Skip to main content
. 2013 Apr 18;20(4):778–786. doi: 10.1136/amiajnl-2012-001588

Table 2.

The average AUROC for each of the methods on banana data

Inline graphic LR OC-SVM OC-SVM (Neg) TC-SVM TC-SVM (CS) OP-SVM OP-SVM (CS)
5 (0.18%) 0.513 (±0.004) 0.857 (±0.005) 0.863 (±0.006) 0.867 (±0.007) 0.912 (±0.003) 0.929 (±0.002) 0.925 (±0.003)
10 (0.37%) 0.520 (±0.004) 0.865 (±0.004) 0.878 (±0.003) 0.877 (±0.004) 0.912 (±0.002) 0.932 (±0.002) 0.926 (±0.003)
15 (0.55%) 0.517 (±0.004) 0.869 (±0.004) 0.883 (±0.003) 0.898 (±0.003) 0.914 (±0.002) 0.935 (±0.001) 0.932 (±0.002)
20 (0.74%) 0.517 (±0.004) 0.872 (±0.004) 0.885 (±0.002) 0.904 (±0.003) 0.917 (±0.002) 0.935 (±0.001) 0.933 (±0.001)
25 (0.92%) 0.521 (±0.004) 0.877 (±0.003) 0.884 (±0.002) 0.909 (±0.003) 0.923 (±0.002) 0.935 (±0.001) 0.933 (±0.002)
30 (1.11%) 0.525 (±0.004) 0.875 (±0.003) 0.887 (±0.002) 0.919 (±0.003) 0.925 (±0.002) 0.936 (±0.001) 0.934 (±0.002)
35 (1.29%) 0.523 (±0.005) 0.875 (±0.003) 0.886 (±0.002) 0.927 (±0.002) 0.931 (±0.002) 0.936 (±0.001) 0.935 (±0.001)
40 (1.48%) 0.527 (±0.004) 0.876 (±0.003) 0.889 (±0.002) 0.930 (±0.002) 0.940 (±0.002) 0.937 (±0.001) 0.937 (±0.001)
45 (1.66%) 0.530 (±0.004) 0.876 (±0.003) 0.890 (±0.002) 0.937 (±0.002) 0.945 (±0.002) 0.938 (±0.001) 0.939 (±0.001)
50 (1.85%) 0.528 (±0.004) 0.876 (±0.003) 0.887 (±0.002) 0.938 (±0.002) 0.944 (±0.002) 0.937 (±0.001) 0.938 (±0.002)

The proportion of positive examples in training sets was varied from 0.18% to 1.85%. The best AUROC values are shown in boldface, with the second best shown in italics.

AUROC, area under the receiver operating characteristic curve; LR, logistic regression; OC-SVM, one-class support vector machine classification; OP-SVM, one-plus-class support vector machine; TC-SVM, two-class support vector machine classification.