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Epithelial ovarian cancer (EOC) is hallmarked by a high degree of heterogeneity.

To address this heterogeneity, a classification scheme was developed based on

gene expression patterns of 1538 tumours. Five, biologically distinct

subgroups — Epi-A, Epi-B, Mes, Stem-A and Stem-B — exhibited significantly

distinct clinicopathological characteristics, deregulated pathways and patient

prognoses, and were validated using independent datasets. To identify subtype-

specific molecular targets, ovarian cancer cell lines representing these molecular

subtypes were screened against a genome-wide shRNA library. Focusing on the

poor-prognosis Stem-A subtype, we found that two genes involved in tubulin

processing, TUBGCP4 and NAT10, were essential for cell growth, an observation

supported by a pathway analysis that also predicted involvement of microtubule-

related processes. Furthermore, we observed that Stem-A cell lines were indeed

more sensitive to inhibitors of tubulin polymerization, vincristine and vinorel-

bine, than the other subtypes. This subtyping offers new insights into the

development of novel diagnostic and personalized treatment for EOC patients.
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INTRODUCTION

Epithelial ovarian cancer (EOC) is the most lethal gynaecologic

malignancy. The global disease burden is approximately

225,000 new cases per year with a survival rate of 30% (Bray

et al, 2013). EOC, like most other cancers, represents a

heterogeneous collection of distinct diseases that arise as a

consequence of varied somatic mutations and epigenetic changes

acquired during the process of tumourigenesis and tumour

progression. This heterogeneity is apparent in tumour histo-

pathology such as serous, mucinous, endometrioid and clear cell

histotypes. It is now established that the discrete histological

types differ with respect to variable clinical features, including

epidemiological risk, spread patterns, somatic mutations,

chemotherapeutic response and patient prognosis (Gilks & Prat,

2009). The histologically distinct subtype, high-grade serous

adenocarcinoma, is the most common subtype and accounts for

approximately 70% of all ovarian carcinoma. Although this

histotype has distinguishing clinical characteristics from the other

subtypes, patients with this histological subtype still show

diverse outcomes and usually low survival rates, even after the

same or very similar treatment regimens (Gilks & Prat, 2009). One

possible reason for this low survival rate is that the high degree of

heterogeneity of EOC is not considered in the current standard of

care (Vaughan et al, 2011). Thus, it is critically important to

develop a systematic scheme to dissect the heterogeneity of

EOC (Bast et al, 2009; Vaughan et al, 2011).

Genome-scale expression data has been instrumental in

characterizing the complex biological diversity of human cancer

(Alizadeh et al, 2000; Perou et al, 2000; Verhaak et al, 2010).

Subtypes identified through expression microarray analyses are

coupled with multiple clinical parameters, such as patient

prognosis, age of onset and molecular marker expression

(Alizadeh et al, 2000; Perou et al, 2000; Verhaak et al, 2010).

Efforts to dissect EOC heterogeneity have correlated expression

patterns with clinical features, such as histological types,

aggressiveness and patient outcomes (Denkert et al, 2009;

Helland et al, 2011; Mok et al, 2009; The Cancer Genome Atlas

Research Network, 2011; Tothill et al, 2008). However, due to

varied sample sizes and analytical criteria, the reported subtypes

of EOC are similar but not completely the same (Helland et al,

2011; The Cancer Genome Atlas Research Network, 2011; Tothill

et al, 2008; Verhaak et al, 2013), with reports of six molecular

subtypes in 285 serous and endometrioid EOC (Tothill et al,

2008), yet only four molecular subtypes in 489 high-grade serous

EOC (The Cancer Genome Atlas Research Network, 2011). Thus,

a refined classification scheme with intense phenotypic char-

acterization remains to be established. Also, the molecular targets

relevant to cancer cell growth in these transcriptional subtypes

have not been identified. The development of diagnostic and

therapeutic strategies based on such a scheme is paramount for

improving therapeutic efficacy in patients with EOC.

Despite recent successes with molecular targeted therapies

for chronic myelogenous leukaemia, ER- or Her2-positive breast

cancer, and EGFR-mutated lung cancer, targeted therapies for

EOC have not been as encouraging (Quintas-Cardama et al,

2009; Rosell et al, 2010; Yaziji et al, 2004). One approach for the
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
identification of specific targets for EOC subtypes is the use of a

genome-wide, systematic, functional assessment of cancer cell

growth (proliferation and/or viability). The recent success in

suppressing the growth of cultured lung cancer cells with

activating EGFR mutations by siRNA (Sordella et al, 2004)

unveiled the sensitivity of siRNA-based approaches in distin-

guishing drivers of tumour growth. RNAi libraries, such as The

RNAi Consortium (TRC) lentiviral library (Moffat et al, 2006;

Root et al, 2006), have enabled systematic genetic studies in

mammalian cells, and have identified the genes responsible for

proliferation and viability in human cancer cell lines, particu-

larly in the context of synthetic lethality (Barbie et al, 2009; Luo

et al, 2008; Scholl et al, 2009).

The TRC library contains 80,000 lentivirally expressing short

hairpin RNAs (shRNAs), corresponding to 16,000 human genes.

In a systematic screen, a library such as this could be employed to

help isolate key regulators of cancer cell growth on a genome-wide

scale in a pooled format. Cultured cells would be infected with

a pool of the shRNA-expressing lentivirus library such that a

typical cell is subjected to only one integration event of an shRNA-

expressing lentiviral genome into the host. Infected cells would

then be allowed to proliferate for a period of time to permit the

amplification or depletion of hairpins accordingly. Although the

vast majority of shRNAs have minimal effects on cell proliferation

and/or viability, an shRNA that silences the expression of a

critical gene will be relatively depleted. Conversely, the relative

amplification of an shRNA suggests that it targets a gene with an

inhibitory role in cell growth. These integrated hairpins are

then subsequently retrieved from the genomic DNA by PCR

amplification, and the abundance of each shRNA sequence can be

measured with microarray hybridization (Luo et al, 2008) or with

next-generation sequencing technology (Sims et al, 2011).

Notably, the successful application of this platform led to

the discovery of PAX8 as having a more essential role in

proliferation and survival in ovarian cancer cell lines than in cell

lines from other tissues (Cheung et al, 2011). Furthermore, TBK1

was identified as a synthetic lethal partner of oncogenic KRAS in

an earlier report using this method (Barbie et al, 2009). Despite

these successes, this technology has not been used to identify

subtype-specific growth-promoting genes, particularly in the

context of ovarian cancer.

Here, we describe a functional genomic approach to dissect the

heterogeneity of EOC. We established a large-scale meta-analysis

of EOC microarray datasets to determine EOC molecular subtypes.

Next, we integrated EOC cell line data into the molecular

subtyping scheme to derive an in vitro working model

representative of each molecular subtype. Finally, we utilized

genome-wide shRNA screening to identify molecular targets

crucial for cell growth in a selected subtype, which linked the

subtype with tubulin polymerization inhibitory drugs.
RESULTS

Molecular heterogeneity of epithelial ovarian cancer

We used a large collection of ovarian tumour gene expression

data (n¼ 1538; serous: 1335, mucinous: 27, clear cell: 25,
EMBO Mol Med (2013) 5, 983–998
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endometrioid: 96, and others: 55 samples; note that the

histological distribution is largely biased toward serous

adenocarcinoma as opposed to typical clinical setting) derived

from 16 independent studies (Supporting Information Table 1)

(Anglesio et al, 2008; Bild et al, 2006; Bowen et al, 2009; Denkert

et al, 2009; Hendrix et al, 2006; Hogdall et al, 2003; Hsu et al,

2007; Iorio et al, 2010; Jochumsen et al, 2007, 2009; Mok et al,

2009; Pejovic et al, 2009; The Cancer Genome Atlas Research

Network, 2011; Tone et al, 2008; Tothill et al, 2008; Tung et al,

2009). Among the 16 datasets, the dataset from TCGA was the

largest in sample number (n¼ 406; 26.4% of all samples). All

publicly available datasets were included at the time of the study

(April 2010), and compiled with an Oslo cohort dataset (BD

and JMN). A strong batch-effect was removed by ComBat,

eliminating technical differences across data collection sites,

while conserving meaningful variations (Supporting Informa-

tion Fig 1A and B) (Chen et al, 2011; Johnson et al, 2007).

