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Geometric Hysteresis of
Alveolated Ductal Architecture
Low Reynolds number airflow in the pulmonary acinus and aerosol particle kinetics
therein are significantly conditioned by the nature of the tidal motion of alveolar duct ge-
ometry. At least two components of the ductal structure are known to exhibit stress-strain
hysteresis: smooth muscle within the alveolar entrance rings, and surfactant at the air-
tissue interface. We hypothesize that the geometric hysteresis of the alveolar duct is
largely determined by the interaction of the amount of smooth muscle and connective tis-
sue in ductal rings, septal tissue properties, and surface tension-surface area characteris-
tics of surfactant. To test this hypothesis, we have extended the well-known structural
model of the alveolar duct by Wilson and Bachofen (1982, “A Model for Mechanical
Structure of the Alveolar Duct,” J. Appl. Physiol. 52(4), pp. 1064–1070) by adding realis-
tic elastic and hysteretic properties of (1) the alveolar entrance ring, (2) septal tissue,
and (3) surfactant. With realistic values for tissue and surface properties, we conclude
that: (1) there is a significant, and underappreciated, amount of geometric hysteresis in
alveolar ductal architecture; and (2) the contribution of smooth muscle and surfactant
to geometric hysteresis are of opposite senses, tending toward cancellation. Quantita-
tively, the geometric hysteresis found experimentally by Miki et al. (1993, “Geometric
Hysteresis in Pulmonary Surface-to-Volume Ratio during Tidal Breathing,” J. Appl.
Physiol. 75(4), pp. 1630–1636) is consistent with little or no smooth muscle tone in
anesthetized rabbits in control conditions, and with substantial smooth muscle activation
following methacholine challenge. The observed local hysteretic boundary motion of
the acinar duct would result in irreversible acinar flow fields, which might be
important mechanistic contributors to aerosol mixing and deposition deep in the lung.
[DOI: 10.1115/1.4005380]
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Introduction

The airflow patterns of low Reynolds number acinar gas flow
and the fate of inhaled particles suspended therein are largely
determined by acinar wall motion. Due to the characteristic struc-
ture of the acinar duct, namely a thoroughfare channel surrounded
by numerous dead-end air pockets, a central channel flow passing
by alveoli induces a slowly rotating flow in a rhythmically
expanding/contracting alveolus. The alveolar flow with recircula-
tion can be chaotic under the effect of small disturbances [1]. Per-
turbation includes (1) the effects of small nonzero Reynolds
numbers (inertial effects) studied in, e.g., Tsuda et al. [2] and
Henry et al. [3,4], and (2) the effects of a small asynchrony
between ductal flow oscillation and cyclic alveolar wall motion
studied in, e.g., Haber et al. [5,6] and Haber and Tsuda [7]. The
focus of this study is on the latter case.

Whereas the principal mode of lung expansion approximately
satisfies geometric similarity [8–13], it is known that during tidal
ventilation geometric hysteresis does exist, albeit small in magni-
tude [11]. We have both experimentally and theoretically demon-
strated that the presence of such wall motion irreversibility (i.e.

temporal asynchrony), even if small in magnitude, can cause sig-
nificant acinar flow kinematic irreversibility and consequently
enhance aerosol mixing and deposition in the pulmonary acinus
[1–7,14–18]. The motivation for this study, therefore, was to iden-
tify and quantify the mechanical origins of acinar geometric
hysteresis.

Wilson and Bachofen’s [19] seminal work showed that acinar
airway architecture is maintained by a balance between forces
pulling the alveolar duct radially inward (hoop stresses associated
with tension borne in the connective tissue and smooth muscle in
the alveolar entrance ring), and forces retracting the duct radially
outward (primarily associated with alveolar septal surface tension
at the air-liquid interface, but which may also include septal tissue
tension). Due to cyclic expansion and contraction, these forces
behave hysteretically, (e.g., [20,21]), the resulting acinar geome-
try will display geometric hysteresis depending upon the balance
of stress hysteresis of these mechanical elements in series. For
example, if all elements mechanically in series display the same
time dependence of their stress relaxation or adaptation, then in
spite of even large stress hysteresis, there will be no geometric
hysteresis. By contrast, to the extent that the time courses of stress
adaptation between the ductal connective tissue, surface tension,
and septal tissue tension are not strictly proportional, then there
will be geometric hysteresis, in the sense of a different fractiona-
tion of acinar volume between duct and alveoli on inspiration and
expiration, at the same overall lung volume.
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We quantified these ideas in the context of a simple geometric
model of a rhythmically expanding/contracting alveolated duct,
whose alveolar septa are in mechanical equilibrium as described
above. We extended Wilson and Bachofen’s [19] analytical
model, using finite element computational techniques, to incorpo-
rate realistic, experimentally based, nonlinearly elastic and hyste-
retic behaviors of all stress bearing elements.

The analyses showed several patterns of geometric hysteresis
(including loop sense reversals as found by Miki et al. [11]),
depending on the magnitude of hysteretic characteristics of force
bearing elements. In particular, smooth muscle tone in the alveo-
lar entrance ring plays an important role in the geometrically hys-
teretic behavior of acinar architecture.

