options for neoadjuvant treatment that
have become available, development of a method to predict
response early in the course of therapy is especially needed.
Given the large number of patients being treated for breast
cancer, and the fact that most of the adverse effects of chemo-
therapy are cumulative, identifying patients who are not
responding to a particular treatment would allow for switching
to a potentially more effective regimen and avoiding unneces-
sary side effects. Unfortunately, by the time most patients are

Table 3 Results using only imaging parameters (118 variables)

FS method Accuracy (95% CI) Precision (95% CI) Recall (95% CI) Specificity (95% CI) AUC (95% CI)

No-FS 0.643 (0.464 to 0.821) 0.706 (0.471 to 0.923) 0.706 (0.471 to 0.905) 0.545 (0.231 to 0.857) 0.578 (0.484 to 0.672)
GS-10 0.464 (0.286 to 0.643) 0.583 (0.286 to 0.857) 0.412 (0.188 to 0.650) 0.545 (0.250 to 0.833) 0.545 (0.458 to 0.633)
HITON-MB 0.821 (0.679 to 0.964) 0.875 (0.688 to 1.000) 0.824 (0.615 to 1.000) 0.818 (0.556 to 1.000) 0.856 (0.785 to 0.926)
BLCD-MB 0.821 (0.679 to 0.964) 0.875 (0.688 to 1.000) 0.824 (0.625 to 1.000) 0.818 (0.556 to 1.000) 0.845 (0.775 to 0.915)

AUC, area under the curve; FS, feature selection.

Table 4 Results using both clinical and imaging data (129 variables)

FS method Accuracy (95% CI) Precision (95% CI) Recall (95% CI) Specificity (95% CI) AUC (95% CI)

No-FS 0.607 (0.429 to 0.786) 0.667 (0.438 to 0.882) 0.706 (0.474 to 0.923) 0.455 (0.143 to 0.750) 0.588 (0.496 to 0.680)
GS-10 0.643 (0.464 to 0.821) 0.733 (0.500 to 0.938) 0.647 (0.412 to 0.875) 0.636 (0.286 to 0.909) 0.674 (0.583 to 0.765)
HITON-MB 0.857 (0.714 to 0.964) 0.882 (0.692 to 1.000) 0.882 (0.700 to 1.000) 0.818 (0.556 to 1.000) 0.856 (0.781 to 0.930)
BLCD-MB 0.857 (0.714 to 0.964) 0.882 (0.706 to 1.000) 0.882 (0.706 to 1.000) 0.818 (0.556 to 1.000) 0.856 (0.781 to 0.930)

AUC, area under the curve; FS, feature selection.
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found not to be responding, their disease may no longer be sur-
gically resectable, and this situation could be avoided by the
development of techniques to assess response earlier in the
treatment regimen. If we could identify non-responders after
the first cycle of chemotherapy, we could use alternative agents
instead of subjecting the patient to the side effects of therapies
that are destined to fail.

Response to the first cycle of chemotherapy is currently mea-
sured using physical examination. Only patients who show clear
progression by clinical criteria are taken off therapy and often
then go directly to mastectomy. The development of imaging
parameters that could detect early response to treatment would
allow clinicians to change therapy early in the course of disease.
Such image-guided treatment strategies have been successfully
used in other diseases such as lymphomas.

The ability to identify—early in the course of therapy—
patients who are not going to achieve pathological complete
response with a given therapeutic regimen is highly significant.
In addition to limiting patients’ exposure to the toxicities asso-
ciated with unsuccessful therapies, it would allow patients the
opportunity to switch to a potentially more efficacious treat-
ment. As there are many therapeutic regimens available, and
many more being developed, switching treatment early in the
course of therapy is a very real option—but only if a reliable
method to determine early response were available.
Unfortunately, existing methods of determining response are
inadequate as they require long (ie, months) clinical observation
times and are often unreliable.

Although there are many studies that have used either serial
MRI scans or clinical parameters to assess tumor response to
NAC, this study is one of the few that has combined both clin-
ical and quantitative MRI parameters to predict response to
chemotherapy. This cohort of 28 patients has served as our pre-
dictive model learning set. In our study, predictive modeling
approaches using quantitative MRI parameters show promise in
distinguishing responders from non-responders after the first
cycle of NAC for breast cancer. Although imaging had better

overall performance than clinical parameters separately, using
imaging and clinical variables together boosted the performance
of BLR, resulting in an accuracy of 0.86 and an AUC also
of 0.86. The gain in performance was not statistically significant.
However, the models generated using a combination of clinical
and imaging parameters were much better calibrated (see
table 8). In general, models generated using HITON-MB and
BLCD-MB feature selection methods performed better than
GS-10 and no feature selection. This implies that the 118
imaging and possibly the 11 clinical variables used in our study
had many irrelevant attributes. The novel MB induction
methods such as HITON-MB16 24 and BLCD-MB19 25 per-
formed better because under the broad distributional assump-
tion of faithfulness, they find a unique and smallest set of
predictors that gives the largest predictive performance.26

Typically, researchers have applied feature selection methods
based on greedy search that are not optimal and the GS-10
feature selection method is also based on greedy search. The
Gaussian assumption made by BLR was violated by many of the
variables. It is likely that feature selection mitigated performance
degradation due to violation of this assumption.

