
Cellular/Molecular

Emergence of Adaptive Computation by Single Neurons in
the Developing Cortex

Rebecca A. Mease,1,2 Michael Famulare,3 Julijana Gjorgjieva,4 William J. Moody,5 and Adrienne L. Fairhall6

1Neurobiology and Behavior Graduate Program, University of Washington, Seattle, Washington 98195, 2Institute of Neuroscience, Technische Universität
München, D-80333 Munich, Germany, 3Department of Physics, University of Washington, Seattle, Washington 98195,4Center for Brain Science, Harvard
University, Cambridge, Massachusetts 02138, and 5Department of Biology and 6Department of Physiology and Biophysics, University of Washington,
Seattle, Washington 98915

Adaptation is a fundamental computational motif in neural processing. To maintain stable perception in the face of rapidly shifting input,
neural systems must extract relevant information from background fluctuations under many different contexts. Many neural systems are
able to adjust their input– output properties such that an input’s ability to trigger a response depends on the size of that input relative to
its local statistical context. This “gain-scaling” strategy has been shown to be an efficient coding strategy. We report here that this
property emerges during early development as an intrinsic property of single neurons in mouse sensorimotor cortex, coinciding with the
disappearance of spontaneous waves of network activity, and can be modulated by changing the balance of spike-generating currents.
Simultaneously, developing neurons move toward a common intrinsic operating point and a stable ratio of spike-generating currents.
This developmental trajectory occurs in the absence of sensory input or spontaneous network activity. Through a combination of
electrophysiology and modeling, we demonstrate that developing cortical neurons develop the ability to perform nearly perfect gain
scaling by virtue of the maturing spike-generating currents alone. We use reduced single neuron models to identify the conditions for this
property to hold.

Introduction
Many neural systems adjust their input– output properties in re-
sponse to changes in the statistical properties of the incoming
stimulus. Through adaptation, the nervous system continually
recalibrates its sensitivity under new contexts to best represent
the range of inputs it receives (Attneave, 1954; Barlow, 1961;
Laughlin, 1981; Atick, 2011). One form of such adaptive compu-
tation is gain scaling, whereby a neural system’s mapping be-
tween inputs and outputs adjusts to dynamically span the varying
range of incoming stimuli (Brenner et al., 2000; Fairhall et al.,
2001; Kim and Rieke, 2001; Ringach and Malone, 2007). In this
form of adaptive coding, the nonlinear function relating input to
output has the property that the gain with respect to the input
scales with the SD of the input. While circuit mechanisms are
often thought to be responsible for gain scaling (Wark et al., 2007;

Carandini and Heeger, 2012), we show here that single cortical
neurons adjust their dynamic range to changes in the typical size
of input fluctuations. We investigate the specific biophysical
properties that underlie this adaptive computation in single
neurons.

While gain scaling is widely observed in neural systems (Wark
et al., 2007), little is known about how it develops in neurons.
During maturation of neural circuits in the cortex, synaptic con-
nections change in number and in sign (Sanes et al., 2006). Si-
multaneous with synaptic development, the biophysical
properties of cortical neurons change as the densities of ion chan-
nels change (Picken-Bahrey and Moody, 2003a; Moody and
Bosma, 2005); we show that this developmental progression also
alters how neurons encode synaptic inputs into output spikes.
Here, we investigated the impact of developmental changes in
intrinsic properties on information processing by cortical
neurons.

We measured the gain-scaling properties of individual neu-
rons in the developing mouse sensorimotor cortex over two age
ranges: embryonic day 18 to postnatal day 1 (E18 –P1, “imma-
ture,” and P6 –P8, “mature”). These developmental stages bridge
a major transition in cortical excitability—while immature neu-
rons engage in slow waves of network-wide spontaneous activity
(Picken-Bahrey and Moody, 2003a; Corlew et al., 2004; McCabe
et al., 2006), mature neurons display nascent adult firing proper-
ties (McCormick and Prince, 1987; Connors and Gutnick, 1990)
and are no longer spontaneously active (Corlew et al., 2004). A
hallmark of this transition is the ongoing expression of voltage-
gated sodium, INa, and potassium, IK, channels (McCormick and
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Prince, 1987; Picken-Bahrey and Moody, 2003b) that comprise
the basic spike-generating mechanism (Hodgkin and Huxley,
1952). The corresponding currents appear early in the develop-
ment of cortical neurons: IK is present in the stem cell population
of the ventricular zone before the first neurons exit the cell cycle,
and INa can be detected even before differentiating neurons mi-
grate into the cortical plate (Picken-Bahrey and Moody, 2003b).

We have shown previously that INa increases in density much
faster than IK during early postnatal development (Picken-
Bahrey and Moody, 2003a). Here, we examine how these changes
in the maturing spike-generation mechanism impact the adap-
tive computational properties of cortical neurons by using
whole-cell current-clamp and voltage-clamp recordings in vitro
in acute and organotypic slices. We find that cortical neurons
acquire the ability to perform nearly perfect gain scaling solely
through developmental changes in the expression of spike-
generating sodium and potassium currents, without significant
evidence or need for slow adaptation currents or conductance
changes. Using pharmacology and the analysis of reduced neuro-
nal models, we show how gain control may be implemented
solely by the simplest spike-generating dynamics.

Materials and Methods
Electrophysiology
We recorded intracellularly from single neurons in layers II–VI of mouse
sensorimotor cortex at two time points: from E18 to P1 (organotypic
culture, n � 15), and from P6 to P8 (organotypic culture, n � 41; acute
slices: n � 19).

Tissue preparation
Organotypic cultures. Organotypic cultures were prepared from embry-
onic (E17) Swiss–Webster and BALB/C mouse cortex from either sex as
previously described by (McCabe et al., 2006). According to our previous
work in organotypic cultures, this preparation preserves the normal de-
velopment of single neuron intrinsic properties and has the advantage of
allowing block of early spontaneous network activity via application of
tetrodotoxin (TTX) from E18 to P3 (for review, see McCabe et al., 2006).
All procedures were in accordance with National Institutes of Health
guidelines, and were approved by the Institutional Animal Care and Use
Committee of the University of Washington.

Acute slices. While the majority of recordings were done in cultured
slices, we also performed a series of experiments (n � 19) in acute slices.
Black-6 mouse pups (P6 –P8) were killed by exposure to CO2 and decap-
itated. Brains were rapidly removed from the skulls and cerebellar re-
gions dissected before gluing the remaining tissue to the vibratome plate
(MicroM HM 650V; Thermo Scientific). Coronal slices (300 �M) were
made in ice-cold artificial CSF (ACSF; identical to recording solution
described below, but with 50 �M CaCl2). Before recording, slices were
incubated in 34°C ACSF with added synaptic blockers (see below) for at
least 30 min. All animal handling followed animal welfare guidelines for
the Technical University of Munich.

Patch-clamp recording conditions
For experiments in Swiss–Webster neurons, patch pipettes were pulled to a
resistance of 3.5–8 M� from 50 �l hematocrit glass capillary tubes using a
two-stage puller (Narishige), and filled with potassium internal solution,
which contained the following (in mM): 113 KMeSO4 (ICN Biomedicals), 28
KCl, 10 HEPES, 2 ATP-Mg, 3 Na2-ATP, and 0.2 Na-GTP, pH to 7.25. Dur-
ing recording, tissue was maintained in room-temperature ACSF bubbled
with carbogen gas (95% O2-5% CO2) containing the following (in mM): 140
NaCl, 3 KCl, 2 MgCl2, 2 CaCl2, 1.25 NaHPO4, 26.5 NaHCO3 and 20
D-glucose. All salts were obtained from Sigma. Recordings were made using
a List EPC-7 (Heka Elektronik) amplifier. Currents were filtered at 1.5 kHz
with an 8-pole Bessel characteristic, recorded and analyzed using pCLAMP8
and pCLAMP9 software (Molecular Devices).

For experiments in the BALB/C and Black-6 neurons, patch pipettes
for whole-cell recordings were filled with the following (in mM): 105

K-gluconate, 30 KCl, 10 HEPES, 4 ATP-Mg, 10 phosphocreatine-Na2,
and 0.3 NaGTP, pH to 7.3. The extracellular ACSF solution contained the
following (in mM): 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaHPO4,
25 NaHCO3, and 25 glucose. Recordings were made with an Axoclamp
2B amplifier (Molecular Devices), filtered at 3 kHz, and acquired using
custom-written software (Igor; WaveMetrics).

During all experiments, neurons were synaptically isolated by extra-
cellular application of 20 �M AP5, 25 �M CNQX, and 10 �M picrotoxin or
50 �M bicuculline. For some neurons, 1 mM 4-aminopyridine (4-AP) was
applied to reduce a transient potassium current. For other neurons, 5 nM

TTX was applied to partially block the transient sodium current respon-
sible for generating action potentials. All blockers were from Tocris
Bioscience.

Voltage-clamp protocol
Input resistance rin was calculated from the linear fit to steady-state cur-
rents at voltages from �80 to �40 mV (�10 mV steps from a holding
potential of �70 mV), sampled at 20 kHz. The magnitudes of the maxi-
mal sodium and potassium currents, denoted INa and IK, were estimated
from current responses to voltage steps ranging from �80 to �40 mV
from a holding potential of �70 mV (see Fig. 3D), after leak subtraction
(Picken-Bahrey and Moody, 2003a). Maximal INa was measured at its
peak value; maximal IK was measured at �40 mV, 70 ms after the begin-
ning of the step, after sodium currents had inactivated. Series resistance
was typically 8 –10 M� and compensated by at least 60%.