A preliminary statistical power analysis showed that 1500 or

more samples were required to achieve sufficient statistical

power (� 0.8) in capturing the complexity and dynamicity of

EOC (Supporting Information Fig 2; Supporting Information

Materials and Methods) (Fox & Mathers, 1997). In this

collection, known prognostic factors were correlated with

patient overall survival by univariate and multivariate Cox

proportional hazards analyses (Table 1).

To identify EOC molecular subtypes, we applied consensus

clustering (CC) to the collection and detected five clusters (Fig 1A)

that were characterized by markers of differentiation or cell-type

status and stromal components, including the presence of

infiltrated inflammatory cells (Supporting Information Table 2).

Subtypes were annotated by applying single sample gene set

enrichment analysis (ss-GSEA) (Verhaak et al, 2010) with

literature-curated gene signatures for epithelial, mesenchymal

and stem cells (Supporting Information Text), and confirmed this

characterization with the use of appropriate markers. The

silhouette plot and SigClust (Liu et al, 2008b) analysis confirmed

tumour similarity within each subtype, indicating the robustness

of the classification (Supporting Information Fig 3A). The

subtype distribution by cohorts and histology is presented in

the Supporting Information Text and Supporting Information

Figs 4A and B. Subtype distribution within the samples, taken by

laser capture microscopy (GSE10971, GSE14407 and GSE18520),

implied that the subtypes were intrinsic to cancer cells, and not

dependent on stromal cells (Supporting Information Text).

We compared our subgrouping with a previous classification

(285 samples; GSE9891) included in our combined dataset

(Tothill et al, 2008). An overall concordance of 82.9% for all of

the subtypes was found (Supporting Information Table 3;

Supporting Information Fig 3B); thus, our large-scale analysis

confirmed the previous study, and provided finer distinctions

not detectable with fewer samples. Also, we noted that the

proposed molecular subtypes were akin to that of serous ovarian

carcinoma as proposed by The Cancer Genome Atlas Research

Network (2011) (Supporting Information Fig 3B). However, the

subtyping schemes from the previous studies did not show a

one-to-one match with our proposed classification (Supporting

Information Table 3; Supporting Information Fig 3B; Supporting
EMBO Mol Med (2013) 5, 983–998 �
Information Text; see the mutual relationships among Epi-A or

Epi-B/C2, C3 or C4/Immunoreactive or Differentiated). This

discrepancy may suggest a shared biological feature across these

subgroups and hence may cause an imperfect distinction among

the subtypes with predictive models as described later (Fig 1D;

Supporting Information Fig 8C; Supporting Information Table 8;

Supporting Information Text). We also noted that TCGA

molecular subtyping did not include a Stem-B/C6 population

(Supporting Information Fig 3B; Supporting Information Text).

The proposed subtypes in the current study are similar to the

previously identified molecular subtypes yet reveal novel

biological features.

Correlation of subtype with clinicopathological parameters

We correlated the subtypes with various clinicopathological

parameters to ascertain their clinical relevance (Supporting

Information Fig 6A; Supporting Information Tables 4A and B;

note that the clinicopathological information obtained with each

dataset was neither standardized nor centrally reviewed across

the datasets; therefore, there might be misdiagnosed or mis-

evaluated samples included). We found a significant correlation

between subtype and patient outcome: Epi-A, Epi-B and Stem-B

subtypes had a better prognosis in a Kaplan–Meier analysis

(Fig 1B), while Mes and Stem-A tumours were linked with

poorer outcomes. The Mes subtype included more advanced

staged and metastasized tumours (Supporting Information

Fig 6A; Supporting Information Tables 4A and B), whereas

some Stem-A tumours were already found to be at stages 1 and 2

(Supporting Information Fig 6B), with poorer outcomes than

those of other subtypes, even at stages 1 and 2 (Supporting

Information Fig 6B), Furthermore, Stem-A tumours were

enriched in older patients (Supporting Information Fig 6A;

Supporting Information Tables 4A and B). The Stem-B subtype,

on the other hand, was characterized by multiple histological

types, including the majority of mucinous, endometrioid and

clear cell carcinoma and some serous carcinoma (Supporting

Information Figs 4B, 5 and 6A; Supporting Information

Tables 4A and B). Focusing solely on serous tumours

(Supporting Information Fig 6D), the frequency of Epi-A-

classified tumours decreased significantly as tumour classifica-

tion moved from serous tumours with low malignant potential

(LMP) through to high-grade tumours, whereas the opposite

shift in pattern was true for Mes and Stem-A serous tumours. All

subtypes displayed high-grade serous carcinoma, with distinc-

tions in survival in Kaplan–Meier curves (Supporting Informa-

tion Fig 6C). The effect of molecular subtyping on prognosis

was significant in both the univariate and multivariate Cox

regression analyses with multiple combinations of clinically

relevant parameters and status (Table 1; Supporting Information

Tables 5A–E; Supporting Information Text).

Clear distinctions were also observed in the enrichment of the

gene expression signatures for various pathways. The ss-GSEA

analysis of 1538 samples using 6898 gene sets (GSEA databases

Supporting Information Table 6) revealed a subtype-specific

enrichment of 207 gene sets (Fig 1C; Supporting Information

Table 7) (Subramanian & Simon, 2011). Mes tumours correlated

with Metastases and TGF-b-related pathways, consistent with
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 985
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Table 1. Univariate and multivariate Cox proportional hazards regression analysis for multiple clinical variables and tumour subtypes.

Clinical variables Sample size (total n¼ 539) Univariate (HR, 95% CI) p-value Multivariate (HR, 95% CI) p-value

Age (year)

<55 175 (32.47%) 1 1

�55 364 (67.53%) 1.403 (1.071–1.839) 0.0141 1.285 (0.9781–1.687)a 0.07173a

Stage

I or II 47 (8.72%) 1 1

III or IV 492 (91.28%) 3.907 (1.843–8.285) 0.00038 3.429 (1.591–7.389)a 0.00165a

Grade

1 17 (3.15%) 1 1

�2 522 (96.85%) 2.58 (0.9578–6.949) 0.0608 1.365 (0.494–3.763)a 0.54799a

Metastasis

Primary 500 (92.76%) 1 1

Metastasis 39 (7.24%) 1.349 (0.8323–2.185) 0.224 1.391 (0.854–2.27)a 0.1853a

Subtype

Non-Epi-A 483 (89.61%) 1 1

Epi-A 56 (10.39%) 0.7103 (0.4498–1.122) 0.142 0.9449 (0.5834–1.53)b 0.8176b

Non-Epi-B 384 (71.24%) 1 1

Epi-B 155 (28.76%) 0.69 (0.5206–0.9144) 0.0098 0.7347 (0.5532–0.976)b 0.033b

Non-Mes 361 (66.98%) 1 1

Mes 178 (33.02%) 1.171 (0.907–1.513) 0.225 1.01 (0.7771–1.324)b 0.9164b

Non-Stem-A 411 (76.25%) 1 1

Stem-A 128 (23.75%) 1.417 (1.075–1.868) 0.0135 1.382 (1.045–1.83)a 0.0234a

Non-Stem-B 517 (95.92%) 1 1

Stem-B 22 (4.08%) 1.204 (0.6383–2.271) 0.567 1.14 (0.6033–2.149)b 0.6886b

Epi-A, epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

p-values below 0.05 are shown in red.
aMultivariate Cox regression analysis of clinical variables with Stem-A subtype.
bFor multivariate Cox regression, each subtype was independently analysed with the other clinical variables (age, stage, grade and metastasis) from the remaining

subtypes.
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their link with epithelial–mesenchymal transition (EMT) and

metastasis (Supporting Information Fig 6A) (Maruyama et al,

2000; Yin et al, 1999). In comparison, chromatin modification

gene sets were highly enriched in the Stem-A subtype (Fig 1C;

Supporting Information Table 7). Overall, this expression-based

subtyping scheme dissected ovarian serous carcinoma hetero-

geneity into subgroups with similar biological properties.

