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Genome integrity is challenged by DNA damage from both endogenous and environmental
sources. This damage must be repaired to allow both RNA and DNA polymerases to accu-
rately read and duplicate the information in the genome. Multiple repair enzymes scan the
DNA for problems, remove the offending damage, and restore the DNA duplex. These repair
mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM,
and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA
repair by phosphorylating repair proteins to modify their activities, by initiating a complex
series of changes in the local chromatin structure near the damage site, and by altering the
overall cellular environment to make it more conducive to repair. In this review, we focus on
these three levels of regulation to illustrate how the DNA damage kinases promote efficient
repair to maintain genome integrity and prevent disease.

The DNA in each of our cells accumulates
thousands of lesions every day. This dam-

aged DNA must be removed for the DNA code
to be read properly. Fortunately, cells contain
multiple DNA repair mechanisms including:
base excision repair (BER) that removes dam-
aged bases, mismatch repair (MMR) that rec-
ognizes base incorporation errors and base
damage, nucleotide excision repair (NER) that
removes bulky DNA adducts, and cross-link re-
pair (ICL) that removes interstrand cross-links.
In addition, breaks in the DNA backbone are
repaired via double-strand break (DSB) repair
pathways including homologous recombina-
tion (HR) and nonhomologous end joining
(NHEJ). Some of these mechanisms can operate
independently to repair simple lesions. Howev-
er, the repair of more complex lesions involving

multiple DNA processing steps is regulated by
the DNA damage response (DDR). For the most
difficult to repair lesions, the DDR can be essen-
tial for successful repair.

The DDR consists of multiple pathways, but
for the purposes of this review we will focus on
the DDR kinase signaling cascades controlled
by the phosphatidylinositol 3-kinase-related ki-
nases (PIKK). These kinases include DNA-
dependent protein kinase (DNA-PKcs), ataxia
telangiectasia-mutated (ATM), and ATM and
Rad3-related (ATR). DNA-PKcs and ATM are
primarily involved in DSB repair, whereas ATR
responds to a wide range of DNA lesions, espe-
cially those associated with DNA replication
(Cimprich and Cortez 2008). ATR’s versatility
makes it essential for the viability of replicating
cells in mice and humans (Brown and Baltimore
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2000; de Klein et al. 2000; Cortez et al. 2001).
In the case of ATM, inherited biallelic muta-
tions cause ataxia-telangiectasia—a disorder
characterized by neurodegeneration, immu-
nodeficiency, and cancer (Shiloh 2003; Lavin
2008). ATM mutations are also frequently found
in several types of tumors (Negrini et al. 2010).

The DDR kinases share several common
regulatory mechanisms of activation (Lovejoy
and Cortez 2009). All three DDR kinases sense
damage through protein–protein interactions
that serve to recruit the kinases to damage sites.
Once localized, posttranslational modifications
and other protein–protein interactions fully ac-
tivate the kinases to initate a cascade of phos-
phorylation events. The best-studied substrate
of DNA-PKcs is actually DNA-PKcs itself, and
autophosphorylation is an important step in
direct religation of the DSB via nonhomologous
end joining (NHEJ) (Weterings and Chen 2007;
Dobbs et al. 2010). ATM and ATR have both
unique and shared substrates that participate
in DNA repair, checkpoint signaling, and deter-
mining cell fate decisions such as apoptosis and
sensescence.

THREE LEVELS OF REPAIR REGULATION
BY THE DDR KINASES

DDR kinases control DNA repair at three levels
(Fig. 1). First, they regulate DNA repair enzymes
directly through posttranslational modifica-

tions that alter their activity. These modifica-
tions appear to be especially important in the
repair of complex lesions such as ICLs and repair
associated with stalled replication forks. Second,
the DDR kinases modify the chromatin near the
DNA lesion to create a permissive local environ-
ment for repair. This chromatin response also
provides a scaffolding function for the recruit-
ment of additional DDR factors regulating both
repair and signaling. Finally, the DDR kinases
act at a more global level of the nucleus or even
the entire cell to provide a cellular environment
conducive to repair. This global response in-
cludes changes in transcription, the cell cycle,
chromosome mobility, and deoxynucleotide
(dNTP) levels. Controlling these processes may
be most important for repair when damage is
persistent.

This review will highlight examples of each
level of regulation. For the direct regulation of
repair functions, we will discuss how DDR ki-
nases regulate ICL repair and more general rep-
lication fork-associated repair. In discussing the
local chromatin environment, we highlight the
important role of chromatin modifications sur-
rounding a DSB. Finally, at the global level, we
discuss how the DDR alters nuclear architecture
and maintains proper cellular dNTP pools to
promote repair.