Due to space clamp issues resulting from currents in the dendrites and
axon, it is unlikely that we achieved perfect control over the applied
voltage. However, we do not believe that a systematic, stage-dependent
change in spatial control of voltage biases our results, for several reasons.
First, at least proximal neurites are present throughout the stages of our
experiments and the growth of more distal processes at later stages would
not be expected to have large effects on spatial control (Picken-Bahrey
and Moody, 2003a). Second, I–V relations for the voltage-gated Na and K
currents rise smoothly at all stages, indicating that major escapes in
membrane potential are not occurring, and, most relevant to our exper-
iments, are not affecting Na and K currents differentially. In cases where
voltage escapes were apparent, data were not accepted. Finally, the devel-
opmental increase in Na current density observed in this and previous
work was closely correlated with predicted changes in basic firing prop-
erties and action potential waveform, indicating that the observed
changes are not simply artifacts of poor and changing spatial control
(Picken-Bahrey and Moody, 2003a).

Current-clamp noise stimulation
For spike-triggered characterization (see below), broadband Gaussian
noise current, i(t), with mean, �, and SD, �, was injected to elicit long
(1000 –2000 s) spike trains, acquired in 100 s trials. All input current
traces were realizations of the Ornstein–Uhlenbeck process (Risken,
1996), expressed as follows:

i(t) � � � ��(t), (1)

where �(t) has unit variance and correlation time (�c � 1 ms always).
During noise trials, no holding current was applied; neurons with resting
membrane potentials positive to �60 mV were not analyzed further.
MATLAB 7 was used to create stimulus waveforms (digitized at 1 or 2
kHz) and for custom data analysis routines. For single � experiments, �
was increased until the neuron fired repetitively at �5–10 Hz while hold-
ing � � 2� to maintain the relative shape of the input current distribu-
tion between neurons with large differences in passive input resistance.
In multiple � experiments used to measure gain scaling, we started with
� � 2� and then increased � while holding � constant. For most neu-
rons, gain scaling was tested at � � 1.0 and 1.3, n � 25; for a subset of
neurons, a wider range of SDs was tested (� � 1.0, 1.3, 2.0, and 2.6), n �
7. To further probe the gain-scaling ability during partial sodium channel
block, some neurons in these experiments were tested at � � 1.0, 1.3, and
1.5, n � 12. For small correlation times, when �c is much smaller than the
membrane time constant �v, the input can be thought of as white noise
that has been discretized in samples of duration �c (Risken, 1996). Here,
�c/�v is typically approximately 1/20; in our models, a larger �c does not
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qualitatively change any reported results (data not shown). The scale of
voltage fluctuations driven by the current input can be expressed as
follows:

�v � r���c

�v
, (2)

where r is the input resistance. In the recordings shown, 4 mV �̃ �V �̃ 20
mV.

The mean current has a significant effect on the response properties of
the cell. For all ages studied, without a positive mean current, resting
potentials were approximately vrest � �70 mV with thresholds near �30
mV, making it difficult to drive spiking without unphysiological ranges
of �. The DC input � moved the effective resting potential from approx-
imately vrest � �70 mV with thresholds near �30 mV into the range �55
to �40 mV without substantially changing the threshold. This mean
input replaces the slow background depolarizations (hundreds of milli-
seconds and longer; slow relative to the 20 ms timescale of the relevant
stimulus; see Fig. 1B) that would be present due to spontaneous network
activity if synapses were not blocked (Picken-Bahrey and Moody, 2003a;
McCabe et al., 2006). For a summary of the data from mature P7 cells, see
Table 2.

Exponential integrate-and-fire (EIF) models were fit to a population
of mature cells (P7, n � 6) to quantitatively characterize the neuronal
dynamics in a framework amenable to theory. Fits were determined
manually from the statistics of the voltage distribution and the spike train
in response to a known input current. All cells included were statistically
stationary for at least 100 s for each input condition (exhibited stable
mean voltage and mean firing rate); nonstationary data (observed to vary
on timescales of 50 –100 s) were excluded from the fits. Goodness of fit to
the spike train was determined by the coincidence factor (Kistler et al.,
1997). Goodness of fit of the linear–nonlinear (LN) models resulting
from the best-fit EIF model was determined by D� M, the symmetrized
Kullback–Leibler (KL) divergence, averaged over �, between the spike-
triggered, normalized filtered stimulus distributions, p�ŝ � sp	 for the re-
corded data and the best-fit EIF model.

Representing intrinsic computation with LN models
We characterized the intrinsic computation of individual in vitro or
model neurons as a one-dimensional LN cascade model (Hunter and
Korenberg, 1986) calculated via reverse correlation (de Boer and Kuyper,
1968) of output spike times to the input Gaussian current stimulus with
SD � (Figure 1).

An LN model for a single neuron produces an estimate of the instan-
taneous firing rate in response to the input current. The LN model con-
sists of two parts: a feature that acts on the input to produce a linearly
filtered stimulus s(t), the amplitude of the feature present in the input,
and a nonlinear input– output relation that maps the filtered stimulus
s(t) to the instantaneous firing rate. We take the feature to be the spike-
triggered average (STA), denoted h. This filter h has length T and is
normalized to have unit gain (Rieke et al., 1996). Thus, the relevant
component of the stimulus is as follows:

s
t� � �
0

T

dt�h
t��
i
t � t�� � �� � 
h * i�
t� (3)

With this choice of normalization, the variance of the filtered stimulus is
linearly proportional to the variance of the unfiltered input current:

s(t) 2� � � 2.

The neuron’s selectivity for the identified feature is expressed by the
nonlinear input– output relation, R[s]. R[s] is related to the probability
that the input is associated with spikes, p[s � sp], by Bayes’ law:

R�s	 �
P�sp � s	

dt

� R�
p�s � sp	

p�s	

, (4)

where R� is the mean firing rate for fixed input mean and SD �, dt is the
sampling time step, and the prior distribution p[s] is always Gaussian
with mean zero and variance � 2. The spike-triggered stimulus distribu-
tion p[s � sp] is found by computing the histogram of the filtered stimulus
values, s, given the event that a spike occurs, which we denote sp. These
quantities are generally a function of the statistics of the input; here we
vary the SD. This is indicated by a subscript: R� � and R�(s).

Gain scaling
The input– output relation generally depends on the input statistics, �
and �; therefore, across input conditions, an individual neuron is de-
scribed by a family of LN models. For systems with perfect gain scaling, at
a fixed mean �, gain scaling occurs if the input– output relations for
different � (when expressed in terms of normalized inputs ŝ � s/�) fac-
tor into a fixed �-independent normalized response function,
R̂�s/�	 � R̂�ŝ	, and a �-dependent multiplicative gain:

R��s	 � R� �R̂� ŝ	 (5)

Note that the rescaling property is a change in “input gain,” whereby the
effective dynamic range of the inputs is scaled; a change in the multipli-
cative prefactor (here, the mean firing rate R� ) is known as “output gain”
(Carandini and Heeger, 2012).

This property can be equivalently expressed using the spike-
conditional filtered stimulus distribution, Equation 4, as the stimulus
distribution p(s) scales with � by construction. Gain scaling then
requires that the spike-triggered filtered stimulus distribution is in-
dependent of � when expressed in terms of the scaled stimulus ŝ, so
that for inputs with two different SDs �1 and �2,

p�1
� ŝ � sp	 � P�2

�ŝ � sp	,

where p� denotes the distribution of filtered stimuli given that
the input is drawn from a Gaussian distribution with SD �; by the Jacobian
rescaling of distributions under a change of variable, p��ŝ � sp	 � �p��s � sp	.

Quantifying gain scaling
We take advantage of Equation 4 to quantify the degree of gain scaling
using the spike-triggered stimulus distributions directly. We use the sym-
metrized KL divergence (Lin, 1991) of the spike-triggered stimulus dis-
tributions in terms of the scaled stimulus, where ŝ is scaled by the SD
denoted by the subscript of its function as follows:

D� �
1

2�dŝ�p�1
�ŝ � sp	log2�p�1�ŝ � sp	

p�2�ŝ � sp	� � p�2
�ŝ � sp	log2�p�2�ŝ � sp	

p�1�ŝ � sp	��.

(6)

For D� 3 0 bits, gain scaling is perfect. This approach avoids parameter
fitting and makes no assumptions about the shape of the distributions. His-
tograms were typically discretized at 0.1 normalized stimulus units. Due to
finite sample size, empty bins in the histograms p�[s � sp] are possible toward
the tails; a small value (MATLAB variable eps) was added to such bins.

We also use Equation 6 to compare the input/output relations from dif-
ferent neurons. We define DN as the symmetrized divergence between
p�[ŝ � sp] sampled for two different neurons; small DN indicates that the two
neurons have the same input–output function shape. To quantify the differ-
ence between the mature and immature neurons with respect to the variabil-
ity of the threshold functions within each maturity level, we compared the
distributions of pairwise DN. As Figure 3C demonstrates, the distributions of
DN for immature and mature neurons are not Gaussian, so we use a two-
sided Kolmogorov–Smirnov test to compute p values. Unless otherwise
noted, all other significance tests were unpaired two-sided t tests; 
·� indicates
a mean value; error bars are the SEM.