Predictive framework for EOC subtype classification

We next developed a predictive model with BinReg as a

potential diagnostic tool for quantitative gene expression-based

subgroup assignment (Supporting Information Fig 7A and B)

(Gatza et al, 2010). This was performed using microarrays of

representative samples for each subtype (n¼ 50 per subtype).

Fig 1D shows predicted probabilities for subtype status of the

remaining samples (n¼ 1413) not used in building predictive

model. A comparison of the subtype predicted by BinReg with

that classified by the CC (Fig 1A) revealed an overall 78.8%

concordance for all subtypes (78.5% for core samples) (Fig 1D;

Supporting Information Table 8), and a highly similar pattern of

patient outcomes (Fig 1B; Supporting Information Fig 7C). This

demonstrated the powerful predictive capability of the method,

with the concordance comparable with those reported in

previous studies for multiple breast cancer cohorts (Supporting

Information Text) (Calza et al, 2006; Haibe-Kains et al, 2012).

We affirmed the accuracy of this method using 10-fold cross-
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
validation (Supporting Information Figs 8A–C) (Blum et al,

1999; Kim, 2009; Konavi, 1995), 3-way split cross-validation

(Ewens & Grant, 2001), and also by comparing BinReg to

ClaNC (Supporting Information Fig 9; Supporting Information

Materials and Methods).

To ensure the robustness of the classifier, we performed

validation on five independent ovarian cancer datasets (total

n¼ 418; Supporting Information Table 1) (King et al, 2011;

Konstantinopoulos et al, 2010; Meyniel et al, 2010) that were

not included in the prediction modelling. We observed

high concordance for the gene expression patterns and clinico-

pathological characteristics in the predicted molecular subtype

(Fig 1E; Supporting Information Tables 4A, C and D). Using 260

samples from the validation set (GSE19829 [n¼ 28], GSE30311

[n¼ 47] and GSE26712 [n¼ 185]), for which patient outcome

information was supplied (Konstantinopoulos et al, 2010), the

Kaplan–Meier analysis on the BinReg-predicted molecular

subtypes revealed a similar pattern of patient prognoses with

that of the original CC analysis (p¼ 0.0372 by the log-rank test;

Fig 1B; Supporting Information Fig 7D) for subtypes other than

Stem-B (Supporting Information Text). ClaNC (Dabney, 2006;

Verhaak et al, 2010) further confirmed the highly comparable

and predictive capability of this EOC subtyping (Supporting

Information Fig 8D). Thus, the molecular subtype prediction

model can assign clinical samples with unknown subtype status

with high accuracy.
EMBO Mol Med (2013) 5, 983–998
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Figure 1. CC analysis revealed five subtypes of epithelial ovarian carcinoma.

A. Gene expression heatmap for the five tumour clusters (red¼ high; green¼ low expression). CC of 1538 samples identified five subtypes, designated by the

associated gene components. Note the similarities between Epi-A/Stem-B subtype tumours, between Epi-A/Epi-B subtypes for epithelial genes, and the

expression pattern of Epi-A/Stem genes. Also note that none of cultured cell-line data was included in this analysis.

B. Kaplan–Meier survival analysis for each subtype. Among data for 1538 patient samples, survival information for 978 samples was available (GSE3149: 143,

GSE9891: 277, TCGA: 400, GSE14764: 80, GSE18520: 53 and Oslo cohort: 25 samples) (Epi-A: 80, Epi-B: 264, Mes: 284, Stem-A: 220, Stem-B: 61 and others: 69

samples) and used for the Kaplan–Meier analysis.

C. Subtype-specific pathway enrichment. Heatmap shows subtype-specific single sample gene set enrichment analysis (ss-GSEA) scores (false discovery rate

(FDR) in significance analysis of microarrays (SAM) q¼0%, receiver operating characteristic (ROC) >0.85) for 1538 ovarian cancer samples. Red¼high;

green¼ low enrichment scores. Gene sets are aligned in descending value of ROC. Samples are aligned by subtype classification and SW. Deep colour¼positive

SW (core samples); pale colour¼ samples classified, but negative SW. ‘‘Others’’ indicates the unclassified samples not grouped in any of the five subtypes in the

initial CC analysis in Fig 1A. Arrows indicate positions of selected pathways.

D. Ovarian cancer subtype predictors (BinReg). A heatmap is shown for the predicted probabilities of subtype status on 1413 clinical samples not used in the

subtype predictor generation. Red¼ high; blue¼ low. Samples were aligned according to subtype classification by CC and SW. Colour as for (C). ‘‘Others’’ is

represented as for (C).

E. Heatmap of Spearman correlation Rho between the subtype of training data (n¼ 1538) and the BinReg predicted subtype of samples in five independent

datasets (GSE19829, GSE20565, GSE30311, GSE26712 and GSE27651; total n¼ 418). The validation samples are aligned horizontally according to the

predicted subtype, whereas the training samples are aligned vertically according to the subtype. Yellow¼ high correlation; black¼ low correlation.

Abbreviations: Epi-A, epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.
Identification of representative cell lines for each subtype

Cell lines corresponding to each EOC subtype were identified for

in vitro modelling. We performed two rounds of CC on a pool of

datasets from 142 cultured EOC cell lines, resulting in Epi-A: 29,

Epi-B: 10, Mes: 34, Stem-A: 42 and Stem-B: 27 cell lines

(Supporting Information Figs 10A and B); the results were

unambiguously supported by similarity matrices, the silhouette

values with significant p-value by SigClust (Fig 2A) (Liu et al,

2008b), as well as consistent subtype assignments amongst
EMBO Mol Med (2013) 5, 983–998 �
biological replicates of 28 cell lines (Supporting Information

Table 9; Supporting Information Text). The cell-line subtype

predictors (Fig 2B) were then applied to tumour core samples to

estimate the molecular similarity of the subtypes between

in vivo tumours and in vitro cell lines. We observed a high level

of accuracy in the area under the curve (AUC: 0.744 to 0.918)

and a high concordance between the predicted tumour subtype

by a cell-line classifier with the initially assigned tumour

subtype (75.8–87.9%) (Fig 2B). Furthermore, we found a high
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 987
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Figure 2. Identification of cell line subtype status.

A. Five subtypes in ovarian cancer cell line classification. Left panel. CC matrix of 142 ovarian cell lines. Red¼high; white¼ low similarity. Middle panel. Gene

expression heatmap of ovarian cell lines. Red¼ high; green¼ low expression. Right panel. Silhouette analysis for each subtype. Column to the right of

silhouette plot is the SigClust (Liu et al, 2008b) p-value indicative of cluster significance for each subtype.

B. Prediction of clinical samples by cell line predictors using BinReg. Upper panel. Gene expression heatmaps for subtype predictors based on cell line expression

data. Red¼ high; blue¼ low expression. Middle panel. Predicted probability of core clinical samples for cell-line subtype predictor by BinReg. Each subtype

signature detected the probability difference between the corresponding subtype from the remaining subtypes with statistical significance ( p<0.0001;

Mann–Whitney U-test). Lower panel. Receiver operating characteristic (ROC) analyses of subtype predictors. Overall accuracy is shown by the area under the

ROC curve (AUC) (Pejovic et al, 2009). Concordance (%) of the subtype status derived from CC with the prediction based on the cell line subtype predictors.

C. Upper panel. Cell line subtype-specific pathway enrichment. Subtype-specific single sample gene set enrichment analysis (ss-GSEA) scores (false discovery rate

(FDR) of the significance analysis of microarrays (SAM) q¼0%, ROC>0.85 as overexpressed gene sets) for 142 ovarian cell lines are shown as a heatmap.

Red¼high; green¼ low enrichment scores. Gene sets aligned in descending value of ROC; samples are aligned according to the subtype classification by CC

and the SW. Deep colour¼positive SW (core samples); pale colour¼ samples classified to a subtype, but negative SW. Arrows indicate positions of selected

pathways. Lower panel: Concordance (%) of the subtype status (from CC by genes) with the prediction result (from BinReg based on the subtype predictors by

enrichment scores). The number in parentheses indicates the accuracy of the prediction against core samples.