Materials and Methods

Model Geometry. Our simplified geometric model of acinar
architecture consists of three components (Fig. 1(a)). (1) The
outer boundary of the acinus is represented by a long expandable
closed-end cylindrical pipe whose kinematic motion is prescribed.
The outer boundary corresponds to what is described as primary
alveolar septa in development, here referred to as outer wall septa.
(2) The septa connecting the outer wall with the alveolar duct
(secondary septa developmentally) are represented by annular
disks, here referred to as simply radial septa. (3) The duct proper
is represented by stress bearing rings at the inner openings. In
Fig. 1(b), the manner in which this model represents actual paren-
chymal architecture is shown by the overlay of the model on a
photomicrograph showing the morphology of the alveolar space.
The model is axisymmetric, composed of repeated unit cells with
outer (acinar) and inner (ductal) radii of Ra and Rd, respectively,
and axial length L. Thus, the volume of the unit cell, bounded by
the outer wall and two neighboring radial septa (extended to two
neighboring disks), is pRa

2L; the surface S of the radial septa is

2p(Ra
2�Rd

2) (the factor of 2 arises from two radial septa facing
the interior of each unit cell). The thickness of the radial septa is
denoted by d.

Material Models. The material properties of each model com-
ponent are as follows. First, the major material constituents of the
alveolar entrance ring are connective tissue and smooth muscle
[22–24]. The connective tissue exhibit a nonlinear constitutive
law, and is hysteretic with a weak power law dependence on fre-
quency [25,26]. However, at breathing frequencies, its hysteresis
is low, which we neglect in comparison with that of the smooth
muscle. In short, we take the connective tissue to be essentially
elastic (i.e. history independent). By contrast, the smooth muscle
response is both nonlinear and displays significant hysteresis
[21,27,28]. A typical uniaxial stress/stretch curve for entrance
ring connective tissue of cat lung parenchyma is shown in
Fig. 2(a) [29]. Connective tissue within the radial and outer wall
septa is described by representative uniaxial and biaxial stress/
stretch curves in Fig. 2(b) [29,30]; this is described in more detail
below. Stress/stretch behavior of smooth muscle is shown in
Fig. 2(c), taken from Sasaki and Hoppin [21]; note the hysteresis
is present. The fractionation of the stress born in parallel within
the ductal ring between muscle and connective tissue is quantified
by a fraction m (approximated by the ductal ring volume density
of muscle), where 0<m< 1. This is a functional fractionation,
related to both the morphometric volume fraction and to the
degree of activation of the smooth muscle.

The radial septum is modeled as a membrane made of a nonlin-
ear elastic material with hardening characteristics. The constitu-
tive law for the mechanical behavior of homogeneous isotropic
membranes can be deduced from uniaxial or biaxial loading
experiments (e.g., [30,31]). First, we adopted the uniaxial curve of
Fukaya et al. [29] (Figs. 2(a) and 2(b) (right curve)). Because the
biaxial curve for alveolar septa has never been measured, we esti-
mated it from the material characteristics of a similar biological

Fig. 1 (a) Schematic of the model of alveolar duct: left panel – cross-section in the plane
orthogonal to the duct longitudinal axis, right panel – axial cross-section of duct; (b) represen-
tative geometric location of the model in the acinus, with morphology of alveolar space in lung
[10]
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membrane, cat mesentery, obtained by Hildebrandt et al. [30].
Assuming that the ratio between the biaxial and uniaxial stresses
at a given stretch is similar in both tissues, we estimated the biax-
ial curve of alveolar septa (Fig. 2(b) (left curve)) based on the uni-
axial curve measured by Fukaya et al. [29]. For general loading,
the stress/stretch states lie between the biaxial and uniaxial curves.
Our algorithm (see Appendix) computes stresses for in-plane
stretches in the principal strain directions; in our case these are
circumferential (or hoop) and radial directions.

The surface of the model is covered by surfactant (Fig. 1(a)).
The air-liquid interface generates surface tension c, which is an
external load on the tissue surface. We assume a no-slip condition
between the surfactant layer and the underlying tissue; this
implies that the surface tension may vary locally as it follows
potentially non-uniform strain in the radial septa. The surface
tension-surface area relationship exhibits hysteretic behavior dur-
ing cyclic motion. It has been measured surfactometrically from
bronchoalveolar lavage (BAL) fluid extracts [20], by models and
inferences from pressure-volume (PV) curves and morphometry
in excised and intact lungs [32–35], and by direct observation of
the spread of liquid droplets [33,36]. The constitutive relationship
(Fig. 2(d)), calculated by Wilson [35] based on PV curves and
morphometry in rabbits [10,37] is used in this study. Note that all
material models shown in Fig. 2 rely on data obtained under
quasi-static conditions. The above is a simplification; indeed, the
hysteretic behavior of surfactant during quiet breathing remains
controversial [38,39]. Nevertheless, to the extent that we choose
to lump all the septal hysteresis in the surfactant layer, given that
it is mechanically in parallel with septal tissue with a no-slip con-
dition, this artificial compartmentalization is likely to give rise to
only minor differences in behavior.