To ensure that empty bins in the sampled p[s � sp] distributions did
not largely impact our results from Equation 6, we also calculated the
mean Jensen–Shannon divergence, D� JS, between distributions by calcu-
lating the symmetrized KL divergence between each p�[ŝ � sp] distribu-

tion and the mean distribution, m �
1

2

p�1

�ŝ � sp	 � P�2
�ŝ � sp	�, and

then taking the average of the two resulting values:
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D� JS �
1

2�dŝ� p�� ŝ � sp	log2�p��ŝ � sp	

m�ŝ	 � � m�ŝ	log2� m�ŝ	

p��ŝ � sp	��
�

(7)

D� JS scaled linearly with D�; thus, our particular choice of metric did
not affect the trends on which we based our conclusions.

The D� values we calculated for most mature neurons were quite
small (� 0.1– 0.3 bits). During low gain conditions, especially during
the drug (4-AP and TTX) experiments, there were a relatively small
number of recorded spikes (i.e., �1000 spikes). For small numbers of
spikes, finite sampling and choice of bin size used to compute distri-
butions might create artifacts in D� calculations: one expects artifi-
cially high values of D� due to undersampling of an underlying
smooth distribution. To examine the expected finite data size effects,
we computed individual experimental p[ŝ � sp] distributions by divid-
ing the data randomly into two halves, p (1)[ŝ � sp] and p (2)[ŝ � sp], and
calculated D� between these distributions; this value should be very
close to zero. For the range of bin sizes we used in our calculations, the
resulting average sampling error was between 0.06 and 0.08 bits; this
sampling error applies for all reported D�, as calculations were per-
formed with matched spike counts. Thus, the majority of small D�

values indicating precise gain scaling were close to the D� values,
which arise from sampling alone. These margins of error were in
agreement with those estimated via bootstrap resampling (2000 rep-
etitions), which ranged from 0.008 to 0.072 bits (mean 0.032 bits, 18
neurons, 30% gain change).

Single neuron models
Using single compartment models, we examined the impact of different
maximal sodium and potassium conductances on the properties of the
computation as characterized by LN models.

Biophysical model
In close parallel with the experiments, we studied a Hodgkin–Huxley
style model (Hodgkin and Huxley, 1952) consisting of a passive leak
current, iL, and mammalian voltage-gated transient sodium iNa, and a
delayed-rectifier potassium, iK, currents with corresponding maximal
conductances, GL, GNa, and GK, and reversal potentials EL � �70 mV,
ENa � 50 mV, and EK � �77 mV:

Cv̇ � � iL � iNa � iK � i
t�,
� GL
EL � v� � gNa
t�
ENa � v� � g�
t�
EK � v� � i
t�,

(8)

where C � 1 �F/cm 2 is the specific membrane capacitance and i(t) is the
input current. The active conductances are given in terms of the gating
variables m, h, and n:

gNa � GNam
3h, (9)

gK � GKn. (10)

The kinetics of the gating variables are as follows:

�m
v�ṁ � m�
v� � m,

with m�
v� �
�m
v�

�m
v� � 	m
v�
and �m
v� �

1

�m
v� � 	m
v�
; (11)

�h
v�ḣ � h�
v� � h,

with h�
v� �
1

1 � exp �v � Vh

Kh
� and �h
v� �

1

�h
v� � 	h
v�
; (12)

�n
v�ṅ � n�
v� � n,

with n�
v� �
�n
v�

�n
v� � 	n
v�
and �n
v� �

1

�n
v� � 	n
v�
. (13)

where the rate coefficients, �x(v) and 	x(v), are of the form:

�x
v� �
A�x


v � V�x
�

1 � exp� �
v � V�x

Kx
� and 	x
v� �

� A	x

v � V	x

�

1 � exp�v � V	x

Kx
�.

The kinetic parameters are shown in Table 1, from Mainen et al. (1995).
For compactness, m�(v) and n�(v) can be re-expressed as follows:

x�
v� �
1

1 � e�� v�Vx��Vx

Kx
� (14)

with Vx' V�x(� V	x) and �Vx � Kx ln �A	x

A�x

�.

Simulations were performed in the NEURON simulation environ-
ment (Hines and Carnevale, 1997). Maximal conductances GNa and GK

ranged over 100 –2000 pS/�m 2. To match the range of input resistances
seen in vitro (0.2–1.5 G�; see Picken-Bahrey and Moody (2003a) for
discussion of the high input resistance in developing cortical neurons),
the leak conductance was set to GL � 0.25 pS/�m 2 such that the mem-
brane time constant at the resting potential was 25 ms. Of 400 possible
conductance combinations 217 produced model neurons that were not
spontaneously active and fired in response to noisy current. Figure 6A
details the model’s excitability as function of GNa and GK; 20,000 spikes
were used for all calculations, with an integration step dt � 0.1 ms. Ten
simulations with different GNa/GK were repeated for dt � 0.01 ms, with
minor changes in spike timing and no changes in LN models. As dis-
cussed in the main paper, gain scaling of the LN models improves with
increasing GNa/GK, as shown in Figure 6B.

Exponential integrate and fire model
We performed theoretical analysis and fits to data with the exponential
integrate and fire (EIF) model, a single variable model that has been
shown to fit well to data from cortical neurons (Badel et al., 2008a,b). The
EIF model replaces Hodgkin–Huxley style dynamics with nonlinear dy-
namics given by an exponential dependence on V that drives spiking and
an instantaneous after-spike reset that terminates the action potential:

�Vv̇ � vo � v � f
v� � 
vs � vr��VR
t� � r��
t� (15)

with

R
t� � 	
�ts�



t � ts� where �ts � t:v
t� � vs�,

f
v� � 
vth � vo��e
v�vth

�
� �1 �

v � vo

� �e
v�vth

� �
� �1 � �1 �

vth � vo

� �e
v�vth

� ��1

The parameter vo is the effective resting potential for mean input

i(t)� � � in the sense used in Equation 16, �v is the effective membrane
time constant near rest as in Equation 17, vs is the peak voltage of the
spike, vr is the reset voltage immediately after a spike, and r is the input

Table 1. Kinetic parameters of the biophysical model

Variable Equation Ax �10 �3	 Vx �mV	 Kx �mV	

m �m 182 �35 9
	m 124 �35 9

h �h 24 �50 5
	h 9.1 �75 5
h� – �65 6.2

n �n 20 20 9
	n 2 20 9
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resistance. The instantaneous firing rate R(t) drives the voltage reset from
vs to vr at every spike time, when v reaches vs.

The function f(v) is the exponential voltage-activated current, and �
sets the activation scale over which the spike-driving excitable current
turns on. For fixed � (which has been absorbed into the definition of vo),
there is an unstable fixed point at vth that acts as the intrinsic dynamical
threshold for pulse-like inputs (Gerstner and Kistler, 2002; Hong et al.,
2007; Izhikevich, 2007; Famulare and Fairhall, 2010, 2011). This form of
f(v) (Fourcaud-Trocmé et al. (2003)) has been chosen so that each pa-
rameter retains its intuitive meaning regardless of the parameter values.
Parameterized as above, it is assumed that the neuron exhibits a stable
resting state and threshold, i.e., is excitable. Furthermore, as f(v) has the
properties f(vo) � 0, f(vth) � vth � vo, and df/dv (vo) � 0 for all values of
the activation parameter �, this parameterization allows us to vary �
without also changing the directly measurable, model-independent pa-
rameters, vo, vth, and �v.

Five of the parameters determine units and the finite cutoff for the
spike height (to which the model is quite insensitive; Touboul, 2009).
The two important dependencies are the dimensionless ratios describing
the spike generating currents: �/vth�vo and vr�vo/vth�vo. The input
fluctuation strength is captured similarly in terms of �v/vth�vo.

Spike threshold
For neurons in the low Na � conductance regime and for the correspond-
ing EIF parameters, spikes are broad and it is necessary to choose a
criterion to define the spike time. We chose to define vspike statistically as
the voltage beyond which at least 95% of trajectories continue to spikes;
spike times are defined as the instants that vspike is crossed from below. As
a strong hyperpolarizing input fluctuation can abort a spike, vspike � vth.
Although vspike is then weakly � dependent, the gain-scaling property of
the sampled input– output functions does not depend on the definition
(see Fig. 9; it also holds robustly for �-independent vspike). The threshold
definition affects which voltage fluctuations are classified as spikes, and
so slightly affects the measured overall firing rate and the filter shape.

Biophysical interpretation of the EIF model parameters
We reparametrize the conductance-based model, Equation 8, to aid in
interpreting the EIF model parameters. First, we explicitly separate the
linearized response around the effective resting potential from the full
nonlinear dynamics. For input currents with nonzero mean, 
i(t)� � �,
the effective resting potential is as follows:

vo �
GLEL � gNa
vo�ENa � gK
vo�EK � �

GL � gNa
vo� � gK
vo)
(16)

where gNa(vo) and gK(vo) are the steady-state conductances at the effec-
tive resting potential. For small GL, vo only depends on the maximal
conductance ratio, GNa/GK, and not the absolute conductance values.
The effective input resistance at vo is r � (GL � gNa(vo) � gK(vo)) �1, and
the corresponding effective membrane time constant is as follows:

�V �
C

GL � gNa
vo� � gK
vo�
(17)

In terms of vo, �v, and �, Equation 8 becomes:

�Vv̇ � vo � v � r
gNa
t�
ENa � v� � r
gK
t�
EK � v� � r��
t�,

where the conductance differences are defined as 
gX(t) � gX(t) � gX(vo).
Averaging over the channel dynamics conditioned on the instantaneous
value of the voltage gives a one-dimensional model in the voltage:

�Vv̇ � vo � v � r

gNa � v�
ENa � v� � r

gK � v�
EK � v� � r��
t�,

(18)

Numerical (Badel et al., 2008a,b) and limited analytical (Abbott and
Kepler, 1990; Kepler et al., 1992; Jolivet et al., 2004) methods are available
for performing the averaging explicitly. This reduction is most accurate
when the conductance states are tightly correlated with the instantaneous
value of the voltage, as occurs when the timescales of the conductance
dynamics are much faster than the timescale of membrane dynamics.