D. Characterization of in vitro phenotypes of cell lines in each subtype. Upper panel. Population doubling time of a cell line was measured with the MTS assay

(Matsumura et al, 2011) and is shown as dot plots. Lower panel. Anchorage-independent cell growth ability for each cell line was measured using the

methylcellulose assay (Mori et al, 2009). Log10-transformed colony number is shown. p-values were computed by Mann–Whitney U-test. Abbreviations: Epi-A,

epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

988
correlation between clinical tumour subtype and cell line

subtype in the Spearman correlation map analysis (Supporting

Information Fig 10C). These findings indicated a high level of

similarity between ovarian cancer cell lines and tumour

transcriptomic expression patterns (Fig 2B; Supporting Informa-

tion Fig 10C).

We next compared the pathway activation for these 142 cell

lines with that of the clinical tumours using ss-GSEA analysis
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
(Figs 1C and 2C; Supporting Information Table 10). Epi-A cell

lines were characterized by cell adhesion-related gene sets,

reflecting enrichment of epithelial cell markers. Importantly,

33 of the 402 cell line subtype-specific gene sets were shared

with tumours, including enrichment of fibrinolysis pathway and

chromatin modification in the Mes and Stem-A subtypes,

respectively (Supporting Information Table 10); this was

confirmed with BinReg analyses using a statistical model with
EMBO Mol Med (2013) 5, 983–998
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pathway enrichment scores (Fig 2C). We estimated the subtype

status of clinical samples by fitting a Bayesian probit regression

model with the subtype-specific enrichment scores for cell lines.

Reverse estimations were also performed from the tumour

samples to the cell lines. By applying the same method as in

Fig 2B, we observed high levels of concordance between the

predicted subtype of tumours by the cell-line ss-GSEA pathway

classifier with the initially assigned tumour subtype (54.2–

81.1%) and reciprocally high concordance between the

predicted cell line subtype by a tumour ss-GSEA pathway

classifier with the original cell line subtype (72.9–86.0%). These

results indicated strong similarity between cell lines and

tumours in the pattern of pathway enrichment (Fig 2C). We

then correlated the in vitro phenotypes for the molecular

subtypes, and identified a significant correlation between cell

line subtypes with population doubling time and anchorage-

independent cell growth potential (Fig 2D). Epi-A and Epi-B cell

lines had longer population doubling times and decreased

colony-forming ability, which may reflect the less-aggressive

behaviour of clinical tumours. Overall, these cell lines can serve

as good experimental models for each molecular subtype.

Genome-wide shRNA screens identified subtype-specific

growth-promoting genes

Genes essential to each subgroup were investigated via genome-

wide screens using the pooled TRC shRNA library, with the

presumption that tumours within the same subtype would share

molecular mechanisms for their growth (proliferation and/or

survival). The experimental strategy of the screen is shown in

Fig 3A. Briefly, we conducted pooled shRNA screens on 14

ovarian cell lines, representing Epi-A, Mes and Stem-A subtypes,

that differ profoundly in gene expression and clinical properties

(Figs 1A and B) (4 Epi-A: OVCA429, OVCAR-8, OVCA433, PEO1;

5 Mes: ovary1847, HEY, HeyA8, HeyC2, SKOV-3; and 5 Stem-A:

A2780, CH1, PA-1, SKOV-4, SKOV-6). These 14 cell lines were

selected based on their high silhouette width (SW) values for the

subtype signature in order to screen with ‘‘more representative’’

cell lines for a given subtype, with a notion of PA-1 as a

teratocarcinoma cell line (Supporting Information Table 11).

Two independent screens were performed to ensure repro-

ducibility. The initial assay was designed to determine

concordance among four experimental replicates of a single

cell line per subtype (OVCA433, HeyA8 and PA-1 was used to

represent Epi-A, Mes and Stem-A subtypes, respectively).

Spearman correlations confirmed tight correlations among the

quadruplicates in the screen (Spearman rho¼ 0.7528� SEM

0.0113, p< 10�16). The second screen was performed in 14 cell

lines with the intention to detect differences across subtypes as

well as concordance among different cell lines within a subtype.

Since the screenings detected similarity in subtype-specific

depletions or amplifications of hairpins, we combined both

datasets and further performed RIGER analyses (Luo et al, 2008)

on the compiled data. Supporting Information Fig 12A illustrates

highly distinctive genome-wide patterns in the copy number of

subtype-specific shRNAs that were depleted or amplified. The

effect size was reasonably large (Cohen, 1988; Monk et al, 2012;

Syrjanen & Syrjanen, 2013): the mean effect sizes of depleted
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hairpins were Epi-A¼�0.9098; Mes¼�0.7681 and Stem-

A¼�0.7818, and those of amplified hairpins were Epi-

A¼ 0.8128, Mes¼ 0.8282 and Stem-A¼ 0.7486 (Supporting

Information Fig 12B; Supporting Information Table 12).

The primary aim of the screens was to identify genes that,

when inhibited, would render growth suppression on a certain

molecular subtype. To this end, we identified depleted shRNAs

targeting 77 genes for Epi-A, 85 genes for Mes, and 88 genes for

Stem-A subtypes (Fig 3B), with high significance in subtype

enrichment (q< 0.005) and Hairpin Score (>0.2). These genes

are potentially involved in growth promotion of the cells in a

given subtype (Supporting Information Table 12). Conversely,

we identified amplified hairpins targeting 43 genes for Epi-A, 72

genes for Mes, and 44 genes for Stem-A (Fig 3B) that may have a

suppressive effect on cell growth of the given subtype under

conventional culture conditions (Supporting Information Table

12). For most of the growth-related functional genes, the

abundance of shRNAs did not show significant correlation to

gene expression, implying that the functional relevance of the

genes was independent of their expression levels. Differences in

experimental design and detection platforms hampered the

integration of the results from this screen with that of another

published screen using the same shRNA library (Supporting

Information Materials and Methods) (Cheung et al, 2011).

Validation of subtype-specific growth promoting genes

To validate the effects of the genes identified from the screens,

we focused on the Stem-A subtype (given its worse clinical

outcome) and targeted individual genes with siRNA (Fig 3C).

We chose 135 genes depleted in Stem-A subtypes based on a less

stringent q-value cut-off of 0.03 from RIGER analysis (note that a

more stringent q-value was used in Fig 3B; Supporting

Information Table 13). The validation of these 135 genes was

performed in a process that consisted of four steps (Fig 3C; with

more details available in ‘‘Materials and Methods’’) in order to

identify siRNAs that inhibited growth on Stem-A cells but had a

minimal effect on other cells. Stem-A-specific essential genes

were identified as positive hits based on the following

comparisons using Student t-tests: (1) comparison between

the growth inhibitory effect of silencing the gene of interest with

that of the siRNA negative controls in the Stem-A cells; and (2)

comparison between the effect on Stem-A cells with that on the

references for the subtype (non-Stem-A cells) (Fig 3C). Relying

on criteria of �20% growth suppression in PA-1 with p< 0.001

in a Student’s t-test comparing control with the gene of interest

and �20% growth suppression in PA-1 as compared with the

reference cell line, 28 genes were found in the first step of

validation to be selective for PA-1 cell growth (Supporting

Information Table 13). In the second step, we examined the

effect of these 28 genes in PA-1, HeyA8 and OVCA433, and

further confirmed the growth suppressive effect of 14 of these

28 genes (Supporting Information Table 13). For the third step,

we switched platforms from ‘‘siGenome’’ to ‘‘On-Target Plus

siRNA’’ to further validate our observations using different sets

of target sequences in the genes as well as to reduce possible off-

target effects. After this step, five genes (TUBGCP4, NAT10,

GTF3C1, BLOC1S1 and LRRC59) were validated as PA-1-relevant
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 989
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Figure 3. Subtype-specific functional relevance genes.