DDR KINASES DIRECTLY REGULATE THE
REPLICATION-ASSOCIATED DNA REPAIR
MACHINERY

DNA lesions pose an especially important prob-
lem when they interfere with DNA polymerases.
Errors during DNA replication as well as mis-
takes in DNA repair cause mutations and chro-
mosomal aberrations that are a source of genetic
instability driving tumorigenesis. Additional-
ly, many rare childhood diseases are the result
of defects in replication-associated DNA repair.
These include Seckel syndrome caused by mu-
tations in ATR and other disorders caused by
mutations in ATR substrates like BLM, WRN,
and SMARCAL1 (Ciccia and Elledge 2010).
Thus, the DNA damage response is particularly
critical to ensure complete and accurate dupli-
cation of the genome.

Repair
machinery

Local
chromatin

Cellular
environment

DDR
kinases

Figure 1. DDR kinases promote efficient DNA repair
by directly regulating the DNA repair machinery,
changing the local chromatin environment near the
DNA lesion, and altering the cellular environment.
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ICL Repair during DNA Replication

Interstrand cross-links are perhaps the most dif-
ficult lesions to repair, requiring specialized
repair mechanisms governed by genes mutated
in patients with Fanconi anemia (FA), as well as
components of nucleotide excision and DSB
repair (Kim and D’Andrea 2012). In the context
of DNA replication, interstrand cross-links are
potent fork stalling lesions that activate ATR.

Perhaps for these reasons, the ATR kinase has
an especially critical function in initiating ICL
repair (Fig. 2).

When the ICL stalls a replication fork, the
DNA structure signals the recruitment of sever-
al Fanconi proteins beginning with the FANCM
helicase (Meetei et al. 2005; Raschle et al. 2008;
Knipscheer et al. 2009). FANCM may remodel
the damaged fork to help recruit the FA core
complex, a multisubunit ubiquitin ligase. An
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Figure 2. A simplified model of ICL repair indicating steps regulated by ATR phosphorylation.

DDR Kinase-Dependent Regulation of DNA Repair

Cite this article as Cold Spring Harb Perspect Biol 2013;5:a012724 3



essential activity of the core complex is mono-
ubiquitination of FANCD2 and FANCI within
the FANCI-FANCD2 (ID) complex (Garcia-
Higuera et al. 2001). Repair then initiates with
synchronized incision on both sides of the
cross-link. Incision may be mediated by the
flap endonuclease FAN1 whose ubiquitin-bind-
ing motif recognizes mono-ub FANCD2 and is
essential for ICL repair (Kratz et al. 2010; Liu et
al. 2010; Smogorzewska et al. 2010). Additional
nucleases such as those associated with SLX4
may also participate in ICL repair given that
SLX4 mutations cause FA (Kim et al. 2011). Fork
cleavage results in “unhooking” of the cross-link
allowing error-prone polymerases to extend past
the lesion and NER to remove the cross-linked
base. The unhooking reaction also generates a
DSB intermediate that is processed by HR to
restore the replication fork (Long et al. 2011).

ATR controls the earliest events in the FA
pathway and is essential for successful repair.
Thus, ATR-deficiency yields high sensitivity to
DNA cross-linking agents. ATR phosphorylates
several FA proteins including FANCD2, FANCI,
FANCA, FANCG, and FANCM (Andreassen et
al. 2004; Ishiai et al. 2008; Wilson et al. 2008;
Collins et al. 2009; Sobeck et al. 2009). The
phosphorylation of FANCI is a particularly crit-
ical event for FA pathway activation, as it is
needed for monoubiquitination and localiza-
tion of FANCD2 to sites of damage. FANCI is
phosphorylated on several conserved ATR and
ATM consensus sites (Matsuoka et al. 2007),
and mutants that cannot be phosphorylated pre-
vent FANCD2 mono-ub and cause hypersensi-
tivity tocross-linkingreagents(Ishiaietal.2008).
Expression of FANCI mutants that mimic phos-
phorylation induce FANCD2 monoubiquitina-
tion even in the absence of exogenous DNA-
damaging agents. These findings suggest that
FANCI phosphorylation is a necessary and
perhaps sufficient step for FANCD2 mono-
ubiquitination and FA pathway activation. The
mechanism by which phosphorylation induces
ubiquitylation remains unknown. However, it
should be noted that FANCI has WD40 repeats,
which might act analogous to F-box proteins
to recruit phosphorylated substrates for ubiq-
uitination.

Analysis of the crystal structure of the FANC
ID complex has revealed that the ubiquitination
sites are buried in the ID interface (Joo et al.
2011). It is possible that ATR phosphorylation
of ID in cis may inform ID of the presence of
dsDNA and ssDNA junctions. A simple model
would be that once phosphorylated at the cross-
link, the ID complex alters its conformation al-
lowing core complex recognition.