This is approximately true for the biophysical model for the parameters
simulated, except during the afterpolarization, when the details of the
spike waveform are not important to the questions we studied (below
threshold: �v � 40 ms, �m � 0.3 ms, �n � 7 ms, �h � 10 ms).

In the EIF model, the function f(v) that approximates the nonlinear
currents that are active below threshold and during spike generation,
Equation 15, is characterized by the voltage threshold, vth, and the
activation parameter, �. The threshold voltage in the EIF model char-
acterizes the separation between the subthreshold and spiking re-
gimes and is approximately the unstable fixed point of the averaged
dynamics:

f
vth� � vth � vo 
 r

gNa � vth�
ENa � vth� � r

gK � vth�
EK � vth�;

(19)

only approximate equality can be expected because any simple form
chosen for f(v) is unlikely to perfectly match the true averaged kinetics.
The activation parameter, �, primarily captures the kinetics of sodium
activation (Fourcaud-Trocmé et al., 2003), although the best-fit value is
influenced by all active nonlinearities preceding a spike. The reset to vr

when the voltage exceeds a spike height, vs, replaces biophysical dynamics
for the afterpolarization. When the mean interspike interval is large com-
pared with the effective membrane time constant, �v, the EIF model is
insensitive to vr when vr is such that

vo � vr 
 vth � � and � 
 vth � vo

To understand how gain scaling in the reduced model relates to that in
the conductance-based model, we examine how vth and vo vary with
changes in the maximal conductance ratio, GNa/GK. From Equation 19,
the derivative of the threshold voltage with respect to changes in the
maximal conductance ratio is as follows:

�vth

��GNa

GK
� �

GK

GNa
r

gNa � vth�
ENa � vth�

1 �
�

�v
�r

gNa � v�
ENa � v� � r

gK � v�
EK � v�	v�vth

, � 0,

where the inequality follows because the numerator is positive-definite
and the denominator is negative-definite since the voltage threshold is
dynamically unstable (Izhikevich, 2007). Thus, as the maximal conduc-
tance ratio is increased, the voltage threshold decreases, as is well known
since the sodium channel is responsible for excitability. The derivative
of Equation 16 with respect to the conductance ratio will have the

opposite sign because the resting potential is dynamically stable:
�vo

��GNa

GK
� � 0.

Thus, an increase in the maximal conductance ratio decreases the dis-
tance between rest and threshold:

�
vth � vo�

��GNa

GK
� � 0. (20)

This correspondence can be seen by comparing the behavior of the full
biophysical model (see Fig. 7) to that of the EIF model (see Fig. 10).

For fixed spike-generating kinetics, represented by fixed �, increasing
the conductance ratio in the biophysical model (and increasing the max-
imal current ratio in the recorded neurons) is equivalent to increasing
�/(vth � vo) in the EIF model. Qualitatively, �/(vth � vo) captures in a
single parameter the interaction of the kinetics of spike initiation (�)
with developing expression of ion channels (vth � vo).

Fitting the EIF model to data
EIF models were fit to a population of mature cells (P7, n � 6) probed by
four different input SDs. An EIF-specific algorithmic model fitting ap-
proach (Badel et al., 2008a,b) with electrode correction (Brette et al.,
2007) was attempted but failed due to the insufficient sampling rate (2
kHz), and so fits were performed manually. Initial parameter estimates
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were derived from the STA (�v) and steady-state voltage distribution (vo,
vth, vr, vs, r, and �). From the initial estimates, parameters were varied to
optimize the model fit to the STA, fit to the subthreshold steady-state
voltage distribution, and coincidence factor. All cells included were sta-
tistically stationary (as determined by the mean firing rate and mean
voltage, averaged in 500 ms blocks) for at least 100 s for each input
condition; nonstationary data (observed to vary on timescales of
50 –100 s) were excluded from the fits.

The spike height voltage, vs, was taken to be the maximum voltage
observed, although all results are insensitive to this choice provided vs �
vth �� � (Fourcaud-Trocmé et al., 2003; Touboul, 2009). The initial
guess for the effective membrane time constant, �v, was matched to the
timescale of the STA. Initial guesses for the kinetic parameters were set to
� � 0.3 and vr � vo � 0. Given the above choices, initial values for the
effective resting potential, vo, threshold, vth, and resistance, r, were deter-
mined by optimizing the fit of the steady-state voltage distribution below
threshold:

p��v	 �
2R� ��V

�v
2 e


v�vo�2�2F
v�

�v
2 �

max 
v,vr�

vs

dv� e

v��vo�2�2F
v��

�v
2 , (21)

where F(v) � ���
v du f(u) and the mean rate, R� �, is found from the

normalization condition, �dv p[v] � 1 (Fourcaud-Trocmé et al., 2003;
Paninski et al., 2003).

From the initial guess, systematic variation of parameters was used to
optimize the mean coincidence factor across all input conditions. The
coincidence factor, applied to a single input condition, is as follows:

� �
Ncoinc � 
Ncoinc�

1

2

Ndata � Nmodel�

��1 (22)

where Ncoinc is the number of spikes that coincide within a tolerance ��,

Ncoinc� � 2R� ��Ndata is the expected number of coincidences for a Pois-
son spike train with the same rate as the data, and � �1 � 1 � 2R� � is a
normalization factor (Kistler et al., 1997). The coincidence factor is zero
for random Poisson coincidence and is one for spike trains that agree
exactly. The tolerance was chosen to be one mean spike width, � � 7 � 3
ms for the population (slow spikes are consistent with the small conduc-
tances seen at this age (Picken-Bahrey and Moody, 2003a).

Best-fit parameters for the population are summarized in Table 2.
Across the population, the mean coincidence factor for an input condi-
tion was 
�� � 0.59 � 0.07 (the statistical error for a condition is �0.02).
For each cell, the EIF model identified was used to generate LN models
corresponding to the recorded data. Simulation results are shown in
Figure 8. Input– output function similarity between model and data was
characterized by the mean Jensen–Shannon divergence between model
and data, D� M, defined as in Equation 7. Population statistic is

D� M� � 0.36 � 0.19 bits across all input conditions; estimated floor is 0.1
bits, based on random resampling as above.

Results
To characterize the computation of a neuron, we constructed LN
models by stimulating the cell body with Gaussian noise current
scaled by a range of SDs and recording the resulting spike times
(Bryant and Segundo, 1976; Agüera y Arcas et al., 2003). In the
LN model (Fig. 1), the computation is represented as linear fea-
ture selection and nonlinear encoding: from its input, the neuron
selects the relevant signal component by linear filtering—the filtered
stimulus, s(t)—and a nonlinear input–output relation determines
the instantaneous firing rate from the filtered stimulus, R[s(t)] (see
Materials and Methods; Hunter and Korenberg (1986)). We identi-
fied the neuron’s preferred feature as its STA, (Fig. 1B; Eq. 3), the
mean time-varying current input preceding a spike (Bryant and Se-
gundo, 1976; Rieke et al., 1996). Across different stimulus condi-
tions, any changes in a neuron’s intrinsic transformation of current
inputs to output spike times can in principle appear as changes in the
STA or in the shape of the input–output relation.

The input currents were realizations of a Gaussian noise pro-
cess with mean �, SD �, and 1 ms correlation time, �c, Equation
1. We focus on adaptation to the SD and hold the mean input
fixed. The filter is defined to have a gain of unity so that the
amplitude of the filtered stimulus s(t) is proportional to the am-
plitude of the input current I(t), and all changes in gain appear as
changes in the input– output relation, R[s]. To study gain scaling,
we define the scaled, normalized input– output relation,
R̂��ŝ	 � R�ŝ	/R� , where ŝ � s/� and R� � is the mean firing rate at a
given �.

To test the gain-scaling properties of single neurons, we com-
pared R̂��ŝ	 obtained using noisy current stimuli with different
SDs. If perfect gain scaling occurs between two stimulus condi-
tions �1 and �2, the input– output relations adapt to the range
given by the stimulus SD such that the stimulus is encoded in
units relative to �: R̂�1� ŝ	 � R̂�2� ŝ	 (Brenner et al., 2000; Fairhall et
al., 2001; Famulare and Fairhall, 2011). In contrast, if the neuron
uses the same input– output relation independent of �, the scaled
relations will differ significantly. In general, one expects that neu-
ral systems will realize coding properties that lie between these
extremes (Gaudry and Reinagel, 2007). We quantified differences
in R̂��ŝ	 for different � using an information measure, D� (Fig.
1C; Eq. 6). A neuron that shows perfect scaling for �1 and �2 will
have D� close to zero (see Materials and Methods).