Boundary Conditions. The outer wall septa of the model
expand and contract in a geometrically similar fashion, represent-
ing the principal mode of lung expansion [8–13]. We take the
time dependence to be sinusoidal, although the temporal evolution
in this work is entirely a sequence of quasi-steady states; there are
no dynamics per se, and time plays only a role of a parameter

which labels the volume. We write the radial and axial motions of
the outer acinar boundary, Ra(t) and L(t), as

RaðtÞ ¼ Rmean � ð1=2ÞDRa cos t

LðtÞ ¼ Lð0ÞRaðtÞ=Rað0Þ (1)

where Rmean and DRa are the mean radius and the peak-to-peak
amplitude of the outer boundary radial displacement, which we
take numerically to be 328 lm and 176 lm respectively. Note that
the peak-to-peak amplitude of radial displacement corresponds to
the volume change from minimal volume to total lung capacity,
similar to simulations by Denny and Schroter [40]. We take the
aspect ratio of alveoli to approximate spherical symmetry, and set
L(0)¼Ra(0)�Rd(0). The initial radius of the duct Rd(0) is taken
as 120 lm. The initial thicknesses of both the radial and outer wall
septa are taken to be 5 lm, and the initial cross-sectional area of
the alveolar entrance ring to be 25 lm2 [22,32]. As noted above,
time is only a parameter in this model, for convenience we take
the period as 2p. Minimal volume occurs at time zero, at which
point all elements (including surfactant) of the microstructure are
assumed to be stress free. This corresponds to the zero transpul-
monary state in an excised preparation.

Note that we are taking displacements as boundary conditions.
From the whole organ point of view, lung displacements are
driven by variations in pleural pressure, and therefore pressure
boundary conditions would be most appropriate. On the other
hand, at this level of modeling the geometric characteristics of the
acinus, and in particular its geometric hysteresis, there is necessar-
ily a unique relationship, albeit history dependent, between vol-
ume displacements and pressure. In that sense, dealing with
volume displacements as boundary conditions as in Eq. (1) and
computing the resulting pressures, is equivalent to setting pressure
variations as the independent variable and computing the resulting
volume displacements.

The Governing Equations for the Radial Septa. The quasi-
static deformations of the radial septum and entrance ring can be
determined by solving the two equilibrium equations for stresses

Fig. 2 Material models used in the analysis. (a) Uniaxial model for connective tissue of
alveolar ring [29]; (b) Biaxial model for septum tissue [29,30]; (c) Hysteretic model of mus-
cle constituent of ring material [21]; (d) Hysteretic characteristic of surfactant [35].
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rxx, ryy, rxy, in local Cartesian coordinates x and y in the septal
plane:

@rxx

@x
þ @rxy

@y
¼ 0

@rxy

@x
þ @ryy

@y
¼ 0

(2)

The task in our analysis is to calculate, for a given radial displace-
ment and history of the outer wall (the independent variable), the
radial displacements of the alveolar entrance ring and septum in a
way that satisfy these equilibrium equations together with the
stresses and strains within the tissue and surfactant obeying the
(hysteretic) constitutive laws.

Numerical Model. The magnitude of strains that we simulate
is too large for use of a linear approximation schemes. We use a
displacement based finite element numerical method [41–43] and
implement the features of nonlinear, hysteretic materials into the
finite element program PAK [44]. One quarter of the septum is
considered with imposed symmetric boundary conditions along
the x and y axes (Fig. 3). Note that by virtue of circumferential
symmetry of the radial boundary conditions at Rd and Ra, the
solution inherits this same symmetry. We specify the radial

displacement at the outer septum radius as shown in Fig. 3 as
arrows indicating displacements of Ra at the boundary.

Briefly, the alveolar entrance ring is modeled by line finite ele-
ments connecting the finite element nodes on the internal rim. In
calculating the nodal forces resulting from the alveolar ring defor-
mation, we use the material characteristics of each constituent,
shown in Fig. 2(c) for muscle and in Fig. 2(a) for connective tis-
sue. The alveolar septal membrane is modeled by isoparametric
shell/membrane finite elements, with a biaxial material model
(Fig. 2(b)). Surfactant is modeled by calculation of stresses in tis-
sue due to surfactant, and then the nodal forces of the line and
shell finite elements generated by surface tension (Fig. 2(d)) are
evaluated. The stresses in tissue at a given point, caused by sur-
face tension, depend on the history dependent local surfactant
area strain of the surfactant surface at that point (see Appendix for
details).

Our model consisted of 70 membrane elements and 10 line ele-
ments for the entrance ring with 88 nodal points. The number of
steps in the incremental analysis was 250 (125 for inspiration and
125 for the expiration regime). Implicit incremental procedure
[41,43] and implicit stress integration scheme of the constitutive
relations [42,45] where implemented as the methods which pro-
vide the best solution accuracy; details are given in the Appendix.
We used tight equilibrium iteration tolerance of 10�6 in order to
secure solution accuracy at each load step.

Fig. 4 Geometric hysteresis within the alveolar duct. (a) Case without surfactant. Geometric
hystersesis is due to hysteresis of muscle constituent within the alveolar entrance ring and it
increases with increasing m. The S-V hysteresis loop has a clockwise direction for one breath-
ing cycle. (b) Case with surfactant. The S-V hysteresis loop due to surfactant has counterclock-
wise direction (condition with no muscle constituent, m 5 0). Since S-V hysteresis loops
corresponding to muscle and surfactant have the opposite senses, the resulting hysteresis is
smaller when m 5 0.5 with respect to m 5 0 and the loop changes the direction for m 5 1.