A. Schematic showing identification of functionally relevant genes for cell growth in a subtype-specific manner.

B. Gene centred and normalized heatmap, compiled from two independent screens, shows hairpins selectively depleted or amplified in each subtype. The

quadruplicates of three cell lines (OVCA433; Epi-A, HeyA8; Mes and PA-1; Stem-A) were assayed in the initial screen, while the second screen used one

experimental replicate of 14 different cell lines (4 Epi-A: OVCA429, OVCAR-8, OVCA433, PEO1; 5 Mes: ovary1847, HEY, HeyA8, HeyC2, SKOV-3 and 5 Stem-A:

A2780, CH1, PA-1, SKOV-4, SKOV-6). Using reads with a perfect match to the reference sequences (Sigma–Aldrich), the copy number of each hairpin was

counted and normalized against the total number of reads in a sample and then rendered to RIGER analysis to find phenotype-specific, functionally relevant

genes (Luo et al, 2008). Top panel. Subtype-specific depleted hairpins in Epi-A, followed by Mes and Stem-A subtypes. Each row represents shRNA hairpin copy

number and is sorted according to the hairpin score identified in RIGER (Luo et al, 2008). Only hairpin scores�0.2 and genes significantly enriched in a subtype

(q<0.005) are shown. Bottom panel. Subtype-specific amplified hairpins arranged as in the top panel. Red¼ higher; green¼ lower copy number counts.

C. Schematic of siRNA experiments validating the identified Stem-A-specific growth-promoting genes. This analysis led to the identification of two functionally

relevant genes specific to Stem-A: TUBGCP4 and NAT10.

D. Validation of subtype-selective effect of the genes on cell growth by siRNAs. Upper panel. Timeline of assay performed for the siRNA reverse-transfection

experiment. Lower panel. Effect of gene knockdown on cell growth (bar plots) as a percentage ratio of growth suppression, normalized against the negative

controls. Error bar indicates the SEM of three independent experiments. Stem-A-selective growth suppression effect is shown for the inhibition of the

five validated PA-1 (Stem-A)-specific growth-promoting genes in OVCA433, HeyA8 and PA-1, respectively. Green¼OVCA433 (Epi-A); red¼HeyA8 (Mes);

blue¼PA-1 (Stem-A).

E. Effect of silencing PA-1 (Stem-A)-selective genes on cell growth in other ovarian cancer cell lines. The five PA-1-selective genes were silenced individually by

siRNA in non-Stem-A (OVCA433, OVCA429, PEO1, HeyA8, ovary1847, SKOV-3 and HEY) and Stem-A (PA-1, CH1, A2780 and OVCAR-3) cell lines in three

independent experiments, and examined for their effect on cell growth relative to the negative control. Averaged percentages of growth suppression in each

group are shown as a box plot and were statistically evaluated using Mann–Whitney U-test with GraphPad Prism. Bottom, middle and top lines of each box

represent the 25th percentile, median and 75th percentile, respectively, and whiskers extend to the most extreme values of the group. Inhibition with

siTUBGCP4 or siNAT10 significantly suppressed cell growth of Stem-A cell lines as compared to non-Stem-A cell lines. Grey¼ non-Stem-A cell lines;

blue¼ Stem-A cell lines. Abbreviations: Epi-A, epithelial-A; Mes, mesenchymal; Stem-A, stem-like-A.

990 � 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. EMBO Mol Med (2013) 5, 983–998
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genes (Fig 3D). Importantly, PA-1 cells showed increased

cleavage of Caspase-3 and PARP after treatment with

siTUBGCP4, siNAT10, siGTF3C1 or siLRRC59, indicating

activation of apoptosis in these cells (Supporting Information

Fig 13C). Finally, as the fourth step of the validation process, the

experiments were conducted with use of additional non-Stem-A

(Mes: ovary1847, SKOV-3 and HEY; Epi-A: OVCA429 and PEO1)

and Stem-A (CH1, A2780 and OVCAR-3) cell lines to ensure its

reproducibility and to exclude any possible impact of PA-1 cells

being derived from a different cell-of-origin (teratocarcinoma),

even though it had the highest SW of the Stem-A cell lines.

TUBGCP4 or NAT10 siRNA treatment reproducibly resulted in a

statistically significant reduction in cell growth for the Stem-A

cell lines, while cell growth for non-Stem-A cell lines was not

affected (Fig 3E). These multiple stages of rigorous validation

confirmed the dependence of Stem-A cell lines on TUBGCP4

and NAT10 in cell growth and ensured that this effect was not

limited to PA-1 cells. Silencing of the other three genes (GTF3C1,

BLOC1S1 and LRRC59), albeit not statistically significant, also

exhibited a tendency toward differential toxicity in Stem-A

cells (Fig 3E). These observations demonstrate that subtype

classification based on gene expression is indeed mirrored by

patterns of functional genetic determinants of cell viability.

Moreover, the validated genes can provide us with an insight

into the molecular mechanisms of Stem-A tumour growth.

Microtubules as potent targets in Stem-A subtype

TUBGCP4 is a component of g-tubulin ring complex, which is

critical for nucleation of tubulin complexes in the cell (Fava et al,

1999; Moritz et al, 1995, 1998). NAT10 is reported as a possible

acetyl transferase of a-tubulin that may be involved in the

stabilization of microtubules (Hubbert et al, 2002; Shen et al,

2009). The selective effect of siTUBGCP4 or siNAT10 on Stem-A

cell lines (Fig 3E) may suggest that the Stem-A cell lines are more

susceptible to mitotic inhibition than other subtype cell lines.

An examination of the expression data of clinical tumours and

cell lines revealed higher activity in the enrichment score of

microtubule/tubulin-related pathways for Stem-A than that for

non-Stem-A subgroups (p¼ 6.6� 10�67 and p¼ 2.1� 10�6 by

Mann–Whitney U-test, respectively; Fig 4A; Supporting Infor-

mation Table 16) (Verhaak et al, 2010). In addition, TUBGCP4

knockdown resulted in a down-regulation of the Microtubule

gene set in the transcriptome across Epi-A, Mes and Stem-A cell

lines (Supporting Information Fig 13B; Supporting Information

Table 14; Supporting Information Text).

These findings prompted us to examine the in vitro sensitivity

of Stem-A cells to microtubule-targeted drugs such as paclitaxel,

vincristine and vinorelbine using a panel of ovarian cancer cell

lines (12 non-Stem-A: OVCA433, OVCA429, OVCAR-8, PEO1,

OVCA432, OVCA420, HeyA8, HEY, HeyC2, SKOV-3, ovary1847

and DOV 13; 6 Stem-A: PA-1, CH1, A2780, OVCAR-3, SKOV-4

and SKOV-6). A growth inhibitory concentration of 50% (GI50;

drug concentration for 50% growth inhibitory effects on cells)

was measured for each cell line in at least three independent

experiments. The Stem-A cell lines were found to be more

sensitive to inhibitors of tubulin polymerization, vincristine

and vinorelbine (Lobert et al, 1996), than non-Stem-A cell
EMBO Mol Med (2013) 5, 983–998 �
lines (Fig 4B). In contrast, paclitaxel, a drug that stabilizes

microtubules (Manfredi & Horwitz, 1984), resulted in no

significant distinction between the two subgroups (Fig 4B).

Moreover, 48-h vincristine treatment caused apoptosis in Stem-

A cell lines at 1.2 nM (Fig 4C), whereas minimal or no apoptosis

was observed in non-Stem-A cell lines, even at 10 nM

concentrations (Fig 4C). Taken together, these findings provide

evidence that drugs targeting tubulin polymerization can be

useful in treating patients with Stem-A EOC with poor clinical

outcomes.
DISCUSSION

Using a large collection of EOC samples, we identified five

molecular subtypes (Epi-A, Epi-B, Mes, Stem-A and Stem-B) that

exhibited distinct clinicopathological characteristics and rates of

overall survival. Of these, Epi-B and Stem-A subtypes were

found to be independent prognostic factors. We established a

prediction model for these subtypes and validated this model on

an independent dataset. For the first time, using a genome-wide

shRNA screen, we found that subtype-matched cell lines have

distinct vulnerabilities. In particular, the poor-prognosis Stem-A

subtype exhibited elevated microtubule activity and was

sensitive to several microtubule polymerization inhibitor drugs,

such as vincristine and vinorelbine. These results offer possible

therapeutic strategies to target specific subtypes of EOC.