ATR may also regulate FANCD2 ubiquityla-
tion by targeting the FANCD2 deubiquitination
complex USP1-UAF1. Consistent with this no-
tion, USP1 was identified as a putative ATM/
ATR substrate (Matsuoka et al. 2007), and the
interaction of USP1/UAF1 with FANCI is reg-
ulated by DNA damage (Yang et al. 2011). Fur-
thermore, in response to DNA damage, USP1
undergoes inactivating autoproteolysis, further
promoting FANC ID ubiquitination.

The activities of other FA proteins including
FANCA and FANCG are also under the control
of the ATR kinase. FANCA is a direct ATR sub-
strate, and mutation of the phosphorylation site
creates a protein that cannot fully complement
FANCA-deficient cells (Collins et al. 2009).
FANCG is phosphorylated on multiple sites and
at least one (serine 7) is ATR-dependent (Wilson
et al. 2008). Phosphorylation of FANCG regu-
lates the interactions of BRCA2 with com-
ponents of the core complex and FANCD2.
FANCG S7 mutants fail to rescue the cross-
link sensitivity of FANCG-deficient cells (Qiao
et al. 2004).

In addition to controlling early events in
cross-link repair, the ATR pathway may also reg-
ulate later steps. For example, ATR regulates the
NER-dependent unhooking reaction pathway
by regulating the localization of XPA (Wu et al.
2007; Shell et al. 2009). Also, ATR regulates the
HR step by promoting the recruitment of the
key RAD51 recombinase (Sorensen et al. 2005).

Thus, ATR regulates nearly every step of
the ICL repair process. Why is this necessary?
Perhaps the answer lies in the complexity of
removing an ICL. ICL repair requires the co-
ordinated activities of multiple repair steps
often at a time of maximum vulnerability for
the genome (when the replication fork reaches
the cross-link). Perhaps ATR signaling provides
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a mechanism of ordering the repair steps to
prevent undesirable DNA intermediates, which
might yield aberrant repair products. In this
context, it might be expected that the more dif-
ficult a DNA lesion is to repair, the more im-
portant the DDR pathways become for success.

DDR Kinase-Dependent Regulation of
Replication Fork Repair Pathways

DDR regulation of ICL repair during DNA rep-
lication is a specialized version of a more general
DDR response that coordinates repair of stalled
forks. Base damage, dNTP depletion, and even
difficult to replicate sequences that form sec-
ondary structures or RNA–DNA hybrids can
cause fork damage. A stalled fork itself may
not be a particularly devastating event to a cell
because DNA replication will usually be com-
pleted from an adjacent origin of replication.
In such cases, the DDR stabilizes the damaged
fork to prevent aberrant DNA processing. In
other cases, such as in replication of fragile sites
that contain few replication origins, fork sta-
bilization may be insufficient and DDR ki-
nase-dependent restart of the stalled fork be-
comes essential (Casper et al. 2002).

The fork-stabilization activity of ATR is
functionally defined either in terms of the abil-
ity to restart replication once a blockage is re-
moved or by the changes in DNA or protein
composition at the fork. Yeast mutants deficient
in the ATR pathway lose the replicative polymer-
ases from the fork (Cobb et al. 2003, 2005; Lucca
et al. 2004) and accumulate abnormal DNA
structures including long stretches of ssDNA
and reversed fork structures resembling Holli-
day junctions (Lopes et al. 2001; Sogo et al.
2002). At least in yeast, the Exo1 nuclease is
involved in generating the excess ssDNA at the
stalled fork when the ATR pathway is inacti-
vated (Cotta-Ramusino et al. 2005). Loss of
ATR function in Xenopus extracts also causes
loss of Pol epsilon and collapse of the fork into
a DSB (Trenz et al. 2006).

Thus, one way ATR may stabilize a fork is by
preventing dissociation of replisome proteins
and thereby inhibiting aberrant enzymatic pro-
cessing of the DNA. However, a recent paper by

the Labib group has challenged this model (De
Piccoli et al. 2012). This group monitored rep-
lisome stability in budding yeast lacking the
Mec1ATR or Rad53Chk2 checkpoint kinases by
immunoprecipitating a subunit of the replica-
tive helicase and immunoblotting for other rep-
lisome proteins. In contrast to expectations, they
did not observe disassembly of the replisome,
and chromatin immunoprecipitation assays
suggested that the replisome remained near or-
igins in cells treated with high doses of hydroxy-
urea to stall forks. A subset of earlyorigins lacked
replisome proteins, but the authors concluded
that this was as a result of replisome movement
away from the earliest origins in the absence of
DDR kinase activity instead of replisome disas-
sembly. Thus, in this case, the ATR pathway may
be important for restraining fork movement. If
fork movement is not accompanied by produc-
tive leading and lagging strand synthesis, it could
help generate the ssDNA gaps observed by elec-
tron microscopy in Mec1ATR-deficient yeast.