Fig. 3 Finite element model of alveolar duct. Septum is modeled by membrane (shell)
finite elements and ring is modeled by line finite elements. Deformations of ring and
septum are calculated for prescribed radial displacement of the outer (acinar) boundary
DRa 5 DRa,max sin t. Time is a parameter controlling volume history; no dynamics are
associated with it. Solution is obtained incrementally using 250 steps over the breathing
cycle.
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Quantifying Geometric Hysteresis. We define a coefficient
of geometric hysteresis ggeom by the ratio of the loop area on the
surface area-volume plot to the area of the bounding rectangle
enclosing the loop. This definition is an exact analogy to the shape
factor for pressure-volume hysteresis introduced by Bachofen and
Hildebrandt [46] and extended to non-elliptical curves by Fred-
berg and Stamenovic [47] (this construction is shown graphically
as a cartoon in Fig. 5). Trajectories of material points on the inter-
nal architecture display hysteretic character over breathing cycles
(Fig. 7) and we have introduced a measure of hysteresis in dis-
placements, the displacement hysteresis coefficient Shyster (Fig. 8),
in an analogous way as for the area-volume hysteresis.

Results

Geometric hysteresis represented by a septal surface - duct vol-
ume relationship is shown in Fig. 4. When surfactant is absent
(Fig. 4(a)), the degree of geometric hysteresis in the S-V loop
depends entirely on the amount of muscle constituent in the alveo-
lar entrance ring; no S-V geometric hysteresis occurs with m¼ 0.
As the amount of muscle fraction increases, the magnitude of geo-
metric hysteresis increases (see m¼ 0.5, 1 in Fig. 4(a)). Note that
the S-V hysteresis associated with muscle is clockwise in the S-V
loop. By contrast, the S-V hysteresis associated with surfactant (in
the absence of muscle, m¼ 0) is counterclockwise in the S-V loop
(see m¼ 0 in Fig. 4(b)). A mechanism responsible for these
opposing loop directions is described in the Discussion section.
With surfactant, the extent of geometric hysteresis decreases as
the amount of muscle increases (e.g., m¼ 0.5), but is still domi-
nated by the hysteretic characteristics of surfactant seen because
the overall S-V loop remains counterclockwise (see m¼ 0.5 in
Fig. 4(b)). With further increase in the amount of muscle (the limit
m¼ 1), however, the S-V loop changes its direction to largely
clockwise, showing a dominant role of muscle-driven hysteresis
over surfactant-driven hysteresis (see m¼ 1 in Fig. 4(b)). Finally,
it should be noted that these directional changes of geometric hys-
teresis due to the relative contribution of muscle-driven hysteresis
to surfactant-driven hysteresis have indeed been observed in the
lungs of live rabbits by Miki et al. [11] (see the Discussion
section).

In Fig. 5, the coefficient of geometric hysteresis ggeom is plotted
with respect to muscle fraction in alveolar duct, m, for cases with
and without surfactant. Note that our sign convention is to take
Ahyster and hence ggeom positive or negative as the S-V loop is
counterclockwise or clockwise, respectively. Without surfactant,
ggeom is negative, and quantifies the clockwise S-V hysteresis

entirely due to the hysteretic characteristics of muscle in the
alveolar entrance ring. With surfactant present, on the other hand,
ggeom is positive for lower m values, consistent with the counter-
clockwise S-V hysteresis being dominated by surfactant; however,
ggeom becomes negative for higher m values, showing a progres-
sive domination by muscle. These two effects are balanced at a
muscle fraction of m � 0.72, at which no net geometric hysteresis
is observed.

Geometric hysteresis observed in the S-V loop (Figs. 4 and 5)
are indeed originated from the hysteresis (or asynchrony) in radial
septal displacements. This will be shown next in detail. We pres-
ent change of the septal radii over one cycle, trajectories of mate-
rial points of the septum, and radial displacement hysteresis
(Figs. 6–8, respectively). The results are obtained assuming that
the septum is covered by surfactant, and that the alveolar entrance
ring consists of two extreme cases of the muscle content: m¼ 0
(no muscle) and m¼ 1 (purely muscle).

Fig. 6 Radial displacements of internal rim (radius Rd), outer
boundary (radius Ra), and points at initial radius R0 5 190 lm
during one cycle; for two extreme cases: condition with no
muscle constituent (m 5 0), and with only muscle constituent
within the ring (m 5 1). Due to hysteretic characteristic of sur-
factant, and muscle radial displacement curves are not symmet-
ric with respect to the middle line (end of inspiration), except
for the outer boundary, with asymmetry more pronounced for
the domain closer to internal rim. Displacements and asymme-
try are smaller for m 5 1.