Multiple clinicopathological parameters are linked with

prognosis in EOC patients, such as age at diagnosis, peritoneal

dissemination, metastasis to distant organs/lymph nodes, and

response to platinum-based standard chemotherapy (Gilks &

Prat, 2009). Here, we add transcriptional subtype as an

additional prediction parameter. Although a correlation

between the Mes subtype and patient prognosis was detected

with a log-rank test, it was masked in the multivariate Cox

analysis; this suggests that the Mes subtype may be confounded

in the analysis because it is significantly enriched in tumours at a

more advanced stage. Nevertheless, since Stem-A and Epi-B

subtypes were detected as significant independent prognostic

factors in both the univariate and multivariate analyses, this

demonstrates the clinical importance of our classification

scheme. Of note, a previous study of 489 samples could not

correlate their molecular classification with patient overall

survival, although a more recent study correlated two TCGA

subtypes with relapse-free survival using the same cohort (The

Cancer Genome Atlas Research Network, 2011; Verhaak et al,

2013). This is perhaps derived from a bias internal to the cohort,

and suggests the need for a substantial number of samples,

which is provided by combining multiple datasets, as presented

here.

Genomic profiling aimed at dissecting the complexity of

cancer could provide further opportunities for the identification

of relevant molecular targets. However, a major challenge is to

identify cell lines that reflect the relevant underlying tumour

biology (Chin et al, 2011). Expression studies of cultured

breast cancer cell lines have shown that in vitro cells retain

subtype characteristics corresponding to those of their in vivo
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 991



Research Article www.embomolmed.org
A subtyping scheme for epithelial ovarian cancer

Figure 4. Susceptibility of Stem-A cells to microtubule assembly inhibitors.

A. Estimated microtubule activity in non-Stem-A and Stem-A subgroups of ovarian cancer. Microtubule activity in 1142 core samples of ovarian clinical tumours

(Top panel) and in 129 core samples of ovarian cell lines (Bottom panel) was estimated based on the average single sample gene set enrichment analysis (ss-

GSEA) enrichment score of 19 microtubule-related gene sets (Supporting Information Table 16) acquired from GSEA databases (Supporting Information Table

6). Differences in microtubule activity between non-Stem-A and Stem-A subgroups were statistically evaluated with Mann–Whitney U-test in Graphpad Prism.

Grey¼non-Stem-A subgroup; blue¼ Stem-A subgroup.

B. Specificity of drug sensitivity in ovarian cancer cell lines. A panel of 18 ovarian cancer cell lines was classified into non-Stem-A (OVCA433, OVCA429, OVCAR-8,

PEO1, OVCA432, OVCA420, HeyA8, HEY, HeyC2, SKOV-3, ovary1847 and DOV 13) or Stem-A (PA-1, CH1, A2780, OVCAR-3, SKOV-4 and SKOV-6) groups and

analysed for their sensitivity to paclitaxel (Top panel), vincristine (Left bottom panel) and vinorelbine (Right bottom panel). GI50 values were calculated with

the results from cell proliferation assays for each cell type in three independent experiments, and the mean GI50s are shown as dot plots. A non-parametric

Mann–Whitney U-test in Graphpad Prism was used to evaluate the results statistically. A higher value along the y-axis indicates increased sensitivity to the

drugs. Colour as for (A).

C. Detection of apoptotic activity upon vincristine treatment. Six non-Stem-A (Upper panel) and four Stem-A (Lower panel) cell lines were subjected to increasing

concentrations of vincristine (0 to 10 nM) for 48 h. The presence of apoptotic activity was determined by immunoblotting for cleaved PARP and Caspase-3, as

indicated by arrows. Abbreviations: Stem-A, stem-like-A.
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counterparts. Hence, matching breast cancer cell lines by

expression data could represent in vivo tumours (Gatza et al,

2010; Neve et al, 2006; Perou et al, 2000). Whilst we

acknowledge that cell lines may be divergent from their

ancestral tumour and not wholly representative of the full

diversity of ovarian cancer, we believe our classification

represents a foundation for further development, particularly

since ovarian cell lines can be assigned to unique ovarian

tumour subtypes and are not derived from any random scheme.

This concept is supported by the similarities in the expression

and pathway activation between the cell lines and tumours of a
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
given subtype, and could be further supported by shared cell

functions, such as anchorage-independent cell growth and

population doubling time. The availability of representative cell

lines would facilitate the quest for functionally relevant targets

and bring us a step forward in developing therapeutics that

could be matched with the characteristics of individual patients.

Loss-of-function studies using pooled shRNA libraries have

identified essential genes in specific human cancer cell lines in

the context of synthetic lethality (Barbie et al, 2009; Luo et al,

2008; Scholl et al, 2009) and lineage-specificity (Cheung et al,

2011). Extending this concept, we utilized the pooled shRNA
EMBO Mol Med (2013) 5, 983–998
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library, in combination with next-generation sequencing

technology as the detection platform (Sims et al, 2011), to

identify key subtype-specific regulators of cancer cell prolifera-

tion and/or survival. The relevance of such subtype-specific

targets has been exemplified by ESR1 (estrogen receptor a) for

luminal-subtype breast cancers; these cancers share not only

clinical features such as prognosis and the response to

chemotherapy, but also the pattern of gene expression. ESR1

has been used not only for diagnosis but also as a molecular

target to treat cancer patients with this subtype (Howell, 2013;

Sorlie et al, 2001). Importantly, in this study, specific growth

determinants were distinguished amongst the ovarian cancer

subtypes at the genome-wide as well as gene level. This

observation supports the potential for subtype-specific ther-

apeutic options in treating ovarian carcinoma and reinforces

the clinical importance of the classification scheme proposed

in this study.

Although the molecular mechanisms linking TUBGCP4

or NAT10 with Stem-A growth remains to be elucidated,

susceptibility to vincristine and vinorelbine underscores the

importance of tubulin polymerization in Stem-A cells. Both

drugs are well-established chemotherapeutic agents that block

cell proliferation by inhibiting microtubule assembly through

its interaction with tubulin heterodimers (Lobert et al, 1996);

however, they are not standard chemotherapeutic reagents for

the treatment of EOC, unlike paclitaxel (Armstrong et al, 2006;

McGuire et al, 1996). The molecules implicated in the tubulin

polymerization pathway may provide us with a potential

platform to more effectively target Stem-A ovarian cancer. As

such, the survival of patients with ovarian cancer could be

improved by the stratification and targeting strategy described

in this study.
MATERIALS AND METHODS

Eligibility criteria and quality control of expression data

In order for our study to make broader generalizations and attain a

larger sample size, reduced eligibility criteria were adopted (George,

1996). Female adult (age �20 years) patients with a clinical diagnosis

of primary or metastatic ovarian cancer were included in our analysis.

We imposed no limit on patient race, pre-treatment history or medical

conditions, or on the stages, grades, and histology of the disease.

To control for the quality of expression data, we checked the quality of

the Affymetrix chips (Affymetrix, Santa Clara, CA) using Bioconductor

AffyQCReport package (Gautier et al, 2004) and the following criteria:

average perfect-match (Neve et al, 2006) intensity, kernel density plot,

GAPDH 30:50 ratio, b-actin 30 :50 ratio, and centre of intensity for

positive and negative controls. All chips passed at least one of the

criteria, and hence, none of the samples was discarded.

Data preprocessing of Affymetrix expression data

Ovarian cancer datasets were downloaded from multiple data

repositories: Gene Expression Omnibus (GEO), Array Express, Expres-

sion Project for Oncology (ExpO), and The Cancel Genome Atlas (TCGA).

Microarray data on Affymetrix U133A or U133Plus2 platforms were

utilized for the analysis. Robust Multichip Average (RMA) normal-
EMBO Mol Med (2013) 5, 983–998 �
ization was performed on each dataset. ComBat (Johnson et al, 2007),

a high precision and accurate technique for removing batch effect

while conserving meaningful variation (Chen et al, 2011), was

applied for batch adjustment on the compiled, normalized data.