Exactly how ATR prevents replisome disso-
ciation, movement, and aberrant fork process-
ing is one of the least understood parts of the
DDR. One DDR target is the downstream ki-
nase CHK1, which is activated by ATR phos-
phorylation and needed to prevent fork collapse
and regulate origin firing (Cimprich and Cortez
2008). Note that the mammalian and yeast
functions of CHK1 and CHK2 have been re-
versed during evolution so that human CHK1
is the functional equivalent of yeast Rad53 with
respect to replication fork regulation. ATR also
directly phosphorylates replisome components
including several Cdc45-MCM-GINS (CMG)
helicase subunits (Cortez et al. 2004; Yoo et al.
2004; Matsuoka et al. 2007; Shi et al. 2007; Trenz
et al. 2008; De Piccoli et al. 2012). Phosphory-
lation of CMG may regulate helicase activity
to prevent excessive unwinding and is impor-
tant to promote rescue of stalled forks from
adjacent origins.

In addition, other replication fork proteins
including RPA, CLASPIN, and members of the
replication fork-pausing complex like TIME-
LESS, TIPIN, and AND1 are ATR substrates
(Matsuoka et al. 2007). Deficiencies in these
proteins cause hypersensitivity to replication
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stress agents (Chou and Elledge 2006; Errico et
al. 2007; Unsal-Kacmaz et al. 2007; Yoshizawa-
Sugata and Masai 2007, 2009; Leman et al. 2010).
They act in part through promoting ATR-de-
pendent CHK1 activation but may have addi-
tional roles in regulating the repair of damaged
forks.

The DDR also targets several repair enzymes
that remodel damaged forks including WRN,
FANCM, and SMARCAL1. The WRN and
FANCM proteins are helicases capable of un-
winding a variety of complex DNA structures.
SMARCAL1 is an SNF2 family ATPase that is
activated by complex DNA structures and uses
the energy of ATP hydrolysis to reanneal DNA
strands (Yusufzai and Kadonaga 2008). All three
enzymes are recruited to damaged forks and can
catalyze fork regression generating a Holliday
junction on model replication substrates
(Machwe et al. 2006; Gari et al. 2008a; Betous
et al. 2012; Ciccia et al. 2012). They can also
branch migrate the Holliday junction, which
could restore the normal fork structure (Gari
et al. 2008b; Machwe et al. 2011; Betous et al.
2012). All three are targets of ATR phosphoryla-
tion (Yannone et al. 2001; Karmakar et al. 2002;
Pichierri et al. 2003; Meetei et al. 2005; Bansbach
et al. 2009; Sobeck et al. 2009; Ammazzalorso
et al. 2010), and deficiencies in WRN and
SMARCAL1 activity lead to MUS81-dependent
fork cleavage and DSB formation (Franchitto
et al. 2008; Betous et al. 2012).

ATR phosphorylation of WRN and FANCM
promotes their recruitment to stalled forks (So-
beck et al. 2009; Ammazzalorso et al. 2010), and
cells expressing a nonphosphorylatable mutant
WRN show increased fork breakage (Ammazza-
lorso et al. 2010). SMARCAL1 phosphorylation
by DDR kinases does not regulate its localiza-
tion but does regulate its enzymatic activity (D
Cortez, unpubl.). The exact substrates of these
fork remodeling enzymes at stalled forks and
how their activities promote fork restart in cells
is not yet known. Additionally, many other hel-
icases and DNA translocases including BLM
have roles at damaged forks and are regulated
by ATR phosphorylation (Davalos et al. 2004;
Li et al. 2004; Sengupta et al. 2004; Rao et al.
2005; Tripathi et al. 2008).

Clearly, a great deal remains to be learned
about how ATR promotes replication fork sta-
bility, replication-associated DNA repair, and
fork restart. These are likely the most important
functions of ATR in maintaining genome sta-
bility and cell viability based on results from
separation of function mutants in both yeast
and human ATR (Paciotti et al. 2001; Cobb
et al. 2005; Nam et al. 2011). Yet, they are also
arguably the least understood. The develop-
ment of new reversible ATR inhibitors (Charrier
et al. 2011; Reaper et al. 2011; Toledo et al. 2011),
as well as new techniques to study DNA repli-
cation such as iPOND should accelerate the
mechanistic studies (Sirbu et al. 2011, 2012).
Such studies will be equally critical in defining
the pathways that lead to the elevated levels of
replication stress observed in cancer cells (Hala-
zonetis et al. 2008). Combined with defects in
other genome-maintenance activities, this stress
creates an increased dependency on ATR for
successful cell division. Thus, the ATR pathway
is a promising target for new cancer drug devel-
opment. Defining how ATR inhibition alters
replication-associated DNA repair will be im-
portant for understanding the mechanism of
action of these drugs.