Fig. 5 Coefficient of geometric hysteresis ggeom plotted against m; its geometric construction
is shown in the cartoon. In the absence of muscle contribution, the hysteresis loop is entirely
controlled by surfactant, and the loop is counterclockwise with positive ggeom. Its value progres-
sively decreases with muscle activation, crossing zero into a regime dominated by muscle,
where the loops are clockwise and ggeom is negative. Also shown is the hysteretic behavior in
the absence of surfactant, showing the uniformly negative ggeom.
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Considering hysteresis in displacements, we first show radial
displacements of the alveolar entrance ring (radius Rd), the model
outer boundary (radius Ra), and a point close to the middle radius
(initial radius R0¼ 190 lm) during a breathing cycle, as shown in
Fig. 6. While the time course of the outer boundary (Ra) is exactly
symmetric with respect to the middle line (T¼ 0.5), which is
dividing inspiration-expiration regimes, representing the imposed
condition (see Eq. (1) and Fig. 3), the time course of other mate-
rial points at any radial position R (Ra�R<Rd) on the septum
exhibits asymmetry. The maximum asymmetry occurs at the iner-
tial rim (Rd) and the extent of asymmetry monotonically decreases
as R approaches Ra. The cases of no muscle content at the en-
trance ring, m¼ 0, are shown by solid lines, while the cases of
m¼ 1 (totally muscle) are represented by dashed lines. A compar-
ison between two cases shows that displacements and asymmetry
are smaller for m¼ 1, indicating that hysteresis driven by smooth
muscle acts in the opposite sense with respect to the surfactant
hysteretic action.

Trajectories of septal material points in a radial x-y plane are
shown in Fig. 7. Radial displacements of selected points (shown
in the y-direction in the figure) are obtained from the FE model,
while axial displacements (in the x-direction in the figure) are cal-
culated using Eq. (1). Trajectories in Fig. 7(a) (no muscle content,
m¼ 0) have hysteretic character of surfactant (except for the outer
boundary with prescribed displacements), with the clockwise hys-
teretic loop. This clockwise loop characteristic is in agreement
with the counterclockwise S-V hysteresis in Fig. 4(a) since smaller
septal surface corresponds to larger radial displacements. Simi-
larly to the phenomenon shown in Fig. 6, the hysteresis becomes
smaller when the material points approach the outer boundary.

In Fig. 7(b) the trajectories of septal material points are shown,
assuming m¼ 1. With the presence of both surfactant and muscle,
the hysteretic effects of surfactant and muscle are superimposed.
We have hysteretic trajectories with loops which change sign over
the cycle. The loop of the inner rim is clockwise at the start of
inspiration since the surfactant effects are dominant; contrary,

Fig. 7 Particle trajectories within radial plane (x-y) of material points at outer boundary, internal
rim and at two membrane radii. Axial maximum displacement is (DL)max 5 0.5 (DRd)max following
from geometrical similarity during alveolar deformation (see equation 1). (a) Case with no mus-
cle constituent (m 5 0): the trajectories display clockwise hysteretic loops due to dominant sur-
factant action during inspiration (see Fig. 2(d)), with loops diminishing from the internal to the
external membrane boundary; (b) Case m 5 1: The muscle hysteresis acts in the opposite sense
from the surfactant effects (see Fig. 2(c)), and hysteretic loops become counterclockwise in the
regime where muscle hysteretic effect is dominant (expiration regime); the loops diminish when
approaching to external boundary.

Fig. 8 Distribution of displacement hysteresis coefficient Shyster. The ratio R(t)/R(0) displays a
hysteretic character over a breathing cycle, and a measure of this hysteresis is defined as the
ratio Shyster 5 Ahyster/Atotal. (a) Case without muscle content within the ring (m 5 0): the hyste-
retic loops are clockwise (considered positive) since displacements are larger during inspira-
tion, and diminish toward the external boundary; (b) Case m 5 1: the overall hysteretic muscle
characteristic is dominant and the surface Ahyster is negative (see Fig. 7(b)).
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toward the end of expiration, the muscle effect dominates and the
loop becomes counterclockwise. As in case m¼ 0, the loops
become smaller when approaching the duct boundary because the
harmonic radial displacements are prescribed at the outer
boundary.

An insight into a distribution of hysteresis in displacements
along the septum radius can be seen from Fig. 8. In analogy to the
definition of the coefficient of geometric hysteresis ggeom (see
Fig. 5), we introduce the displacement hysteresis coefficient Shyster

as the ratio of the loop area on the displacement-time curve to the
area of the bounding rectangle enclosing the loop. Here, we have
plotted values of the Shyster over the septum radius. In case of
hysteresis due to surfactant only (with no muscle content (m¼ 0)),
Shyster approximately linearly increases from no hysteresis
(Shyster¼ 0) at the external boundary to the maximum hysteresis at
the internal radius; Shyster is positive showing that hysteresis loops
are clockwise (graph on the right). Conversely, when with m¼ 1,
Shyster is negative (graph on the left), indicating that the hysteresis
due to the muscle dominates over to that due to the surfactant,
Shyster is negative and nonlinearly increases (in value) from
Shyster¼ 0 at the outer boundary to the internal rim.

Discussion

The principal findings of this study are as follows: (1) the alve-
olar architecture exhibits geometric hysteresis due to the stress
hysteretic characteristics of smooth muscle and surfactant. The
hystereses of smooth muscle and surfactant act in opposing senses
in terms of inducing geometric hysteresis, and tend toward quanti-
tative cancellation; (2) the hysteretic characteristics of smooth
muscle and/or surfactant produce asynchrony and hysteresis in ra-
dial septum displacements.