Gain scaling in single neurons
We begin by demonstrating gain scaling in a single cortical neu-
ron at P7 (an example from the “mature” group) stimulated with
noise of different SDs (Fig. 2). The STAs had a consistent shape
across the range of � (Fig. 2A): the STA is dominated by a peak of
depolarizing current immediately before the spike, typically pre-
ceded by a shallow hyperpolarizing trough. This general shape is
typical for STAs calculated for vertebrate central neurons
(Mainen et al., 1995; Svirskis et al., 2003; Powers et al., 2005; Slee
et al., 2005). Typically, the corresponding input– output rela-
tions, R�[s], were exponential functions of stimulus amplitude
for small s but saturated for large s (Fig. 2B). The midpoint of each
R�[s] increased with �. However, when plotted with respect to
the stimulus scaled by SD, ŝ � s/�, the input– output relations
R̂��ŝ	 were nearly identical (Fig. 2C). Through gain scaling (small
D�), the neuron maintains the same form of response nonlinear-
ity independent of the SD of the stimulus distribution. While the
data shown in Figure 2 is from a neuron from organotypic cul-
ture, we found similar gain-scaling results in neurons from acute
slices of the same age (data not shown).

Table 2. Population summary of relevant parameters for mature cortical cells

Parameter Mean value � STD

resting potential (� � 0) �68.5 � 2.5 mV
� 39.9 � 17.4 pA
vo (� � 0) �48.2 � 5.4 mV
vth �25.3 � 1.1 mV
�v 18.0 � 4.2 ms
� 9.3 � 2.3 mV
vr �55.4 � 7.1 mV
vs 37.0 � 3.5 mV
r 150 � 90 M�

�

vth � vo
0.37 � 0.05

vr � vo

vth � vo
�0.1 � 0.2

P7; no DC input (� � 0): n � 28; with DC input: n � 6.
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Convergence to a common
input– output relation and ratio of
spike-generating currents
We next compared the shapes of the
STAs and input– output relations be-
tween the mature (P6 –P8) and imma-
ture (E18 –P1) neuron groups. Each
neuron was driven with a single noise
stimulus, with � chosen such that neu-
rons from both stages fired at similar
rates (5–10 Hz). These stimulus ampli-
tudes varied over an order of magnitude
in absolute units, reflecting the diverse
excitability of the population, particu-
larly the decrease in passive input
resistance which occurs over this devel-
opmental period (Picken-Bahrey and
Moody, 2003a). Typically, immature
STAs had a broader temporal integra-
tion window than mature STAs (Fig.
3A). The scaled input–output relations of
all mature neurons, R̂��ŝ	, were remarkably
consistent (Fig. 3B): not only did the re-
sponse properties of mature neurons
scale for stimuli of different �, these
neurons shared a common population
function R̂�� ŝ	. In contrast, R̂�� ŝ	 of im-
mature neurons had a smaller stimulus
domain, saturated at lower stimulus val-
ues, and were more variable between
neurons. We quantified the difference
between two neurons’ input– output re-
lations for the same stimulus SD as DN,
analogous to D� (see Materials and
Methods and Eq. 6). The mean imma-
ture DN was significantly greater than
that of mature neurons (Fig. 3C), re-
flecting the variability seen between in-
dividual immature neurons’ input–
output relations. Furthermore, mean
error in gain scaling (
D��; see Materials
and Methods) was smaller for mature
neurons (red, 
D�� � 0.26 � 0.04 bits,
n � 11) than for immature neurons (blue, 
D�� � 0.56 � 0.10
bits, n � 6, p � 0.0019). Thus, the ability of cortical neurons
to scale response gain to match input statistics emerges
during the first week of postnatal development, along with
the convergence to a common population input– output
relation.

We next characterized the intrinsic biophysical parameters
that might underlie these properties. During embryonic and early
postnatal development, the relative densities of spike-generating
channels change. Na channels increase in density much faster
than delayed K channels (Picken-Bahrey and Moody, 2003b) and
thus support regenerative membrane depolarization underlying
action potential generation. Using a voltage-clamp protocol (see
Materials and Methods and Fig. 3D), we measured the maximal
spike-generating currents, denoted INa and IK, throughout early
cortical development for neurons ranging from E14 to P11. Dur-
ing development, the ratio of INa to IK initially increases with age,
and then converges to a constant value after P0 (Fig. 3E). These
results suggest the increase in Na to K current ratios might un-

derlie the observed improvement of gain scaling in cortical neu-
rons as they mature in the first postnatal week.

Emergence of gain scaling does not require
spontaneous activity
Certain aspects of the electrophysiological development of corti-
cal neurons, in particular those that lead to termination of spon-
taneous waves of activity (McCabe et al., 2006), depend on
electrical activity. We therefore tested the hypothesis that spon-
taneous, synchronous network activity centered around P0 may
trigger activity-dependent developmental events that impact gain
scaling. From organotypic cultures, we compared the LN models
of mature neurons cultured with and without TTX block of sponta-
neous activity from E18–P3 (Fig. 4). We found no significant differ-
ence between the TTX-treated and control STAs, input–output
relations, and INa/IK ratios, indicating that the developmental acqui-
sition of the common scaling input–output relation does not require
a preceding period of spontaneous activity. We did not test re-
sponses to a range of gains for the control and TTX-cultured neu-
rons, as the lack of difference in basic LN characterization and

A B

C D

Figure 1. Characterizing the computation in single neurons with an LN model. A, A neuron is driven to fire action potentials (in
voltage V(t)) by stimulating with Gaussian noise input current i(t). Increasing the SD, �, of the input from �1 (top, black) to �2

(bottom, red) results in higher frequency firing. B, The optimal single input feature correlated with spiking is the STA stimulus, the
mean current preceding a spike. The feature is normalized such that STA · STA � 1. In this example, STA�1

(black) and STA�2

(red dashed) are identical. C, The computation is characterized by the spike-triggered, scaled, filtered stimulus distribution,
p��ŝ � sp	 
ŝ � s/��. This neuron shows large error in gain scaling as the distribution changes shape significantly with changes
in P�1

, �ŝ � sp	�p�2
�ŝ � sp	; this change is quantified by D� (see Materials and Methods). The prior stimulus distribution, p�ŝ	,

is a unit variance Gaussian (shaded). D, Scaled nonlinear input– output relations, R̂��ŝ	 � R��ŝ	R� �, are calculated by dividing
p��ŝ � sp	 by p�ŝ	 (see Materials and Methods); as in C, the two input– output relations do not overlap for different �.
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channel densities suggested that each group’s intrinsic computation
was the same with respect to the aspects we describe here.

Gain-scaling behavior can be altered by pharmacological
manipulation of INa /IK

An alternate explanation for the emergence of the scaling input–
output relation is that immature neurons lack some additional
intrinsic mechanism expressed by mature neurons, as there are
many examples of specialized currents tuning the computational
capabilities of single neurons (for review, see Bean (2007)). One
possible mechanism was a significant 4-AP-sensitive transient
potassium current we observed only in mature neurons (Fig. 5).
The characteristics of this current suggested that it could influ-
ence excitability at subthreshold voltages before a spike, possibly
contributing to the input– output relation consistency and scal-
ing observed in mature neurons. To test this hypothesis, we com-
pared LN models from mature neurons with and without the
addition of 4-AP. Surprisingly, for the majority of neurons, re-
ducing the transient potassium current reversibly improved gain
scaling (Fig. 5B) and resulted in a small increase in input– output
relation similarity between neurons. Additionally, for a given �,
the input– output relation showed a decrease in slope and a shift
toward smaller stimulus values (Fig. 5A). These effects are con-
sistent with an increase in INa/IK and suggest that the effects of this

transient K-conductance on gain scaling reflect its influence on
the effective subthreshold current ratio.

These results, along with the age-dependent changes in input–
output relations, predict that decreasing INa/IK in vitro should
shift input– output relations to higher filtered stimulus values
and decrease gain-scaling ability between stimuli with different
distributions. To test these predictions, we determined input–
output relations for in vitro neurons with a partial (5 nM) TTX
block of sodium channels to reduce INa/IK. At this TTX concen-
tration, neurons still produced regular action potentials but at
lower rates. As shown in Figure 5C, for a given stimulus distribu-
tion, application of TTX shifted the population mean input–
output relation to a higher threshold stimulus value for firing
(i.e., a translation along ŝ � s/�) relative to the control condition.
We next compared gain scaling before and after application of
TTX (Fig. 5D). For a gain contrast of �� � 30%, the increase in
error was not statistically significant. However, for �s � 50%,
scaling was reversibly disrupted and D� increased for all neu-
rons by approximately fivefold. By demonstrating that gain
scaling can be changed by altering sodium channel availability,
these results support our hypothesis that the age-dependent
increase in INa/IK is responsible for the emergence of gain
scaling with development.

A B C

Figure 2. Gain scaling in single cortical neurons. A, Normalized STA current stimulus, P7 mouse cortical neuron. Separate STAs were calculated from four different stimulus SDs (relative � � {1,
1.3, 2, 2.6}; firing rates R� � � {5.1, 6.9, 7.5, 10.0} Hz and spike counts n � {1900, 2600, 600, 800}). B, Unscaled input– output relations, R�[s]/R� �, for a P7 mouse cortical neuron calculated for
different input �. Shading is the same as in A. Dashed lines indicate the stimulus value at half-maximum. C, The same input– output relations as in B, scaled: x-axis ŝ � s/�, y-axis R̂��ŝ	. This
neuron shows nearly perfect gain scaling.