Removal of ovarian cancer cell lines, normal tissues and primary

cultured normal cells from the batch-adjusted data yielded a

dataset of 1538 ovarian tumour samples, predominantly composed

by EOCs (Supporting Information Table 15A). Probes (1185) corre-

sponding to 941 genes (Supporting Information Table 2) were

retained by applying a threshold of standard deviation across samples

>1.05. Expression values of selected genes were normalized and

centred with Cluster 3.0 and further processed for subtype identifica-

tion. An additional validation dataset of 418 samples were similarly

collected and subjected to the same preprocessing procedure.

Clinical information of the validation dataset is given in Supporting

Information Table 15B.

Consensus clustering

CC (Monti et al, 2005) using Gene Pattern software (Reich et al, 2006)

was employed to identify robust clusters corresponding to the distinct

subgroups in EOC. We chose hierarchical clustering with agglom-

erative average linkage, with Euclidean distance and a sub-sampling

ratio of 0.8 for 1000 iterations. The condition of Kmax¼18 was

employed, as it gave a reasonable Gini index and purity of �0.8.
‘‘Other’’ was used to indicate the unclassified samples not grouped in

any of the five subtypes in the initial CC analysis shown in Fig 1A. They

were not included in following statistical analyses for characterization

of the molecular subtypes.

Univariate and multivariate Cox regression analysis

From 845 samples with overall survival information, we extracted

537 samples from three institutions (GSE3149: 5, GSE9891: 241

and TCGA: 291) with clinical variables (Table 1). This information

was transformed to binary information (presence/absence of a

phenotype) prior to assessment of their prognostic association with

overall survival by Cox proportional hazards regression analysis

(Therneau & Grambsch, 2000). The same procedure was applied

for Cox proportional hazards regression analysis for progression-

free survival. We extracted 518 samples (GSE9891: 199 and

TCGA: 319) from 596 samples with progression-free survival

information. Univariate and multivariate Cox regression were

performed using R (http://www.R-project.org). Multivariate analyses

with clinical variables were conducted independently for each

subtype.

Statistical analysis for clinical parameters

GraphPad Prism was used to examine statistical significance of clinical

stage, primary or metastatic tumours, histological subtypes, or the

malignant potential of each subtype by Fisher’s exact test. For Kaplan–

Meier analyses, the statistical significance was calculated by log-rank

test.

Subtype-specific gene set enrichment

A total of 6898 gene sets were collected (Supporting Information

Table 6). The ss-GSEA score (Verhaak et al, 2010) was computed to

estimate the pathway activity for all 1538 ovarian cancer samples

or 142 cell lines for each gene set. Based on the computed ss-GSEA
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 993
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score, a binary comparison was conducted for each subtype to

identify subtype-specific pathway enrichment. Gene sets specifically

and significantly enriched in a subtype were selected using SAM

(FDR q¼0) and ROC (ROC>0.85 as overexpressed gene sets).

Predictive modelling and validation by BinReg

Expression data analysis, based on a binary regression model using the

BinReg ver. 2.0, was described previously (Gatza et al, 2010). BinReg

uses a Bayesian statistical analysis to fit a binary probit regression

model on training data given a set of genes that are most correlated

with the binary response/phenotype of interest (e.g. Epi-A vs. Non-Epi-

A). The regression coefficients of these genes indicate the discriminat-

ing power of the genes and are weights for the overall meta-gene

profile. The overall meta-gene profile is used for comparison and

predicts the status of the phenotype of the new sample or dataset. In

this study, we built a binary regression model for each subtype that

singled out a subtype from the rest (i.e. Epi-A vs. Non-Epi-A) and

adopted a divide-and-conquer approach for generating signatures for

each of the different subtypes (Supporting Information Figs 7A and B).

Briefly, the top 50 core samples were selected by their highest SW of

all five subtypes, and subdivided into two sets of data: training set A

and training set B. These training sets were utilized to determine

appropriate parameters (Supporting Information Table 17; Supporting

Information Materials and Methods) for the binary regression model.

Subsequently, the condition was used to predict the remaining

samples by training set A. To predict the status of the phenotype on a

dataset, a Bayesian probit regression model was fit to assign the

probability that the sample exhibited evidence of a phenotype, based

on the concordance of its gene expression values with the signature

(Gatza et al, 2010).

Expression microarrays of cultured cell lines

Most of Duke, Kyoto and Singapore cell lines were derived from an

original collection assembled in a Duke laboratory (Supporting

Information Table 11) (Matsumura et al, 2011). Therefore, expression

data for these 28 cell lines from the collection could be used as

biological replicates. We extracted RNA from 34 cultured EOC cell lines

(ovary1847, JHOS-2, OAW28, OAW42, OV7, OV17R, OV56, Caov-2,

OV90, OVCA420, OVCA429, OVCA432, OVCA433, OVCAR-2, OVCAR-3,

OVCAR-5, OVCAR-8, OVCAR-10, Caov-3, SKOV-3, UWB1.289,

A2008, EFO-21, C13, OV2008, FU-OV-1, IGROV-1, TOV-112D, A2780,

CH1, DOV 13, TYK-nu, PEO1 and COLO720E) (Methods: Cell line

phenotypes in vitro) and performed expression assays with

Affymetrix Human U133 Plus 2.0 arrays. The data were deposited in

Gene Expression Omnibus (GEO) with the accession of GSE28724.

Details of the EOC cell lines are given in Supporting Information

Table 11.

Cell line phenotypes in vitro

Cell lines were cultured in RPMI 1640 media (Invitrogen, Carlsbad, CA)

with 10% foetal bovine serum (#S1810-500; Biowest, Nuaillé,

France). Measurements of population doubling time and colony

formation assays in methylcellulose were described previously (Huang

et al, 2008; Liu et al, 2008a; Matsumura et al, 2011; Mori et al, 2009).

Mann–Whitney U-test of GraphPad Prism was used to statistically

evaluate the numerical values for the cell line phenotypes across the

subtypes.
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Lentivirus library infection and shRNA retrieval by PCR of the

genomic DNA

Fourteen cell lines representing Epi-A, Mes or Stem-A were chosen

based on the SW for the subtype signature so as to have ‘‘more

representative’’ cell lines for a given subtype, and these cell lines were

used for shRNA screening. We used a pooled library of shRNA-

expressing lentiviruses (80,000 clones targeting 16,000 genes per

library, TRC1.0, #CSTVRS; Sigma–Aldrich, St Louis, MA). Optimal

lentiviral infection conditions achieved a multiplicity of interest

(MOI) of 0.3 to ensure the highest probability of having single shRNA

integration into the host genome in each cell (Luo et al, 2008).

Each lentiviral vector encodes each shRNA expression cassette with

the puromycin resistance gene, allowing the use of puromycin to

isolate stable integrants. Under selection pressure from puromycin

(5mg/ml), infected cells were allowed to propagate for �14 days (�4
or 5 passages), whereby cells expressing shRNA that silence genes that

were required for and known to suppress cell growth were depleted

from and enriched in the culture, respectively. Hence, the abundance

of each shRNA (¼shRNA copy number) is reflective of the effect of an

shRNA on cell growth. At the endpoint of the incubation, genomic DNA

was harvested from the resulting cells by PureLink Genomic DNA kits

(#K1820-01, Invitrogen). The integrated shRNA sequences were

retrieved from the genomic DNA (100ng) by PCR amplification using

vector primers (shRNA Forward Primer: 50-atcttgtggaaaggacgaaac-30

and shRNA Reverse Primer: 50-tactgccatttgtctcgaggt-30) with KOD Plus

ver. 2 (#KOD-211, Toyobo) and 28–32 cycles of 988C for 10 s, 568C for

30 s, and 688C for 1min. Products were purified with QIAQuick PCR

Purification Kit (#28106, Qiagen, Hilden, Germany).

