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ABSTRACT
Background An enduring challenge in personalized
medicine lies in selecting the right drug for each
individual patient. While testing of drugs on patients in
large trials is the only way to assess their clinical efficacy
and toxicity, we dramatically lack resources to test the
hundreds of drugs currently under development.
Therefore the use of preclinical model systems has been
intensively investigated as this approach enables
response to hundreds of drugs to be tested in multiple
cell lines in parallel.
Methods Two large-scale pharmacogenomic studies
recently screened multiple anticancer drugs on over 1000
cell lines. We propose to combine these datasets to
build and robustly validate genomic predictors of drug
response. We compared five different approaches for
building predictors of increasing complexity. We assessed
their performance in cross-validation and in two large
validation sets, one containing the same cell lines
present in the training set and another dataset
composed of cell lines that have never been used during
the training phase.
Results Sixteen drugs were found in common between
the datasets. We were able to validate multivariate
predictors for three out of the 16 tested drugs, namely
irinotecan, PD-0325901, and PLX4720. Moreover, we
observed that response to 17-AAG, an inhibitor of
Hsp90, could be efficiently predicted by the expression
level of a single gene, NQO1.
Conclusion These results suggest that genomic
predictors could be robustly validated for specific drugs.
If successfully validated in patients’ tumor cells, and
subsequently in clinical trials, they could act as
companion tests for the corresponding drugs and play
an important role in personalized medicine.

INTRODUCTION
The advent of personalized medicine raises many
practical challenges. In order to develop targeted
therapies for individuals, one must resort to the
lengthy and expensive process of drug development
and validation in clinical trials. While clinical trials
are the only way truly to assess drug efficacy and
toxicity, the scarcity of resources is not conducive
to the testing of the hundreds of drugs that are cur-
rently under development.1 Substantial efforts have
therefore been made to streamline drug develop-
ment and to optimize selection of the best drug
regimen for each individual patient. One possible
approach consists of directly measuring the sensitiv-
ity of a patient’s tumor cells to a drug of interest in
two/three-dimensional in-vitro cultures2 and
in-vivo models such as mouse xenograft and genet-
ically engineered mouse models.3 This approach

has the potential of capturing most of the relevant
biological features of a patient’s tumor, and there-
fore providing better models to test drug sensitivity.
However, such an approach is costly, time consum-
ing and hardly scalable to screen dozens or hun-
dreds of drugs in parallel.
Another approach proposed by several research

groups during the past decade is to build genomic
predictors of drug response from large panels of
cancer cell lines instead.4–10 Most studies relied on
high-throughput screening technologies to investi-
gate the sensitivity of these cancer cell lines to
numerous drugs. Once the genomic profiles of
these cell lines are measured (single nucleotide
polymorphisms (SNP) or gene expression profiles,
for instance), one can build statistical models pre-
dictive of drug response based on genomic data.
Such models could then be used to predict the sen-
sitivity of a patient’s tumor based on its genomic
profile.11 Assuming that these predictive models
yield clinical relevance, they could be used to
screen the sensitivity of a given patient’s tumor to
numerous drugs in parallel quickly at virtually no
cost. This explains in main part the enthusiasm of
the bioinformatics and biomedical communities in
building preclinical models of drug response.
The NCI60 cell line panel and associated drug

screen programs (CellMiner12 and developmental
therapeutics program)11 13 pioneered the use of
cancer cell lines to link drug sensitivity to genomic
data.6 12 14 The analysis of NCI60 led to the dis-
covery of mutations in BRAF and EGFR, which are
now known to be clinically relevant in predicting
response to vemurafenib and other kinase inhibi-
tors.15 16 Despite these advances, a large number
of cancer drugs has not yet been linked to specific
genomic features that could otherwise have been
used as biomarkers for assessing the selective thera-
peutic effectiveness of such drugs.17 In March
2012, two large-scale studies published in Nature
extended this initial dataset by generating pharma-
cogenomic data for several hundreds of cancer cell
lines, allowing a broader representation of the
genomic diversity of human cancers.4 5 Analyses of
these data are promising in improving our under-
standing of the mechanisms of action of well-
established and new drugs. This may in turn lead
to robust companion test development for these
drugs. This, however, is not a trivial task, as we are
increasingly coming to understand that it is not
individual genes but rather biological pathways that
drive the development of a particular phenotype
(response to an anticancer therapy for instance).
Given the complexity of the task and the risk of
artifactual discovery, there is an urgent need for
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combining large pharmacogenomic datasets to build robust
multivariate genomic predictors and for validating them on fully
independent data.