A B C

D

E

Figure 3. Convergence to a common intrinsic computation parallels development of voltage-gated currents. A, Population STAs for immature and mature neurons. B, R̂��ŝ	 for single �
conditions for immature (n � 15, blue) and mature (n � 26, red) groups. C, Distribution of pairwise DN for immature and mature neurons shown in A and B. Input– output relation shape is more
consistent for mature (
DN�� 0.15 � 0.01 bits, n � 325) than for immature (
DN�� 0.84 � 0.08 bits, n � 120) neurons. D, Voltage-clamp protocol to measure maximal in vitro currents, INa and
IK, in immature (top) and mature (bottom) neurons. Steps start at a holding potential of �70 mV and range from �90 to 40 mV. E, INa versus IK measured as in E. Warmer colors indicate increasing
age (E14 –P11, n � 169).
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Gain scaling in a biophysical
neuron model
In combination, these in vitro data show
that several remarkable properties of cor-
tical neurons emerge in concert within the
first postnatal week: neurons develop the
ability to scale response gain to the ampli-
tude of input fluctuations, they converge
on a common population input– output
relation, and they converge on a constant
INa/IK ratio. To determine whether the ob-
served developmental change in INa/IK ra-
tio was sufficient to explain the emergence
of the common scaling input– output re-
lation, we extended the in vitro experi-
ments described above by simulating a
simple model of spike initiation in cortical
neurons (Mainen et al., 1995), using only
the active sodium and potassium currents
responsible for spike generation. To re-
create the spectrum of intrinsic properties
we observed in developing cortical neu-
rons, we determined LN models and in-
vestigated gain scaling over a grid of
maximal sodium (GNa) and potassium
(GK) conductances that spanned a range
of GNa/GK values (Fig. 6B). (Note that as
the maximal conductance ratio is propor-
tional to the maximal current ratio, we
report conductance ratios here for conve-
nience). Model neurons were classified as
spontaneously active, excitable, or silent;
these categories were separated by bound-
aries in the space of GNa and GK corre-
sponding to particular values of the
conductance ratio (Fig. 6A). LN characterizations were restricted
to the excitable subset of model neurons (GNa/GK between 0.5
and 2).

We first examined how changes in model GNa/GK deter-
mined input– output relation shape for a fixed stimulus distri-
bution, as shown in the in vitro data (Fig. 3 B, C). Figure 7A
overlays the scaled input– output relations R̂�� ŝ	 for a range of
GNa and GK combinations (inset), which gave rise to excitable
models. For a given �, GNa/GK determined the shape of the
scaled input– output relation. As the conductance ratio was
increased, the input– output relations decreased in slope until
they converged to a fixed shape for large GNa/GK. For low
GNa/GK models, input– output relations were quite variable
compared with high ratio models, consistent with the finding
that immature neurons show variable input– output relations,
while mature neurons display a common population input–
output relation in step with the developmental increase in
maximal INa/IK.

We next compared the models’ gain-scaling capabilities by
stimulating firing with noise of different SDs (Fig. 7B). Models
with low GNa/GK had input– output relations, which did not scale
completely with �, while those input– output relations from high
GNa/GK models were nearly identical for all �. We extended the
range of � beyond what was possible in vitro and compared gain-
scaling ability across different changes in � and values of GNa/GK

(Fig. 7C). Scaling was highly correlated with increasing ratio,
rather than either conductance alone (Fig. 6B), and, for those

models with incomplete gain scaling, the input– output relation
mismatch D� increased for larger changes in � (Fig. 7C). The
model scaling performance was similar to the in vitro INa/IK-
dependent developmental increase in scaling ability. Thus, in
vitro and in the model, the most accurate gain scaling occurs with
a common input– output relation, which is determined by the
ratio of spike-generating currents and converges to a common
form for large INa/IK.

We also observed a decrease in the intrinsic integration prop-
erties of the neurons during development (Figure 3A). This
change is mostly likely due to the known decrease in input resis-
tance and concomitant shortening of membrane time constant,
which occurs over the first postnatal week (Picken-Bahrey and
Moody, 2003a; Moody and Bosma, 2005). We also explored the
effects of input resistance on gain scaling in the model, but while
the width of the STA was increased with decreased leak, gain
scaling remained the same for this manipulation (data not
shown).

A simple neuron model reproduces the gain scaling observed
in mature neurons
The biophysical model demonstrates that perfect gain scaling
in the input– output relation can occur without any explicit
adaptive processes that adjust the gain through spike-driven
negative feedback, such as slow sodium inactivation (Kim and
Rieke, 2001; Lundstrom et al., 2010) and slow afterhyperpo-
larization (AHP) currents (Ermentrout, 1998; Lundstrom et
al., 2010). However, to understand the mechanism for this
adaptive computation for some parameter choices, we would

A B

C D

Figure 4. Block of spontaneous activity does not significantly affect intrinsic computation. Single input � LN models were
calculated for P7 neurons cultured with (red, n � 13) or without (black, n � 13) TTX block of spontaneous activity from E17 to P3.
The amplitude of � was adjusted according to passive input resistance and to achieve 5–10 Hz repetitive firing. A, Mean STA from
TTX and control cells (mean across neurons, solid line; � SEM, dashed line). The two conditions were nearly identical. B, Mean
normalized input– output relations, R̂��ŝ	, across TTX and control cells (mean across neurons, solid line; � SEM, dashed line). As
in A, there was no difference between the two conditions. C, Input– output relations similarity showed no significant change
between conditions (Control 
DN� � 0.19 � 0.03 bits, n � 78; TTX: 
DN� � 0.16 � 0.05, n � 78; p � 0.094). D, Average
potassium and sodium densities for TTX and control (gray) neurons. Current values are estimated using a voltage-clamp protocol
(Fig. 3E; see Materials and Methods) and normalized by cell area to obtain current densities. (Control 
IK�� 0.31 � 0.10 pS/�m 2,

INa� � 0.28 � 0.11 pS/�m 2; TTX: 
IK� � 0.25 � 0.05 pS/�m 2, 
INa� � 0.26 � 0.05 pS/�m 2.) Current densities and INa/IK

ratios were not significantly different between conditions (IK: p � 0.58; INa: p � 0.88; control 
INa/IK�� 0.90 � 0.06; TTX 
INa/IK�
� 1.18 � 0.20, p � 0.09).
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like to simplify the neuron’s dynamics further. We use the EIF
model (Fourcaud-Trocmé et al., 2003), which is sufficiently
rich to quantitatively fit recorded data but is also simple
enough to analyze theoretically.

The EIF model (Eq. 15) is specified by seven parameters.
The effective resting potential, vo, is the steady-state
voltage for fixed input mean �. The threshold voltage, vth,
defines the separation between subthreshold and spiking dy-
namics. Together, vth � vo sets the distance-to-threshold—the
typical voltage scale that governs the response of the neuron.
The activation parameter, �, sets the voltage scale over which
sodium activates near threshold; the reset voltage, vr, approx-
imates spike afterpolarization; and vs sets the maximum volt-
age at the top of the spike. It is convenient to express the input
SD in terms of the scale of the corresponding voltage fluctua-
tions, independent of the membrane time constant, �v, and the
total membrane area; we denote this input parameter �v (Eq.
2). The complete behavior of the EIF model may be character-

ized by the three dimensionless ratios
describing spike initiation �/(vth � vo),
afterpolarization (vr � vo)/(vth � vo),
and the relative input strength (�v/(vth � vo).
For the neurons studied here, in which
spike-generating kinetics are fast com-
pared with the membrane time constant,
the maximal conductance ratio, GNa/GK,
can be related with an inequality to the
distance from rest to threshold, vth � vo, as
shown by Equation 20 in Materials and
Methods:

�
vth � vo�

��GNa

GK
� � 0

Thus, increasing the biophysical con-
ductance ratio corresponds to decreas-
ing the distance-to-threshold in a
comparable EIF model.

The EIF model gives a good fit to the
mature cells (Fig. 8). For each cell (P7,
n � 6), we identified a set of parameters
that best generalized across all input

SDs studied (0.25 �
�v

vth � vo
� 0.89).

The EIF fits reproduce the voltage traces
in detail and correctly predict the input–
output relations of the data (Figure 10).
The best-fit parameters for mature neu-
rons are summarized in Table 2.

LN models obtained for the EIF
model also reproduce the observations
seen in the biophysical model. With
fixed model kinetics (fixed � and vr), the
input– output function of the EIF mod-
els converge to a common form as the
distance-to-threshold,
vth � vo, decreases. Furthermore, decreasing
distance-to-threshold correlates with im-
proved gain scaling and less steeply sloped
input– output curves. As decreasing
distance-to-threshold is equivalent to in-
creasing the maximal conductance ratio,
the EIF model behavior is consistent with

our observations that gain scaling occurs for large conductance
and large maximal current ratios seen in mature neurons. To see
the correspondence of changes of vth � vo in the EIF model,
compare Figure 10 to Figure 7 for changes of GNa/GK in the
biophysical model; Figure 5 for pharmacological manipulations
involving TTX and 4-AP; and Figure 3 for maturation and max-
imal current expression.