Methodology – A Brief Overview of Past Models and Our
Basic Computational Approach and Model Limitation. In the
past, a number of acinar microstructural models have been
reported. Traditionally, it was first considered that the major
load-carrying structural elements were the alveolar walls and
the alveolar air-liquid interface covering the septal wall mem-
branes. These types of “membrane” models with various config-
urations of space-filling polyhedrons were widely discussed (see
a review by Fung [48]). In the early 1980 s, the importance of
the cables of fibers weaving through the alveolar ducts, espe-
cially through the alveolar entrance rings, was stressed as the
other major load-carrying elements maintaining the alveolar
microstructure [19]. Since then, several “line” (or “line-mem-
brane”) models have been proposed (e.g., [40,49–55]). Among
them, there are a few analytical models reported (exceptions
include Budiansky and Kimmel [49]; Kimmel and Budiansky
[54]), chiefly due to analytic limitations associated with the
nonlinearity of material characteristics. An alternative computa-
tional approach, especially in terms of incorporating experimen-
tally obtained material properties (through constitutive laws) of
microstructural elements into the structural model, has become
more popular. For instance, one of the most complete computa-
tional models currently available in the literature includes the fi-
nite element model of Denny and Schroter ([40,53]). The model
consists of 36 truncated octahedra, with line elements (com-
posed of elastin and collagen) located at septal borders and
within the septal walls. Surfactant with hysteretic characteristics
is also included, as well as geometric hysteresis (a main differ-
ence between these and our model, besides that our model
includes smooth muscle with hysteretic characteristics in the al-
veolar entrance ring, is discussed below).

In the present study, the fundamental model design is based on
the idea of Wilson and Bachofen [19] that there are competing
force-bearing structures in acinar microstructural architecture.
Four dominant force bearing elements of acinar architecture were
stretched into their nonlinear regime and the quasi-static motion
of the model alveolar microstructure was solved numerically

using state-of-the-art custom built finite element (FE) computa-
tional techniques (see, e.g., Refs. [43,45]). In particular, our
model, unlike others (including the model by Denny and Schroter
[40,52,53]), is designed to probe the following specific character-
istic: since a force balance between the alveolar entrance ring
inward force and alveolar septal outward surface force is
demanded by equilibrium and because the hysteretic constitutive
laws of the ductal tissue and radial septa (including surfactant) are
different, the alveolar entrance ring and septum expand and con-
tract asynchronously with respect to the motion of the ductal outer
boundary. The consequence of this asynchrony is that the acinar
architecture at the microstructural level does not deform in a geo-
metrically similar fashion to the boundary deformation. This is
likely to have a significant effects on aerosol mixing and deposi-
tion in the pulmonary acinus [1–7,14–18].

The model limitations rely on several simplifications, which
might be classified into two groups: geometrical and material. It is
assumed that the duct is an ideal circular cylinder, with the septum
and internal ring also being axisymmetric and circular. It is taken
that the material of septum and ring is isotropic with hardening
and hysteretic characteristics, described by idealized constitutive
curves; representation of surfactant mechanical response is also
taken using idealized hysteretic constitutive curves.

Geometric Hysteresis. The principal contribution of our
model is in the quantitative fractionation of geometric hysteresis
among the stress hysteretic behavior of smooth muscle and
surfactant.

Mechanical response of the alveolar duct internal architecture
during duct expansion and relaxation cycles is determined as a
result of the superposition effects between: hardening character –
nonlinear increase of stiffness with deformation of the septal tis-
sue (Fig. 2(b)); hardening and hysteretic characteristic of the ring
two-component material (Figs. 2(a) and 2(c)), and hysteretic char-
acter of the surfactant (Fig. 2(d)).

During breathing cycles, the ducts harmonically expand and
extend and then come back to the initial (undeformed) configura-
tion, producing deformation of internal architecture. The mem-
brane and ring, used in our model as the structural elements of the
duct interior, deform over cycles. Surfactant, which covers the tis-
sue, changes its surface area (as the septal area changes) and pro-
duces a distributed loading on the tissue due to surface tension at
the liquid-tissue interface. The surface tension has a hysteretic
character and therefore the loading within a cycle is hysteretic:
the surface tension is higher during inspiration than during expira-
tion (Fig. 2(d)), thus it tends to produce larger deformation. As
such, it results in larger radial displacements during inspiration.
Therefore, an amount of surface area change due to surfactant
force tends to be more pronounced in inspiration than in
expiration.

On the other hand, the muscle is tensed during inflation and
relaxing during deflation. The stresses within the alveolar entrance
ring are larger during inspiration (Fig. 2(c)) so that the alveolar
ring muscle produces larger resistance for the septum to deform,
and therefore its hysteresis acts in the opposite sense with respect
to the surfactant hysteresis. The resulting hysteretic response of
the internal duct elements depends on which hysteretic action is
dominant at a certain moment within the breathing cycle.

Septal Surface -Duct Volume (S-V) Hysteresis. The observa-
tion that hysteresis induced by smooth muscle is manifested as a
clockwise S-V loop (Fig. 4(a)) is consistent with the fact that mus-
cle tension is increased during inflation compared with expiration.
The structural stiffness is larger during radial expansion of the
duct during inflation, promoting an increased area of the radial
septa relative to that at the same volume during expiration. Thus,
the net effect results in a clockwise rotation in the S-V loop. By
contrast, surface tension hysteresis has the opposite effect. Septal
surface tension at the air-liquid interface acts to retract the duct
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radially outward. Therefore, the sharply increased surface tension
of surfactant during its areal expansion phase of inspiration com-
pared with the low surface tension during areal compression in ex-
piration implies an increased septal radial expansion associated
with decreased area during inspiration compared with expiration.
This results in a counterclockwise rotation in the S-V loop.