Predicting pathological complete response with a high degree
of certainty following the first cycle of neoadjuvant therapy will
enable providers to stratify patients based on response and
channel early non-responders to alternative therapeutic proto-
cols. In our study we found that BLR with HITON-MB/
BLCD-MB feature selection algorithms using both clinical and
imaging parameters generated the best predictive model. This
approach was able to yield an AUC of 0.86 and an accuracy of
0.86, with a sensitivity of 0.88 and a specificity of 0.82. In com-
parison, the current state-of-the-art RECIST approach yielded
an AUC of 0.67 and an accuracy of 0.71, with a sensitivity of
0.82 and a specificity of 0.65, which is much lower than our
BLR with HITON-MB/BLCD-MB performance.

If the proposed method is validated in a greatly expanded
(and potentially multisite) patient set, then there exists the possi-
bility that the approach could be directly incorporated into the

Table 5 BLR results compared with non-BLR

Data method Accuracy (95% CI) Precision (95% CI) Recall (95% CI) Specificity (95% CI) AUC (95% CI)

Clinical-LR 0.714 (0.536 to 0.857) 0.846 (0.632 to 1.000) 0.647 (0.412 to 0.867) 0.818 (0.556 to 1.000) 0.674 (0.596 to 0.752)
Clinical-BLR 0.786 (0.643 to 0.929) 1.000 (1.000 to 1.000) 0.647 (0.417 to 0.857) 1.000 (1.000 to 1.000) 0.647 (0.581 to 0.713)
Image-LR 0.571 (0.393 to 0.750) 0.647 (0.409 to 0.875) 0.647 (0.412 to 0.875) 0.455 (0.143 to 0.769) 0.620 (0.541 to 0.699)
Image-BLR 0.821 (0.679 to 0.964) 0.875 (0.688 to 1.000) 0.824 (0.615 to 1.000) 0.818 (0.556 to 1.000) 0.856 (0.785 to 0.926)
Clin-Img-LR 0.786 (0.607 to 0.929) 0.824 (0.625 to 1.000) 0.824 (0.619 to 1.000) 0.727 (0.429 to 1.000) 0.840 (0.764 to 0.915)
Clin-Img-BLR 0.857 (0.714 to 0.964) 0.882 (0.692 to 1.000) 0.882 (0.700 to 1.000) 0.818 (0.556 to 1.000) 0.856 (0.781 to 0.930)

AUC, area under the curve; BLR, Bayesian logistic regression; LR, logistic regression.
HITON-MB was used for feature selection. Larger values are in bold. Clin-Img denotes clinical and imaging features.

Table 6 95% CI of performance difference for the different methods between the clinical only dataset and clinical plus imaging dataset
(table 2 vs table 4)

FS Accuracy 95% CI Precision 95% CI Recall 95%CI Specificity 95% C AUC 95% CI

No FS −0.321 to 0.036 −0.350 to 0.034 −0.267 to 0.143 −0.636 to 0.100 −0.451 to 0.103

GS-10 −0.250 to 0.036 −0.275 to 0.100 −0.294 to 0.000 −0.429 to 0.222 −0.272 to 0.077
HITON-MB −0.107 to 0.250 −0.294 to 0.000 0.056 to 0.462 −0.429 to 0.000 −0.057 to 0.475
BLCD-MB −0.107 to 0.250 −0.294 to 0.000 0.056 to 0.462 −0.429 to 0.000 −0.057 to 0.475

Bold entries are significant (recall using HITON-MB and BLCD-MB).
AUC, area under the curve; FS, feature selection.
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current clinical workflow. More specifically, a second quantita-
tive MRI examination (including both DCE-MRI and DW-MRI)
would need to be acquired after the first cycle of therapy. Then
the data from the pretreatment and post one cycle imaging data
could be combined with the clinical data and provided as input
to the algorithm/model as described above. The model will then
make a prediction as to whether the patient under investigation
is likely to achieve pathological complete response. At that
point, the decision to stay on the current therapy, switch to a
new one, or go straight to surgery would be made by the
patient’s oncology team. Again, this can only be accomplished if
the preliminary results obtained in this study are validated in a
larger investigation.

Because of our modest sample size we were not able to test
response based on the specific chemotherapeutic agent(s).
Likewise, we did not attempt to build patient-specific predictive
models using a subset of patients to tailor treatment more effect-
ively. We plan to test the predictive ability of this model in a
separate test set of patients from another institution before
putting it to clinical use.

CONCLUSION
We conclude that predictive modeling approaches based on
machine learning using readily available clinical and quantitative
MRI data show promise in distinguishing breast cancer respon-
ders from non-responders after the first cycle of NAC.
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