DDR REGULATES LOCAL CHROMATIN
STRUCTURE TO PROMOTE REPAIR

DNA lesions occur in various chromosomal
contexts including compacted and opened
chromatin, which influences both the activation
of the DDR and DNA repair efficiency. For ex-
ample, in highly condensed chromatin, repair-
ing the damaged structure is more difficult pre-
sumably because repair proteins are physically
occluded from accessing the damaged structure.
Independently of DDR kinases, an ATP-depen-
dent mechanism induces rapid chromatin re-
laxation around a DSB, and is required for
recruitment of break-sensing proteins (Kruh-
lak et al. 2006). However, several DDR kinase-
dependent local chromatin changes also pro-
mote a local environment conducive for repair.
These activities include creation of a chromatin
platform for recruitment of repair and signaling
factors, regulating repair factor accessibility to
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the DNA, and inhibition of nearby transcrip-
tion to prevent potential interference with DNA
repair (Fig. 3). Here we discuss the DDR-depen-
dent chromatin response as it relates to DSB
repair.

gH2AX as a Platform for DSB Repair

One of the earliest consequences of ATM activa-
tion at a DSB is phosphorylation of the histone
variant H2AX on an evolutionarily conserved
serine (S139) producing gH2AX (Fernandez-
Capetillo et al. 2004; Stucki and Jackson 2006;
Dickey et al. 2009). A complex of MRN, MDC1,
andgH2AX recruits additional ATM to flanking
regions of chromatin and facilitates propaga-
tion of gH2AX to a large chromatin domain.

gH2AX-MDC1 is a platform for the recruit-
ment of many additional chromatin modify-
ing, DDR signaling, and DNA repair proteins.
This scaffold recruits the RING ubiquitin ligases
RNF8 and RNF168 to trigger a ubiquitylation
cascade surrounding the DSB (Al-Hakim et al.
2010). This recruitment is mediated by ATM-
dependent phosphorylation sites on MDC1,
which are recognized by the FHA domain of
RNF8. Along with the E2 enzyme UBC13,
RNF8 catalyzes the formation of Lys63-linked
polyubiquitin chains at DSBs (Huen et al. 2007;
Kolas et al. 2007; Mailand et al. 2007). Subse-
quently, RNF168, the protein encoded by the
RIDDLIN syndrome gene recognizes and amp-
lifies these ubiquitin chains (Doil et al. 2009;

Stewart et al. 2009), whereas another ring finger
protein RNF169 antagonizes the ubiquitin cas-
cade (Chen et al. 2012; Poulsen et al. 2012). An-
other ATM substrate, HERC2, also regulates this
process. HERC2 contains an ATM phosphory-
lation site that binds the RNF8 FHA domain and
helps assemble the functional RNF8-UBC13 en-
zyme (Bekker-Jensen et al. 2010).

Ubiquitylation at the DSB regulates the re-
cruitment of the DSB repair proteins BRCA1
and 53BP1 (Al-Hakim et al. 2010). BRCA1 is it-
self a ubiquitin ligase and is regulated by ATM
and ATR-dependent phosphorylation (Cortez
et al. 1999; Tibbetts et al. 2000). BRCA1 is re-
cruited via an interaction with a complex of pro-
teins containing the K63-linked ubiquitin bind-
ing protein Rap80 (Kim et al. 2007; Sobhian et al.
2007; Wang et al. 2007; Yan et al. 2007). Three
distinct BRCA1 repair complexes (BRCA1-A,
BRCA1-B, and BRCA1-C) are recruited, which
contain different accessory proteins to regulate
checkpoint activation or HR repair (Greenberg
et al. 2006). 53BP1 accumulation near the DSB
is also dependent on these ubiquitylation events
although the mechanism is likely indirect. The
overall effect of BRCA1 and 53BP1 recruitment
downstream of histone phosphorylation and
ubiquitylation is likely regulation of repair
choice between NHEJ and HR.