We express the overall geometric hysteresis by the index ggeom,
given by the ratio of (signed) geometric loop area to the bounding
rectangle area of the surface area - volume relationship (Fig. 5,
cartoon). Under the physiologically realistic conditions when both
muscle and surfactant effects are present, the S-V loop exhibits a
combination of the two extreme cases described above, sometimes
resulting in a complex pattern, such as a figure “8,” which appears
in Fig. 4(b), depending on the different histories/combinations of
muscle and surfactant contributions. Interestingly, the S-V hyster-
esis due to these competing elements are counterbalanced at a
muscle fraction of approximately 0.72 resulting in no overall geo-
metric hysteresis (ggeom¼ 0). In addition to the global index of
hysteresis given by ggeom (through the area history), we note that
our technique here also gives unambiguous predictions about the
history of local material points as well, in particular, the irreversi-
ble trajectories of the boundary surfaces of the alveolar duct
(Fig. 7).

Finally, it is important to note that the complex interplay
between the two hysteretic components described above was
observed in experiments. Miki et al. [11] found that geometric
hysteresis does exist, albeit small in magnitude, in live adult
rabbits. Quantitatively, they found that, at isovolume points dur-
ing tidal breathing, the fractional change in optical mean free
path for diffuse light scattering was roughly �0.16 (using the
opposite sign convention from here). Using the approximate
inverse quadratic dependence of mean free path on surface to
volume ratio, and using the relationship between hysteresis
measured as fractional differences at isovolume points and the
loop area ratios, their results translate into a geometric hystere-
sis index of ggeom�þ 0.06. This value is strikingly close to the
limiting value that we compute for essentially complete domina-
tion of geometric hysteresis by surface tension behavior of sur-
factant, with little role for smooth muscle. By contrast, Miki
et al. [11] also found loop reversals when the animals were
challenged with the contractile agonist methacholine. In that cir-
cumstance, their results translate to a geometric hysteresis index
of ggeom�� 0.05, indicating that in this case there is a substan-
tial contribution from activated smooth muscle, of a comparable
but larger magnitude (the loop is reversed) compared with the
contribution from surfactant.

The Role of Smooth Muscle at the Alveolar Level. The role
of smooth muscle in lung mechanics has been extensively stud-
ied at the level of airways in the bronchial tree, especially in
the context of asthma. Less is known, however, about the quan-
tification and role of smooth muscle in the alveolated duct
(please note Refs. [12,24,56]. Statically, it is believed to play a
role in maintaining alveolar microarchitecture (e.g., Smith and
Stamenovic [34], Stamenovic and Smith [57]), but its contribu-
tion to geometric hysteresis in compensating for that associated
with surfactant has not been probed. Here we have made a first
attempt to address this question. On the other hand, while we
are confident of the extremes, we have computed for the dis-
placements and surface-volume relationship and we note that
serious caution must be exercised with respect to the quantifica-
tion in terms of muscle fraction m (note that the value of m
appears to be species dependent; for instance, guinea pigs appa-
rently have more muscle than other small animals [24].) Not
only is the morphometric distribution of m given by a limited
database, but it is largely unknown how to translate such mor-
phometric measurements directly into stress bearing implica-
tions. We thus suggest interpreting numerical values of m as a
functional index of the contribution to mechanical equilibrium
in the duct.

Hysteresis in Radial Displacements. The asymmetry in radial
displacements with respect to inspiration versus expiration
(Fig. 6), and the hysteretic trajectories (Fig. 7) found in this study
result in asynchronous motion of the surfaces of the acinar struc-
ture. This has an important consequence. Since the surfaces of the
acinar structural element represent the boundaries of the air do-
main in the alveolar microstructure, its motion is directly coupled
to air flow. In particular, its asynchronous motion induces aerosol
mixing and deposition deep in the lung.

These asynchronous motions of the acinar structure are results
of the effects of hystereses of surfactant and muscle. We present
results for the two extreme conditions corresponding to m¼ 0 (no
muscle constituent within the alveolar entrance ring) and m¼ 1
(only muscle constituent, with no connective tissue); all other
cases will fall between these two extremes. It is interesting to note
that the hysteretic effects of the surfactant and muscle content
tend to cancellation.

The Effects of Geometric Hysteresis on Acinar Flow. The
effects of geometric hysteresis on acinar fluid mechanics, conse-
quently aerosol mixing and deposition are substantial, such a phe-
nomenon has been demonstrated previously [1–7,14–18]. In
particular, the presence of geometric hysteresis is crucial in the
case when an alveolar flow exhibits recirculation because it can
break alveolar flow into chaos (e.g., [1,2]). In this regard, the
occurrence, rather than its extent, of geometric hysteresis is im-
portant as a source of perturbation [1]. The detailed discussion
regarding the onset of chaos in the pulmonary acinus is beyond
the scope of this paper; such a discussion can be found elsewhere
(Tsuda et al. [1,18]).