Next-generation sequencing analysis by Solexa to count copy

numbers of individual shRNAs

Amplified DNA (20ng) from PCR was used to construct a sequencing

library using a ChIP-Seq sample preparation kit (#IP-102-1001,

Illumina, San Diego, CA). The two sample-multiplexing sequencing

method was used individually, with multiplexing index 6 and index 12

primers for each sample (Illumina, #PE-400-1001). Constructed

libraries were subjected to a final size-selection step on a 10% Novex

TBE gel (#EC6275BOX, Invitrogen, Carlsbad, CA). DNA fragments of

205 bp were excised, recovered and quantified following Illumina’s

qPCR quantification protocol and guides. Quantified libraries were

then sequenced on the Genome Analyzer IIx (Illumina) using the

multiplexing single-end sequencing protocol at a length of 58þ7 bp

(#PE-400-2002, Illumina). Image analysis and base calls were

performed using the default settings. After stripping off the PCR

primer sequences, reads were then aligned to the shRNA library using

Bowtie with the specified settings: –solexa1.3-quals -n 0-l 5 -v 0 -k 1 -

m 1–best –strata -y –nomaqround. The data were deposited in GEO

with the accession of GSE45420.

Statistical identification of the functionally relevant genes in

a subtype-specific manner

Using reads with a perfect match to the reference sequences (Sigma–

Aldrich), copy number was counted and normalized by total number

of reads in a sample. RNAi gene enrichment ranking (RIGER) was used

to find phenotype-specific, functionally relevant genes from the scale-

normalized copy number count data (Luo et al, 2008). Among 80,000

hairpins included in the library, next-generation sequencing analyses
EMBO Mol Med (2013) 5, 983–998
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The paper explained

PROBLEM:

Epithelial ovarian cancer exhibits considerable heterogeneity,

which may lead to poor survival rates for patients treated with

standard chemotherapeutic regimens. This has prompted the

need for a robust classification scheme to unravel this

heterogeneity and allow for the development of personalized

treatment strategies.

RESULTS:

A large collection of gene expression data enabled the

identification of five distinct subgroups of ovarian carcinoma.

The existence of these five subgroups was validated in an

independent collection. Genome-wide shRNA screening against a

panel of ovarian carcinoma cell lines revealed two subtype-

specific targets and the pathways that control cancer cell growth.

IMPACT:

We identified five distinct subgroups, allowing rational patient

stratification. Subsequent assays uncovered genes and deregu-

lated pathways, which will be instrumental in guiding future

therapeutic strategies for ovarian cancer.
detected 60,002 and 65,533 shRNA hairpins in two independent

screenings and 57,168 hairpins were intersected in both results. We

compiled and subsequently standardized these two datasets by

ComBat (Johnson et al, 2007). Binary comparisons were performed on

the three subtypes (e.g. Epi-A subtype versus the others). We adopted

the signal-to-ratio as the metric for ranking hairpins, 1000 as the

number of permutations, and Kolmogorov–Smirnov in the RIGER

settings. The false discovery rate was computed using the Benjamini

and Hochberg procedure. Genes were considered significant at

q<0.005 in Fig 3B or q<0.03 for the validation study. For heatmap

presentation, we retained the hairpins with a hairpin score �0.2.

Validation of functional determinants in cell growth of

Stem-A cell lines by siRNAs

We selected 135 genes as Stem-A-specific growth-promoting genes

for further validation via siRNA transfection from the top hit gene list

from RIGER analysis of shRNA lentivirus screens (q<0.03). The

validation experiments were performed via a process consisting of four

steps (Fig 3C). Dharmacon SMART pool siGENOME siRNA (1st and 2nd

steps) and Dharmacon SMART pool ON-TARGETplus siRNA (OTP; 3rd

and 4th steps) formats (Thermo Fisher Scientific, Lafayette, CO) were

used to validate the effect of gene knockdown on cell growth of

ovarian cell lines (Fig 3C). PA-1 (1st, 2nd, and 3rd steps) and CH1,

A2780 and OVCAR-3 (4th step) were used as representative cell line(s)

for the Stem-A subtype. As reference(s) for the subtype, HeyA8 (1st

step), HeyA8 and OVCA433 (2nd and 3rd steps), OVCA429, PEO1,

ovary1847, SKOV-3 and HEY (4th step) were used (Fig 3C). Cells were

reverse-transfected with each individual siRNA per well in a 96-well

format in the following conditions: OVCA433, 2500 cells with 0.3ml of

DF1 (T-2001); HeyA8, 800 cells with 0.08ml of DF4 (T-2004); PA-1,

1200 cells with 0.22ml of DF2 (T-2002); OVCA429, 1500 cells with

0.22ml of DF4 (T-2004); PEO1, 4000 cells with 0.24ml of DF4 (T-

2004); ovary1847, 2500 cells with 0.12ml of DF2 (T-2002); SKOV-3,

2500 cells with 0.12ml of DF2 (T-2002); HEY, 1000 cells with 0.08ml

of DF4 (T-2004); CH1, 1800 cells with 0.17ml of DF4 (T-2004); A2780,

2000 cells with 0.16ml of DF1 (T-2001); OVCAR-3, 4000 cells with

0.2ml of DF3 (T-2003, Thermo Fisher Scientific). We used two negative

controls for Dharmacon SMART pool siGENOME siRNA transfection

(#D-001206-13-20 and #D-001206-14-20), and one negative
EMBO Mol Med (2013) 5, 983–998 �
control for Dharmacon SMART pool ON-TARGETplus siRNA transfection

(#D-001810-10-20). Assays were performed in quadruplicate. After

96-h incubation, an MTS assay was used to measure cell growth using

a CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay

following the manufacturer’s recommendations (#G5430, Promega,

Madison, WI). Genes were considered as Stem-A-specific growth-

promoting genes when their down-regulation caused �20% growth

suppression on the Stem-A cell line (p<0.001), and showed �20%
more growth suppression on the Stem-A line than on the reference

cell lines.

Cell line drug sensitivity in vitro

Eighteen ovarian cancer cell lines (12 non-Stem-A: OVCA433,

OVCA429, OVCAR-8, PEO1, OVCA432, OVCA420, HeyA8, HEY, HeyC2,

SKOV-3, ovary1847 and DOV 13; 6 Stem-A: PA-1, CH1, A2780, OVCAR-

3, SKOV-4 and SKOV-6) were tested for their sensitivity to paclitaxel,

vincristine and vinorelbine, as described previously (Bild et al, 2006).

Paclitaxel (#T7402), vincristine (#V8879) and vinorelbine (#V2264)

were purchased from Sigma–Aldrich. Cells were seeded in 96-well

plates at an optimal density, which was determined for each cell line

to ensure that it reached 80% confluency by the end of the assay.

Following an overnight incubation, cells were treated with nine

concentrations of each drug (twofold dilution series over a 128-fold

concentration range) for 48 h. The percentage of the cell population

responding to the drug relative to the negative controls was measured

using a CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay,

following the manufacturer’s recommendations (#G5430, Promega).

Dose-response curves were plotted using GraphPad Prism, to derive a

growth inhibitory concentration of 50% (GI50; drug concentration for

50% growth inhibitory effects on cells) for each cell line in at least

three independent experiments. Mann–Whitney U-test of GraphPad

Prism was used to statistically evaluate the averaged GI50s between

non-Stem-A and Stem-A cell lines.

Western blotting analysis

Total cell lysates were prepared by direct lysis with RIPA buffer

(#R0278, Sigma–Aldrich), supplemented with protease inhibitor

cocktail (#539134, Calbiochem, Boston, MA). Protein concentrations

were determined using BCA protein assay (#23225, Thermo Scientific,
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 995
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Rockford, IL). Electrophoresis of the cell lysates were carried out with a

BioRad Mini Protean II apparatus and transferred onto PVDF

membranes (#IPFL00010, Millipore, Billerica, MA) with a BioRad Mini

Trans-Blot apparatus, following the manufacturer’s recommendations.

Membranes were immunoblotted with primary antibodies directed

against PARP (#9542, Cell Signaling, Danvers, MA), Caspase-3 (#9662,

Cell Signaling) or b-actin (#A1978, Sigma–Aldrich), followed by

immunoblotting with secondary IRDye 800CW conjugated goat

anti-rabbit (#926-32211) or IRDye 680 conjugated goat anti-mouse

antibodies (#926-32220, LI-COR Biosciences, Lincoln, NE). The

western blots were scanned using an Odyssey Infrared Imaging

System from LI-COR Biosciences.
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