In addition to recruiting repair factors to
a DSB, DDR-dependent H2AX phosphoryla-
tion also induces changes to chromatin struc-
ture by recruiting ATP-dependent chromatin
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Figure 3. DDR kinases regulate the chromatin near a double-strand break to provide a scaffold for the recruit-
ment of DNA repair proteins, promote repair protein access through nucleosome remodeling, and inhibit local
transcription.
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remodeling complexes including SWI/SNF,
SWR1, and INO80. The SWI/SNF chromatin
remodeling activity is targeted to DSBs through
interactions with acetylated H3 (Lee et al. 2010)
and BRIT1/MCPH1, a protein that binds
gH2AX after damage (Wood et al. 2007; Peng
et al. 2009). ATM and ATR phosphorylate a
SWI/SNF subunit leading to an increased asso-
ciation with BRIT1 and DSBs (Peng et al. 2009).
SWI/SNF presumably relaxes chromatin near
the break to improve access of DNA repair en-
zymes to the damaged DNA.

The INO80 and SWR1 complexes are re-
cruited to damage sites through direct interac-
tion with gH2AX. At least in yeast, these com-
plexes promote repair through two distinct
mechanisms. INO80 catalyzes histone removal
that facilitates Mre11 binding and DNA end re-
section to promote HR repair, whereas SWR1
promotes KU binding and NHEJ (van Attikum
et al. 2007; van Attikum and Gasser 2009).
INO80-dependent remodeling may also be im-
portant to promote the strand invasion step
of HR through displacement of histones at the
homologous donor sequences (Tsukuda et al.
2009).

H2AX-Independent but DDR Kinase-
Dependent Regulation of Local Chromatin

Besides gH2AX-dependent regulation of repair,
ATM controls other chromatin modifications to
allow access for repair factors. H2B is mono-
ubiquitylated near DSBs (Moyal et al. 2011).
H2B-Ub is catalyzed by an RNF20-RNF40 het-
erodimer (the human ortholog of yeast Bre1),
and this modification is typically associated with
actively transcribed genes (Zhu et al. 2005). The
levels of H2B-Ub increase near a DSB owing to
recruitment of the RNF20-RNF40 proteins
through a mechanism that may involve their
interaction with ATM and NBS1 (Moyal et al.
2011). Both RNF20 and RNF40 are ATM sub-
strates, and increased H2B-Ub surrounding the
break is dependent on RNF20 phosphorylation.
Both NHEJ and HR repair are impaired in cells
when the damage-induced H2B-Ub is prevented
(Moyal et al. 2011). The HR defect was traced to
a defect in DNA end resection and could be res-

cued by experimentally inducing chromatin re-
laxation. Reduced NHEJ is associated with less
XRCC4 and KU80 at the break in the absence of
H2B-Ub.

In addition to modulating H2B-Ub, a sec-
ond mechanism by which ATM relaxes chro-
matin to promote repair is through phos-
phorylation of KAP1 (Ziv et al. 2006). KAP1 is
a transcriptional corepressor that works with
histone methyltransferase and histone deacety-
lase complexes to promote chromatin compac-
tion. ATM-dependent KAP1 phosphorylation
disrupts an interaction between KAP1 and the
CHD3 nucleosome remodeler thereby promot-
ing chromatin relaxation (Goodarzi et al. 2011).
As a result, ATM is particularly important for
repair of DSBs that occur in heterochromatin
(Goodarzi et al. 2008a; Noon et al. 2010).

In addition to the examples of local chroma-
tin changes described here, there are changes in
other histone modifications regulated by DDR
kinases such as an ATM-dependent increase in
H2A-Ub that inhibits transcription near DSBs
(Shanbhag et al. 2010). There are also changes in
the binding of chromatin proteins and the abun-
dance of histone variants. Understanding how
the DDR kinases regulate the local chromatin
environment to promote repair of other types
of DNA lesions, such as those encountered by
elongating replication forks, will also be impor-
tant. Some of the mechanisms may be similar.
For example, gH2AX spreads away from stalled
forks similarly to the spreading observed at
DSBs (Sirbu et al. 2011). However, other mech-
anisms may be unique, adding to the complexity
of the chromatin response to DNA damage.

DDR KINASES FACILITATE REPAIR BY
CREATING AN OPTIMAL CELLULAR
ENVIRONMENT

In addition to promoting DNA repair through
direct regulation of repair proteins and changes
in the chromatin near the DNA damage site, the
DDR also facilitates repair through more global
changes in the cellular environment (Fig. 4).
The most obvious example of this mechanism
is the checkpoint activity of the DDR kinases,
which halts the cell cycle providing time to
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repair the DNA damage before DNA replication
or mitosis. Checkpoint-dependent changes in
cyclin-dependent kinase (CDK) activities also
influence DNA repair more directly because
many repair proteins are CDK substrates. A sec-
ond example is the numerous DDR kinase-de-
pendent changes in gene expression that are
largely mediated through regulation of p53. In
addition to inducing cell cycle arrest and apo-
ptosis, these transcriptional changes can alter
the levels of DNA repair proteins, as well as the
nucleotides and histones needed for completing
repair synthesis and restoring chromatin.