In this study, we use two large pharmacogenomic datasets and
compare different approaches in constructing models predictive
of sensitivity to multiple anticancer drugs. To the best of our
knowledge, this is the first time that both these datasets are ana-
lyzed in a single study, which should provide us with sufficient
sample size for both building robust predictors and validating
them in large, fully independent datasets. The generation of
genomic predictors of drug response in the preclinical setting
like the models we validated in our study and their incorpor-
ation into cancer clinical trial design could accelerate the emer-
gence of ‘personalized’ therapeutic regimens18 and therefore
dramatically improve cancer therapy.

MATERIALS AND METHODS
Cell lines and drug sensitivity
In order to develop robust genomic predictors of response to
anticancer drugs, we collected, curated, and annotated published
datasets of two recent large-scale preclinical studies, namely the
cancer genome project (CGP),5 and cancer cell line encyclope-
dia (CCLE).4 This large compendium of datasets, which
includes 1718 gene expression profiles of 1299 distinct cell
lines, was used to build and validate genomic predictors of sen-
sitivity to 16 drugs present both in CGP and CCLE datasets
(table 1). In each of these projects, cell line drug sensitivity was

measured as the concentration at which the drug inhibited 50%
of the cellular growth (IC50);

4 we represent drug sensitivity S as
S=−log10 (x/1 000 000) where x is the IC50 measured in micro-
molar (μM) units, as is common practice in the field of pharma-
cology. It is important to note that in the CCLE study, the
maximum concentration for inactive compounds was used
instead of the IC50. As IC50 values are formally impossible to
estimate for these inactive compounds, these values (56% of the
total number of IC50 measurements) were replaced with NA
(missing values) to avoid biases in our analyses.

Gene expression data
Raw gene expression profiles (Affymetrix CEL format) for 727
(CGP) and 991 (CCLE) cell lines were retrieved respectively
from ArrayExpress (E-MTAB-783), and the CCLE website
(http://www.broadinstitute.org/ccle/). These gene expression data
were normalized with frozen RMA19 using the bioconductor
chip description file packages (hgu133plus2 for CCLE and
hthgu133a for CGP). Affymetrix probesets were further anno-
tated with biomaRt.20 For each unique Entrez gene ID, we used
the R package jetset to select the best probeset21 such that a
gene is represented by only one probeset. Subsequent analyses
were restricted to the probesets common to the CCLE and CGP
datasets, for a total of 12 172 probesets/genes.

Analysis pipeline
As illustrated in figure 1, in order to estimate the feasibility of
predicting outcomes on an independent dataset, we first per-
formed a prevalidation analysis,22 which consisted of 10 repeti-
tions of 10-fold cross-validation for each of the models and for
each of the drugs in the CGP dataset. We then trained each of
the models with the full CGP dataset for each of the drugs and
tested them on each of the two following subsets of the CCLE
dataset: subset containing only cell lines that are common to
both the CGP and CCLE datasets (COMMON), and subset con-
taining only cell lines that are different between them (NEW).
This furthers the notion of building robust models that are port-
able and generalizable across multiple datasets.

Predictive models
To build genomic predictors of response to anticancer drugs we
implemented five linear methods of increasing complexity:

▸ SINGLEGENE: The gene most correlated with the
outcome (IC50), as estimated using Spearman correlation,
is used to fit a univariate regression model.

▸ RANKENSEMBLE: This method uses ranking based on
correlation to select the most relevant genes and then uses
an ensemble approach to combine the corresponding uni-
variate regression models. We used the simplest scheme of
ensemble combination as it consists of averaging the pre-
dictions computed by each univariate model (all models
therefore have the same weight in the combination).23

▸ RANKMULTIV: Based on the same ranking as
RANKENSEMBLE, most relevant genes are selected and
subsequently used to fit a multivariate regression model.

▸ MRMR: uses the minimum-redundancy maximum-
relevance (mRMR) technique24 25 to select the most rele-
vant and less redundant genes to include in a multivariate
regression model.