Summary

In this study, we probed the origins of geometric hysteresis at
the level of the pulmonary acinus. We used realistic experimental
relationships for the constitutive laws of parenchymal tissue,
smooth muscle, and surfactant in a Wilson-Bachofen type model
of the alveolar duct. With finite element techniques, we solved for
the resulting behavior during vital capacity maneuvers, focusing
especially on the displacement hysteresis and the surface area –
volume history dependence. We found striking agreement
between our results in the area - volume hysteresis and the magni-
tude of geometric hysteresis observed by Miki et al. [11], includ-
ing hysteretic loop reversal phenomena with smooth muscle
stimulation by contractile agonist. These results, including quanti-
fied hysteresis in displacements and local irreversibility of the
boundary surfaces of the duct, are important not only for elucidat-
ing acinar micromechanics but also for forming the foundation for
coupling local hysteretic boundary motion with irreversible acinar
flow fields, which in turn are important mechanistic contributors
to aerosol mixing and deposition deep in the lung.
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Appendix

Finite Element Model of Duct and Computational
Procedure.

Basic Equations. The basic steps of the numerical procedure
are as follows. By applying the principle of virtual work, the equi-
librium equations are derived for a finite element at some current
state of deformation, with appropriate linearizations due to geo-
metric and material nonlinearities [41–43]. These equations are
combined to obtain the equilibrium equations for the whole FE
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model. The matrix form of equilibrium equation for a finite ele-
ment in an incremental-iterative solution procedure is, at fixed
volume (indexed by time),

Kði�1ÞDUðiÞ ¼ Fext � F
ði�1Þ
int (A1)

where Kði�1Þ is the element stiffness matrix, DUðiÞ is the change in
nodal point displacements at the ith iteration, Fext is the vector of
external forces, and F

ði�1Þ
int is the internal element nodal force vec-

tor. Note that DUðiÞ is determined by the stiffness and internal
forces at iteration i�1. Iterations continue until the differences
of external and internal forces are smaller than a selected error
tolerance (at which the displacement increments become corre-
spondingly small).

The solution accuracy depends on the accuracy of the calcula-
tion of internal forces [42,43]. These are given, for each i, by

F
ðiÞ
int ¼

ð
VðiÞ

B
ðiÞ
L

T
rðiÞdV (A2)

where B
ðiÞ
L is the matrix relating the strain increments and incre-

ments of nodal displacements, and T denotes matrix transpose.
rðiÞ is the stress tensor, and the integration is performed over the

FE volume VðiÞ. The stresses are calculated at material points of
tissue and surfactant, following the corresponding constitutive law
which is represented by a material model (Fig. 2). Values of the
stresses at any time step (equivalently, any volume step) depend
on the current state of deformation (Fig. 9).

Stress Calculation. The stress calculation at a material point of
septum is graphically shown in Fig. 9(a) and corresponds to the
previous iteration’s configuration. The septum is biaxially
stretched during duct deformation, and the circumferential and ra-
dial stresses are evaluated using the biaxial material model shown
in Fig. 2(b). Besides the stresses due to material deformation we
have the stress due to surfactant. This is expressed by surface ten-
sion c (as a force per unit length), but it also can be represented by
the stress rc (¼ 2c/d, where d is the septum thickness) acting at
each material point of tissue. It is assumed that the stress tensor rc

is isotropic, and hence has the same value rc in all directions
within the surfactant surface. Therefore, the total radial and cir-
cumferential stresses used for calculation of nodal forces are rep-
resented by sum of stress due to material deformation (rrad and
rcircular) and the stress rc.

For the entrance ring modeling, we follow experimental results
which show that the ring consists of connective tissue and smooth
muscle, with material characteristics and hysteretic constitutive

Fig. 9 Sketch of stress calculation. Stresses correspond to the previous iteration (indexed by
i21 in equation (A1)). (a) At each material point of the radial septum the stress is represented as
a sum of the stresses due to material deformation (radial stress rrad and circumferential stress
rcircular) and due to surfactant rc. These stresses are evaluated from constitutive laws for mate-
rial (biaxial model) and surfactant (hysteretic model). The stresses produce the finite element
nodal forces Fint 5 Fmat 1 Fc entering the equilibrium equations for the finite element assem-
blage. (b) and (c) stresses within the ring evaluated for nonlinear elastic and hysteretic material
models.

Journal of Biomechanical Engineering NOVEMBER 2011, Vol. 133 / 111005-9



law shown in Figs. 2(a) and 2(c). If the volumetric ratio of muscle,
or the relative muscle volume, is m ¼ Vm=Vring, where Vm and
Vring are the volumes of muscle and ring, then the stress rring in
the direction normal to the ring cross-section is

rring ¼ mrmuscle þ ð1� mÞrtissue (A3)

where rmuscle and rtissue are stresses within the muscle and connec-
tive tissue, respectively. For any given stretch of ring, the stresses
rmuscle and rtissue are evaluated from the constitutive laws as sche-
matically shown in Fig. 9(b) and 9(c). The stress rc is added to
stress rring to calculate the nodal forces according to Eq. (A2).

Computational details for stress evaluation for all material mod-
els and surfactant are given in Kojic et al. [43,45].

Finite Element Model Verification. Although finite element
methodology is well established and confirmed, even for very
complex nonlinear problems, for the sake of completeness we
give here a comparison of analytical solutions [58] and our
numerical solutions obtained with the FE package PAK [44].
Figure 10 shows agreement between analytical and FE solutions
for distributions of radial displacements in case of linear elastic
material models for ring and septum, for several values of
Young’s modulus ratios.
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