Relating gain scaling to voltage dynamics in
simplified neurons
To understand the basis for the observed gain scaling, we need to
determine the relationship of the input– output relation of the
LN model to the voltage-based dynamics that support gain scal-
ing. Here we argue that the gain scaling we observe can be under-
stood in terms of the subthreshold voltage distribution with
different input SDs. We derive the properties of the subthreshold
distribution for neurons which perform gain scaling, and show

A B

C D

Figure 5. Two pharmacological manipulations of INa/IK change gain-scaling behavior in agreement with model results.
A, B, Reduction of transient K-current changes input– output relation shape and improves gain scaling (organotypic slices).
A, Mean R̂�� ŝ	 across neurons before (black) and after the addition of 1 mM 4-AP (red), n � 11. Dashed lines show � SEM.
B, Mean D� values before (black) and after addition of 4-AP (red). Lines show control and 4-AP pairings for individual
neurons (control: 
D�� � 0.27 � 0.03 bits; 4-AP: 
D�� � 0.16 � 0.01 bits, n � 11). A majority of neurons showed an
improvement in gain scaling (9 of 11 neurons, p � 0.014, paired t test, mean improvement of 35 � 8%). Treatment with
4-AP resulted in a small increase in input– output relation similarity, DN ( p � 0.013). C, D, Partial block of sodium channels
shifts the input– output relation shape to higher stimulus values and decreases gain-scaling behavior (acute slices). C,
Mean R̂�� ŝ	 across neurons before (black) and after the addition of 5 nM TTX (blue), n � 19. Dashed lines show � SEM.
Stimulus SD were changed by a factor �� � 100(�2 � �1)/�1. D, Mean D� values before (black) and after addition of 5
nM TTX (blue) for 30% �� (left) and 50% �� (right) switches. Note change in abscissa scale from B. Lines show control and
TTX pairings for individual neurons; 30% �� (n � 7) (control: 
D�� � 0.08 � 0.02 bits; TTX: 
D�� � 0.13 � 0.03 bits).
A majority (5 of 7 neurons) showed an increase in gain-scaling error, but this difference was not statistically significant
( p � 0.1773, paired t test; mean increase in error of 99 � 52%); 50% �� (n � 12) (control: 
D�� � 0.21 � 0.05 bits;
TTX: 
D�� � 1.09 � 0.21 bits). For this ��, all neurons showed an increase in gain-scaling error ( p � 0.0004, paired t
test; mean increase in error of 550 � 150%). Error bars indicate SEM.
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that these properties hold for LIF neurons
in the limit of large noise input. EIF neu-
rons also possess these properties but with
biologically plausible neuronal parame-
ters. Finally, the experimental data also
has the same properties.

The neuronal dynamics implement the
LN model computation by encoding the
filtered stimulus in the membrane volt-
age: the filtering properties of the mem-
brane, modulated by feedback from the
AHP, select from the input current i(t) a
specific component, s(t), which is best
correlated with spiking. The input– out-
put relation follows from the conditional
voltage distribution evaluated at the spike
threshold, vspike:

R��s	��p��vspike � s	 (23)

where p�[vspike � s] is a function of s for
fixed vspike, for a given �. The factor of � in
Equation 23 arises because the probability of crossing threshold is
proportional to the typical size of a voltage step that occurs in a
single time step; the proportionality constant depends on the
precise definition of vspike (see Materials and Methods for discus-
sion) and the correlation time of the input (Famulare and Fairh-
all, 2011). In terms of the scaled input– output relation R̂
�̂�, this
becomes the following:

R̂�� ŝ	�
�p��vspike � ŝ	

R� �

(24)

where R� � is the mean firing rate.
Perfect gain scaling requires that the input– output relations

for different � are equal when the stimulus is scaled by �,
R� �1�ŝ	 � R� �2�ŝ	. Averaging over ŝ shows that this relationship can
be satisfied when the probability density evaluated at vspike is a
constant, independent of �,

p��vspike	 � constant; (25)

and the mean firing rate is proportional to �,

R� ��� (26)

For an LIF neuron, the derived input– output relations display
gain scaling in the limit that the scale of the voltage fluctuations
driven by the input noise is very large compared with the intrinsic
voltage scale, vth � vo (note that this is the EIF model in the limit
of � 3 0) (Famulare and Fairhall, 2011). In this limit, the dy-
namics of the neuron are linear below threshold with a “reflective
barrier” (Risken, 1996) formed by the rapid spike-and-reset (Fig.
11B). In this case, the rate scales with � (Fourcaud and Brunel,
2002; Famulare and Fairhall, 2011):

R� �3� �
�

��
vth � vr��V

, (27)

One can also show that with short but finite input correlation
time �c, at vth, p�[vth] becomes a constant independent of �,

1

vth � vr
� �c

��v
. Furthermore, the steady-state voltage distribution,

Equation 21, is close to a truncated Gaussian with a width that
scales with � (Fig. 11B) (Famulare and Fairhall, 2011):

p�3��v	 � 

2

���v

e�
v2�vr

2

�v
2 , if v � vr

2

���

vth � v

vth � vr
, if vr � v � vth

(28)

for small input correlation time. Thus, not only the value of the
density at threshold is constant, the entire subthreshold distribu-
tion scales such that p�[v] obeys

p��v � vspike

� � is independent of � (29)

Therefore, for the LIF model, the rate indeed scales with � and the
subthreshold voltage distribution p[v] is independent of �.

Although derived for the LIF model, these conditions depend
only on model-independent quantities, p�[v], vspike, and R� �.
Therefore, we investigated whether the same conditions hold for
the EIF neuron for less extreme input amplitudes, which are more
biologically plausible. The EIF model does indeed obey these con-
ditions approximately for finite values of (vth � vo) and suffi-
ciently large � (Famulare and Fairhall, 2011); this is shown in
Figures 9 and 11C. The subthreshold distribution for EIF neurons
is distorted from the LIF solution by the subthreshold nonlineari-
ties responsible for spike initiation and the postspike repolariza-
tion (Fig. 11C) (see Materials and Methods). However, when the
effect of the subthreshold nonlinearity is weak, the distribution
well below threshold remains close to the Gaussian distribution
of a linear membrane and the distribution above threshold re-
mains approximately independent of � (Figure 9). With these
conditions on the distribution satisfied, gain scaling occurs for
EIF models for which the distance from rest to threshold is bio-
logically plausible (Figs. 9, 10).

Finally, we also examine these quantities experimentally. For
the P7 cells that exhibit nearly perfect gain scaling, Equations 25
and 29 are satisfied in the gain-scaling regime (Fig. 11D). A test of
the proportionality of the mean firing rate to the input SD (Eq.
26), is shown both for the EIF model and the experimental data
for mature cells in Figure 8A–C. The degree of gain scaling cor-
relates with the linear dependence on � of the mean firing rate.

Because of the strong dependence of gain scaling on the
distance-to-threshold vth � vo, its existence in these neurons re-
quired a depolarizing mean current to drive the effective resting

A B

Figure 6. Excitability and gain-scaling error in the GNa versus GK conductance plane. A, The biophysical model had three
excitability regimes: silent, excitable, and spontaneously active (10,000 simulations, GNa and GK from 20 to 2000 pS/�m 2, in
increments of 20 pS/�m 2). To test excitability for nonspontaneously active neurons, the SD � of a 10 s Gaussian noise current was
increased in 2 pA increments until noise-driven hyperpolarizing voltage excursions became negative to �100 mV (silent) or the
neuron fired an action potential (excitable). For LN models (Fig. 7), we used a coarser grid of conductance parameters (100 –2000
pS/�m 2, in increments of 100 pS/�m 2). B, D� was calculated for 148 model neurons with varying GNa and GK conductance values,
stimulated with two stimulus SDs: �1 � 1 and �2 � 1.3 (�� � 30%). Warmer colors indicate larger gain-scaling error.
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potential to vo � �50 mV, whereas the true resting potentials
were approximately �68 mV in mature cells (Table 2). Without
the depolarizing current, gain scaling could not occur because the
distance to threshold would be far too large to allow gain scaling
with biologically realistic input strengths. When network synap-
tic activity is not blocked, such a net depolarizing current exists in
vitro in the form of large spontaneous depolarizations (Picken-

Bahrey and Moody, 2003a; McCabe et al.,
2006). These depolarizations last for at
least hundreds of milliseconds and move
the baseline voltage into the range of �50 to
�40 mV, around which synaptic inputs can
cause spikes (Picken-Bahrey and Moody,
2003a). Thus, the gain-scaling property ob-
served here is likely modulated by and inter-
acts with network activity.

Estimate of the magnitude of the
maximal current ratio INa /IK , for
mature neurons
We estimate the maximal current ratio,
INa/IK, from the EIF model fits for mature
cells. The size of the maximal IK is mea-
sured in steady-state at �40 mV, where
the potassium channels are assumed to be
maximally open. In terms of the biophys-
ical model in Equation 8, we have IK �
GK(40 � EK) assuming n(40) � 1. In the
mature cells, where the maximal potas-
sium current is sufficiently large such that
the potassium current dominates the
spike AHP, the maximal potassium cur-
rent can be related to vr � vo in the EIF
model. In order of magnitude, the change
in voltage during the AHP is determined
by the mean potassium current during the
AHP relative to the baseline potassium
current away from spikes: vr � vo � r
(
iK�AHP � 
iK�o), where r is the membrane
resistance near vo. The mean current dur-
ing the AHP is approximately: 
iK�AHP �
GK
n�AHP(EK � 
v�AHP). During the AHP,

n�AHP � 1/2 generically since the chan-
nels go from more open to more closed

states, and 
v�AHP � v0�vr�vo/2 � �50 mV (Table 2). The mag-
nitude of �iK�o is generally much smaller than 
iK�AHP because
potassium currents are activated during the spike and 
v�AHP �
EK � vo � EK. Finally, re-expressed in terms of the maximal
current and using the reversal potentials reported in Table 1 from
Mainen et al. (1995), we have the following:

A B C

Figure 7. Conductance ratio changes input– output relation shape and gain-scaling ability. A, R̂��ŝ	 for model neurons with a variety of conductance ratios (GNa/GK, see inset for color code), stimulated with a single
stimulus�(70pA).B,R̂��ŝ	forarangeof�(50 –100pA)fortwomodelneuronswithhighandlowGNa/GK.C,Errorinrescaling,D�,plottedagainstGNa/GK formodelsstimulatedwithalargerangeof�.D�wascalculated
forconductancecombinations,whichrespondedtoboth�1 and�2, for�� from5to50%.Lines indicatemean D�valuesfordifferent levelsof��.