Furthermore, results from functional geno-
mic screens suggest a much broader regulation
of cellular physiology by the DDR. For example,
proteomic screens for ATM and ATR substrates
and genetic screens for new DDR factors based
on the level of ATM/ATR activity in undamaged
cells identified proteins involved in a wide vari-
ety of cellular functions including intracellular
protein trafficking, cellular immunity, and RNA
metabolism (Matsuoka et al. 2007; Lovejoy et al.
2009; Paulsen et al. 2009; Bansbach and Cortez
2011). In many cases, the connection between
these processes and the DDR kinases is likely to
promote a cellular environment conducive to
DNA repair.

Nuclear Organization and Chromosome
Movements Facilitate DNA Repair

One of the important DDR kinase-dependent
changes important for repair is regulation of

nuclear organization. The nucleus is a highly
organized organelle with compartments devot-
ed to specific functions. A long-standing ques-
tion is whether DNA repair occurs equally well
anywhere within the nucleus or whether there
are specific repair centers (Misteli and Souto-
glou 2009). Recent studies on DSB repair in
yeast suggest that repair centers exist and indi-
cate that DDR-dependent changes in chromo-
some mobility promote HR repair.

Observations of DSBs marked with fluores-
cent proteins revealed that unrepairable DSBs
move to the nuclear periphery and cells with
two DSBs merge them into a single repair fo-
cus (Nagai et al. 2008; Oza et al. 2009). More
recently, the Rothstein and Gasser groups have
shown increased chromosomal mobility with-
in the yeast nucleus because of a DSB (Dion et
al. 2012; Mine-Hattab and Rothstein 2012). The
increased movement depends on the Mec1ATR

kinase, resection of the DNA end, and the
RAD51 recombinase. Intriguingly, the Roth-
stein study also showed that the dynamics of
unbroken, nonhomologous chromosomes is
also increased in the presence of a DSB, sug-
gesting that DDR kinases regulate global nu-
clear architecture (Mine-Hattab and Rothstein
2012).

The end-result of the increased chromo-
some mobility is an increase in repair efficiency.
Likely this results from an increase in the ability
of the RAD51-coated DNA end to find a ho-
mologous sequence. Flexibility of the RAD51-
coated DNA fiber is important for an efficient
homology search (Forget and Kowalczykowski
2012). It is also possible that the movement to
or away from a specific nuclear location pro-
motes repair. For example, movement out of a
region containing heterochromatin or the nu-
cleolus might increase repair efficiency.

Whether similar changes in chromosome
dynamics occur in higher eukaryotes is less
clear. Several studies indicate that most DNA
ends are largely immobile in mammalian cells
(Nelms et al. 1998; Kruhlak et al. 2006; Souto-
glou et al. 2007; Jakob et al. 2009). However,
deprotected telomere ends have increased mo-
bility compared with protected telomeres (Di-
mitrova et al. 2008). This increased mobility

Chromosome
mobility

Cell cycle

DDR
kinases

RNR

NTP
dNTP

RNA
metabolism

Gene
expression

Figure 4. DDR kinases regulate several aspects of nu-
clear and cellular physiology to provide an environ-
ment conducive for successful DNA repair.
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depends on both ATM and 53BP1 and these
ends are repaired through NHEJ. ATM and
53BP1 also control antigen receptor diversifi-
cation, and chromosome movement may be
needed especially in the context of long-range
joining during class switch recombination
(Nussenzweig and Nussenzweig 2010). DSBs in-
duced by a particles are also mobile (Aten et al.
2004). Furthermore, breaks in heterochromatin
in Drosophila cells cause an expansion of the
heterochromatin domain followed by move-
ment of the repair focus outside of the hetero-
chromatin (Chiolo et al. 2011). These changes
in heterochromatin are dependent on the DDR
kinases and seem to be important after the re-
section step but before the RAD51-dependent
homology search for HR repair (Chiolo et al.
2011). Thus, at least in some circumstances
the increased mobility of broken chromo-
somes within the nucleus does occur in meta-
zoan cells.