▸ ELASTICNET: Elastic net is an efficient, widely used regu-
larized regression technique,26 27 which was used in both
CCLE and CGP original publications.4 5

For RANKENSEMBLE, RANKMULTIV, and MRMR, the
number of selected genes was fixed to 30 to decrease the

Table 1 Anticancer drugs analyzed in the CGP

Compound Target(s) Class Organization

Erlotinib EGFR Kinase
inhibitor

Genentech

Lapatinib EGFR, HER2 Kinase
inhibitor

GlaxoSmithKline

PHA-665752 c-MET Kinase
inhibitor

Pfizer

Crizotinib c-MET, ALK Kinase
inhibitor

Pfizer

TAE684 ALK Kinase
inhibitor

Novartis

Nilotinib Abl/Bcr-Abl Kinase
inhibitor

Novartis

AZD0530 Src, Abl/Bcr-Abl, EGFR Kinase
inhibitor

AstraZeneca

Sorafenib Flt3, C-KIT, PDGFRbeta, RET,
Raf kinase B, Raf kinase C,
VEGFR-1, KDR, FLT4

Kinase
inhibitor

Bayer

PD-0332991 CDK4/6 Kinase
inhibitor

Pfizer

PLX4720 RAF Kinase
inhibitor

Plexxikon

PD-0325901 MEK Kinase
inhibitor

Pfizer

AZD6244 MEK Kinase
inhibitor

AstraZeneca

Nutlin-3 MDM2 Other Roche
17-AAG HSP90 Other Bristol-Myers

Squibb
Paclitaxel β-Tubulin Cytotoxic Bristol-Myers

Squibb
Irinotecan Topoisomerase I Cytotoxic Pfizer

Among the 131 drugs analyzed in the cancer genome project (CGP), 16 were also
analyzed in the cancer cell lines encyclopedia.
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computational time, to facilitate the comparison between
methods and because this ‘signature’ size has been reported as a
good trade-off between relevance and model complexity in pub-
lished comparative studies of predictive modeling from gene
expression data.28 29 For ELASTICNET, we used the same
approach as Barretina et al4 by selecting the optimal regulariza-
tion parameters α ε (0.2, 1.0) (10 values were tested) and λ=eγ,
where γ ε (−6, 5) (250 values tested), by optimizing the mean
squared error of the model in inner 10-fold cross-validation.

RESULTS
We used two large pharmacogenomic datasets, referred to as
CGP5 and CCLE,4 which include 1718 gene expression profiles
of 1299 distinct cell lines, to build and validate genomic predic-
tors of sensitivity to 16 drugs (table 1). Drug sensitivity (also
referred to as drug response), was measured based on the drug
concentration that induced an absolute growth inhibition of
50% (IC50).

There exists a plethora of machine learning methods to con-
struct predictive models from high dimensional data such as
gene expression profiles. In this study, we decided to focus on a
set of five linear methods of increasing complexity. The first
method (SINGLEGENE) is the simplest as it consists of a uni-
variate regression model using as input the gene correlating
strongest with the outcome (IC50). Because multiple genes are
expected to be required to predict sensitivity to most of the
drugs accurately, SINGLEGENE will mostly serve as a bench-
mark, allowing us to identify the drugs for which multivariate
models do not perform significantly better than a simple uni-
variate model. The RANKENSEMBLE and RANKMULTIV

methods use a ranking procedure to select the most relevant
genes based on their correlation with outcome. For
RANKENSEMBLE each selected gene is used to fit regression
models, which are further combined using a simple ensemble
approach in which models’ predictions are averaged. For
RANKMULTIV, all the selected genes are used to fit a multivari-
ate regression model. These models, although multivariate by
nature, do not take into account redundancy during feature
selection, as ranking is a filtering technique.30 31 Therefore, we
implemented the MRMR feature selection, as it selects the set
of genes most correlated with the outcome while minimizing
redundancy across selected genes;24 25 these genes are subse-
quently used in a multivariate regression model. Finally, we used
ELASTICNET,26 27 an efficient, well-established regularized
regression technique, which was used in the original publica-
tions of both the CCLE and CGP studies.4 5

We compared the five genomic predictive models in the train-
ing set (CGP) using a cross-validation framework consisting of
10 repetitions of 10-fold cross-validations (figure 1). We first
selected the 1000 genes exhibiting the highest variance in the
training set in order to reduce data dimensionality. We then pre-
validated predictors’ performance by computing the concord-
ance index, which is a generalization of the area under the
receiving characteristics operating curve.32 The concordance
index estimates the probability that, for a random pair of cell
lines, the model predicts correctly which is the most and less sen-
sitive cell line; a random predictive would yield an index of 0.5
while a perfect predictor yields an index of 1. As can be seen in
figure 2, we observed a significant and relatively good perform-
ance for nine out of 16 drugs (erlotinib, lapatinib, AZD0530,

Figure 1 Experimental design of the study. First we performed a prevalidation analysis of the genomic predictors for 16 anticancer drugs using
cross-validation in the training set cancer genome project (CGP). We then built genomic predictors using the full training set and evaluate their
performance in the cancer cell line encyclopedia (CCLE), a fully independent validation dataset. We split the validation dataset into two parts
containing the cell lines that are present in the training set (COMMON) or cell lines that are unique to the CCLE dataset (NEW).
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PD-0332991, PD-0325901, AZD6244, nutlin 3, 17-AAG, and
irinotecan), the MRMR and ELASTICNET yielding a concord-
ance index greater than 0.60 (p<0.05). Among these, genomic
predictors for lapatinib and 17-AAG exhibited the highest per-
formance, the best ones yielding R>0.69 (figure 2). However,
we were unable to build efficient predictors for seven of the
drugs (concordance index ≤ 0.6), namely PHA_665752, crizoti-
nib, TAE684, nilotinib, sorafenib, PLX4720 and paclitaxel.

We further validated the performance of the genomic predic-
tors in CCLE, a fully independent dataset.4 We divided the test
set (CCLE) into two subsets: the first subset (COMMON) con-
tains the cell lines that were also present in the training set
(CGP), comprising 419 cell lines, which can therefore be con-
sidered as biological replicates; the second subset (NEW) con-
tains the cell lines that were not analyzed in CGP, comprising
572 cell lines (figure 1). The latter validation set is the most
challenging as it allows us to address whether the genomic pre-
dictors are generalizable to new biological samples. As we can
see in figure 3, for biological replicates (CCLE COMMON), the
performance of the models predictive for irinotecan, 17-AAG,

PD-0325901, and PLX4720 is close to what was estimated in
our prevalidation study (concordance index>0.6 for MRMR
and ELASTICNET predictors). More importantly, this is also
the case for the CCLE NEW subset (figure 4), thereby demon-
strating the generalization of these genomic predictors.
Although predictors for AZD0530 and lapatinib performed well
in prevalidation (figure 2) this was not the case when validating
on new biological samples (CCLE COMMON and NEW;
figures 3 and 4).

DISCUSSION
During the past decade much effort has been made to build effi-
cient genomic predictors of drug response from preclinical
data.11 Until recently the number of cell lines and their lineage
diversity used in published studies were insufficient to develop
robust predictors. To address this issue, Garnet et al5 and
Barretina et al4 published two large pharmacogenomic datasets
of unprecedented size, including almost 1000 cell lines, each of
which are screened on clinically relevant drug compounds (CGP
and CCLE). However, these datasets have only been analyzed in

Figure 2 Mean prediction performance of the five genomic predictors evaluated in 10 repetitions of 10-fold cross-validation in the training set
cancer genome project (CGP), as quantified by the concordance index between the predicted and observed IC50 values. The error bars represent the
95% confidence interval of the performance computed during the 10 repetitions of cross-validation.

Figure 3 Prediction performance of the five genomic predictors in the validation set (cancer cell line encyclopedia COMMON) composed of the
419 cell lines that are also present in the training set cancer genome project. Prediction performance is quantified by the concordance index
between the predicted and observed IC50 values.
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isolation; we therefore seized this opportunity and combined
the datasets generated in these two important studies in order
to build and validate robustly the genomic predictors of drug
response.

Following five modeling approaches, we built and validated
genomic predictors for 16 drugs. In a prevalidation setting, we
were able to build performant predictors for nine out of 16
drugs (erlotinib, lapatinib, AZD0530, PD-0332991,
PD-0325901, AZD6244, nutlin 3, 17-AAG, and irinotecan)
while the response of the remaining seven drugs, namely
PHA_665752, crizotinib, TAE684, nilotinib, sorafenib,
PLX4720 and paclitaxel, could not be reliably predicted in the
training set. This can be explained by the fact that our study
relies solely on gene expression to predict drug response,
whereas genotyping data might be highly predictive for specific
drugs. For example, Barretina et al4 successfully predicted
response to paclitaxel in their own prevalidation analysis while
our predictors were unable to achieve comparable perfor-
mances. Similarly, Eng et al33 analyzed both SNP and gene
expression data measured on the NCI60 cell line panel and
showed a significant gain of predictive power by including SNP
data compared to gene expressions alone.

We further validated the performance of predictors for response
to irinotecan, 17-AAG, PD-0325901, and PLX4720 in two large
independent datasets. On the contrary, predictors for AZD0530
and lapatinib did not perform well on independent datasets calling
into question their reliability. Interestingly, the genomic predictors
for PD-0332991 performed well in prevalidation and in CCLE
COMMON but not in CCLE NEW, suggesting the mechanism of
action of this drug strongly depends on cell lineage.