The mechanism by which the DDR pro-
motes increased chromosome mobility is not
known. One clue might be found in the recent
observation that DNA attachments to the nucle-
ar pore are regulated by the DDR (Bermejo et al.
2011). In this yeast study, the authors found that
DDR kinase modification of nucleoporins re-
leases the interaction between tethered chromo-
somes and the pore. Another possible mecha-
nism could involve phosphorylation of KAP1,
which is observed throughout the nucleus.
KAP1 binds the heterochromatin protein HP1
and as mentioned earlier, KAP1 phosphoryla-
tion is important for the repair of breaks in het-
erochromatin (Goodarzi et al. 2008b). Finally,
DSB recruitment of chromatin remodeling fac-
tors such as INO80 and histone variants such as
H2A.Z may be important to promote the in-
crease in mobility (Kalocsay et al. 2009; Neu-
mann et al. 2012). Discovering the mechanisms
by which the DDR kinases regulate chromo-
some dynamics will provide important infor-
mation about nuclear architecture and how
chromosomal domains are maintained. In ad-
dition, these studies have significant implica-
tions for the mechanisms driving chromosomal
translocations and rearrangements that cause
cancer.

Control of Cellular Nucleotide Levels
for DNA Repair

Perhaps the best-documented example of how
the DDR kinases create a cellular environment
conducive for repair is through the regulation
of nucleotide metabolism. In yeast, the intracel-
lular concentration of dNTPs increases in re-
sponse to DNA damage, whereas in mammali-
an cells increased production may be more
localized (Chabes et al. 2003; Hakansson et al.
2006b). Higher concentrations of dNTPs cause
an increase in mutation frequency (Chabes et al.
2003). Not surprisingly, maintaining an optimal
balance of cellular dNTPs is a process strictly
controlled at multiple levels by the DDR kinases.

The rate-limiting step in dNTP production
is catalyzed by ribonucleotide reductase (RNR)
(Nordlund and Reichard 2006). RNR contains
two subunits, R1 and R2, encoded by multiple
genes in most organisms. DDR kinases regulate
RNR at almost every conceivable level. The tran-
scriptional regulation of RNR subunits was one
of the first documented functions of the DDR
(Elledge et al. 1993). In human cells, a DDR
kinase- and p53-dependent pathway induces
expression of the catalytic RNR subunit p53R2
after prolonged exposure to DNA damage (Ta-
naka et al. 2000).

In addition to RNR gene expression, the
DDR kinases directly regulate the stability of
RNR subunits. For example, ATM phosphory-
lation of p53R2 increases its stability (Chang et
al. 2008). Furthermore, ATR signaling inhibits
Cyclin F-dependent R2 degradation, which may
be a rapid way of increasing functional RNR
enzyme levels (D’Angiolella et al. 2012).

The ATR pathway also controls the localiza-
tion of the RNR subunits. In yeast, one of the
RNR subunits is exported to the cytoplasm after
damage to form an active RNR enzyme (Yao
et al. 2003). In mammalian cells, RNR subunits
may actually be recruited directly to sites of
DNA damage to ensure dNTP production right
where it is most needed (Niida et al. 2010).

Finally, in budding and fission yeast, small
protein inhibitors of RNR including Dif1, Sml1,
and Spd1 are regulated by DDR kinases. Dif1
and Spd1 control the localization of RNR sub-
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units by regulating nuclear import (Liu et al.
2003; Lee et al. 2008) whereas Sml1 and Spd1
are direct inhibitors of RNR activity (Zhao et al.
1998; Hakansson et al. 2006a). The proteolysis
of all three of these proteins is under control of
the DDR pathway (Zhao et al. 2001; Liu et al.
2003; Lee et al. 2008; Wu and Huang 2008).

Thus, the DDR kinases control the timely
and appropriate production of dNTPs for DNA
repair through transcriptional, posttranscrip-
tional, and localization mechanisms targeting
RNR. The importance of this pathway to create
an optimal cellular environment for repair and
replication is illustrated by the observation that,
in budding yeast, the lethality associated with
deleting Mec1ATR can be rescued by increasing
RNR activity (Desany et al. 1998; Zhao et al.
1998). Whether ATR regulation of RNR func-
tion is equally important in human cells is un-
known.

CONCLUDING REMARKS

The basic DNA repair machinery is often suffi-
cient to reconstitute simple repair reactions in
vitro on naked DNA substrates. However, effi-
cient repair often requires regulation by the
DNA damage response. The DDR kinases di-
rectly modify repair proteins, change chromatin
structure around the DNA lesion, and regulate
nuclear and cellular environments. Failures at
any of these levels cause genome instability and
disease. Not surprisingly, the list of DDR kinase
substrates is long and our understanding of their
regulation is incomplete. Fortunately, new tools
for discovery in multiple systems promise to
rapidly move us toward an intimate understand-
ing of mechanism. This knowledge may help in
the design of cancer therapeutic opportunities
based on manipulation of the DNA damage re-
sponse, epigenetic therapies, and combinations
with existing radiation and chemotherapies that
work primarily by damaging DNA.
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