The purpose of our study was also to compare different mod-
eling approaches; however, it is beyond the scope of our work to
identify which would be the best model for each drug we ana-
lyzed. The main differences in the five predictors we implemen-
ted can be described as follows: whether they are univariate
(SINGLEGENE) or multivariate (the rest); and whether there is
redundancy among the selected genes (RANKENSEMBLE and
RANKMULTIV) or not (MRMR and ELASTICNET). As
expected, given the putative complexity of the biological pro-
cesses underlying drug response, we observed that multivariate

models consistently outperform the univariate model.
Improvement over univariate model is substantial for multivari-
ate predictors of response to irinotecan, PD-0325901,
PD-0332991 and AZD6244. In the cases of PD-0325901 and
AZD6244, both drugs target mitogen-activated protein kinase
(MAPK/ERK kinase or MEK; table 1). The threonine/tyrosine
specificity of MEK is key to its implication in the MAPK signaling
pathway, which is frequently activated in human tumors. This
pathway involves a relatively large number of genes, supporting
the use of multivariate models in predictive analysis. Among the
genes with the highest predictive contributions (ie, a high coeffi-
cient absolute value) in all models for both drugs, we observe an
enrichment of FXYD5, SPRY2 and LGALS3BF (see supplemen-
tary table S1, available online only). This overlap between the
independent analyses of all models in both drugs suggests that a
combination of those genes’ expression levels is likely to yield a
robust predictor for sensitivity to MEK-targeting drugs. SPRY2
also emerged as one of the top predictors of cell response to the
drug AZD6244 across all models but the univariate model
SINGLEGENE. It is known that SPRY2 inhibits cell growth and
differentiation by specifically inhibiting the Ras/Raf/MAPK
pathway.34 Moreover, the identification of SPRY2 concurs with
the findings of Barretina et al.4

Our results suggest that response to 17-AAG could be
robustly predicted using a single gene, namely NQO1 (see sup-
plementary file 1) available online only). 17-AAG works as an
Hsp90 inhibitor, leading to the depletion of oncogenic proteins
such as Raf-1 and p53.35 Given its ansamycin benzoquinone
structure, 17-AAG is reduced into a potent antitumor metabol-
ite by the NAD(P)H:quinone oxidoreductase (NQO1).36

Indeed, the positive coefficient attributed to NQO1 in all
models (see supplementary file 1, available online only) indicates
that cell lines with higher levels of NQO1 expression have an
increased sensitivity to 17-AAG. This concurs with multiple
association studies in which a polymorphism in NQO1
(rs1800566), causing a decrease of enzymatic activity, has been
shown to be linked to a higher risk of gastrointestinal tract
cancer.37–39 In addition, Barretina et al4, using CCLE as the
training set, independently identified NQO1 as a potential bio-
marker for sensitivity to Hsp90 inhibitors.

Figure 4 Prediction performance of the five genomic predictors in the validation set (cancer cell line encyclopedia NEW) composed of the 572 cell
lines that are not present in the training set cancer genome project. Prediction performance is quantified by the concordance index between the
predicted and observed IC50 values.
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CONCLUSION
In our study we were able to build and validate robust predic-
tors of response to irinotecan, 17-AAG, PD-0325901, and
PLX4720. While multivariate models usually outperformed uni-
variate models, it was not the case for the drug 17-AAG, whose
response can be reliably predicted by a single gene. Although
these genomic predictors exhibited promising performance in
large, independent preclinical datasets, we now need to assess
their clinical relevance by testing them first ex vivo on patients’
tumor cells, then in clinical trials. If successful these predictors
could be used as companion tests to improve therapeutic bene-
fits by identifying the subpopulation of patients likely to
respond to a panel of drugs of interest.

Our study could be extended in several ways. First, we relied
solely on gene expression data whereas mutation data are avail-
able for both the CGP and CCLE datasets; we expect a joint
analysis of gene expression and mutation data to improve pre-
diction performance for some drugs, such as paclitaxel.4

Second, more modeling approaches could be integrated; non-
linear models such as k-nearest neighbors or support vector
machine with non-linear kernels might yield better prediction
for some of the difficult drugs (sorafenib or crizotinib, for
instance). Finally, NCI60,6 a small but high quality dataset,
could be added as a validation set even though the NCI60 cell
lines are all part of CGP and CCLE datasets, and drug mapping
between NCI60 and CGP or CCLE is complicated by the fact
that only drugs’ national service center numbers are provided in
CellMiner.12
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