A B C

D E

F G

Figure 8. EIF models reproduce cortical recordings. All parts: mature (P7) cell (color: relative input SD, �v/vth�vo � {0.27,
0.35, 0.54, 0.70}), EIF model with fixed parameters across all input conditions (black). A, Scaled input– output relations (�v/
vth�vo � 0.35 excluded for clarity). EIF model predicts input– output relations: D� M � 0.18 � 0.02 (sampling floor � 0.1). EIF
model predicts breakdown of gain scaling for small �. Data and model show nearly perfect gain scaling for larger �, as expected
from analysis of the steady-state voltage distributions. B, Mean firing rate versus input SD: data (F), model (�, black line); shown
in physical units and intrinsic model units. Consistent with our theoretical understanding of gain scaling, the breakdown in perfect
gain scaling occurs at small � where the mean rate is not yet approximately linear in �, indicating that the voltage distribution
does not scale as required (Eq. 29). C, EIF model goodness of fit in mature population (P7, n � 6) is consistent with example shown.
Mean rate model versus mean rate data (black line gives equality). Not shown: coincidence factor, 
�� � 0.59 � 0.07; 
D� M� �
0.36 � 0.21. D–G, Voltage traces (color code as in A) for fixed mean input (� � �1/2 � 21 pA) for an example mature cell.
Effective resting potential is vo ��45 mV and EIF model threshold is vth ��24 mV. Same input time series for D–G. Goodness
of fit: coincidence factors � � {0.64, 0.71, 0.66, 0.60} � 0.02 (Eq. 22; Kistler et al., 1997).
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v0 � vr � rIK



n�AHP
v�AHP � EK�


40 � EK�
,

� 0.1rIK

For the immature cells (E14 –P0), the
maximal potassium conductance is too
small for the above analysis to be relevant:
there is no pronounced AHP (Picken-
Bahrey and Moody, 2003b). Rather, the
leak is primarily responsible for the return
to rest and refractory behavior is almost
solely due to the inactivation of the small
pool of sodium channels. Thus, for imma-
ture cells, there is no direct correspon-
dence between the EIF model reset and
the potassium current.

To determine the maximal sodium
current, the voltage-clamp examples in
Figure 3D show that the maximum occurs
for voltage steps from �70 mV to approx-
imately the threshold voltage around �30
mV: the maximal sodium current is ap-
proximately the transient sodium current
at threshold, where the sodium current
transiently approaches maximum activa-
tion with minimal inactivation. Using
Equation 19, the sodium current at
threshold is related to vth � vo in the EIF
model:

vth � vo � rINa,

where we have assumed that sodium cur-
rent at rest is small and that the potassium
current is small compared with sodium
during spike generation.

Together, the maximal current ratio is de-
terminedapproximatelybythesizeofthereset
relative to the threshold. Using the mean best-
fit EIF parameter ratio in Table 2, we estimate
for the maximal current ratio for mature gain-scaling cells as follows:

INa

IK
�

0.1
vth � vo�

vo � vr
� 1, (30)

as is consistent with the experimental observations.

Discussion
To characterize the developmental changes in single neuron compu-
tation in the sensorimotor cortex, we constructed functional LN
models describing the encoding of current inputs with varying sta-
tistical properties in output spikes (Fig. 1). In the LN model frame-
work, changes in a neuron’s selectivity can appear either as changes
in the spike-triggering feature, in the input–output relation, or both.
While the shape of the STA can reflect stimulus statistics and statis-
tical interactions between spikes (Theunissen et al., 2000; Agüera y
Arcas et al., 2003; Pillow and Simoncelli, 2003; Yu and Lee, 2003;
Paninski et al., 2004; Sharpee et al., 2004; Powers et al., 2005; Famu-
lare and Fairhall, 2010, 2011; Atick, 2011), here we observed that the
STA had a fixed form, indicating that the basic feature driving spik-
ing was independent of stimulus statistics. However, we found that
gain scaling—the maintenance of a constant scaled input–output
relation shape across different stimulus distributions (Fig. 2)—to
changes in the typical size of input fluctuations around a base-

line appears during the first postnatal week of cortical development
and is a function of age-dependent changes in the ratio of primary
spike-generating currents, INa/IK. Using a biophysical model and the
simple EIF model, we then demonstrated that tuning only the spike-
generating currents is sufficient to replicate our main experimental
findings. We used the reduced model to determine the necessary
conditions under which a neuronal dynamical system will exhibit
gain scaling. We showed that these are obeyed by the cortical neu-
rons, and predicted the conditions when the property fails to hold.

Different electrophysiological classes of neurons begin to
emerge during the first postnatal week as more diverse ion chan-
nel types are expressed (Connors and Gutnick, 1990; Massengill
et al., 1997; Vacher et al., 2008); in particular, it is often potassium
currents that sculpt feature selectivity (Bean, 2007). In our sam-
ple population, a transient potassium current was the most
prominent current beyond INa and IK and we initially expected
that this current may be responsible for the precise gain-scaling
capabilities of mature neurons. However, reducing this current im-
proved gain scaling in the majority of neurons (Fig. 5). While the
lengthy noise stimulation protocol we used here precluded the pos-
sibility of testing for a wide range of additional currents, in combi-
nation with our simulation results and the theory, these findings
(Fig. 7) suggest that a similar effect would be seen for other currents
that change the effective subthreshold GNa/GK ratio. It is possible

A B C

D E F

Figure 9. Gain-scaling properties of the EIF neuron. All parts correspond to the mean best-fit EIF neuron from Table 2;
cool-to-warm color gradient corresponds to increasing input SD, �v from 2 to 24 mV. A, Steady-state voltage distributions
(unscaled); the dashed line indicates constant vth; the dotted line intersects each distribution at its vspike, the voltage for
which at least 95% of crossing events reach the peak spike height. With increasing input SD, the distributions broaden
subthreshold and the density above threshold becomes increasingly insensitive to the input SD. B, Steady-state voltage
distributions scaled in relation to vth, the intrinsic threshold voltage as the input strength goes to zero. As � increases, the
scaled distributions converge to a common form below threshold and the density at v � vth approximately approaches a
constant value, independent of �. A and B show that the EIF model exhibits the properties required for perfect gain scaling
given in Equations 25 and 29. C, Steady-state voltage distributions scaled in relation to weakly �-dependent vspike (see
Materials and Methods). For finite input SD, labeling spikes by the crossing of vth overcounts aborted spikes— events that
do not approach the peak spike voltage before returning subthreshold. The appropriate choice of vspike identified spikes
with less ambiguity and slightly more accurately captured the gain-scaling property of the model, as was indicated by the
slightly tighter convergence of the distributions at v � vspike. Example LN models are shown in Figure 8A. D, Mean firing
rate versus input SD. As is consistent with the scaling of the voltage distribution for increasing input SD, the firing rate
increases linearly as required by Equation 26. See also Figure 8B and C. E, Nonlinear functions for the same range of � as in
B, computed using spike times triggered on crossing of vth. F, Nonlinear functions as in E, computed using spike times
triggered on vspike, have a slightly different shape but very similar gain-scaling properties.
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that the later expression of certain subthreshold potassium conduc-
tances (e.g., IA) may reduce the inherent gain-scaling property of the
spike-generating mechanism. As intrinsic properties shift with ex-
pression of channels with specific functional roles (Connors and
Gutnick, 1990; Maravall et al., 2007; Díaz-Quesada and Maravall,
2008), gain-scaling behavior might be supported by a different
mechanism, such as the slow AHP current observed in the adult
barrel cortex (Díaz-Quesada and Maravall, 2008).

In the conductance-based model, higher GNa/GK led to better
gain scaling, but GNa/GK ��2 led to spontaneous firing in which
a spike carries little information about the input stimulus. Gain-
scaling mature neurons typically had a GNa/GK ratio of close to 1
and were not spontaneously active. We would speculate that in
vitro, the particular current ratio of INa/IK � 1 may promote
intrinsic gain-scaling ability while maintaining feature selectivity
and sparse, informative firing.

A B C

Figure 10. EIF model distance-to-threshold changes input– output relation shape and rescaling ability in agreement with biophysical modeling. A, R̂��ŝ	 for the EIF model over a range of
relative activation parameters (0 ��/vth�vo � 1 in increments of 0.05; vr � vo), stimulated with a single stimulus �v/vth�vo � 0.65. The gain (slope) decreases with increasing �/vth�vo; i.e.,
with decreasing distance to threshold, corresponding to increasing GNa/GK (compare with Fig. 7A). B, R̂��ŝ	 for a range of input strengths (0.65 � �v/vth�vo � 2) for two model neurons with
different �/vth�vo (compare with Fig. 7B). C, Mean error in rescaling, 
D�� (averaged over range of �v in B, normalized relative to the minimum value) plotted against the activation parameter
(compare with Fig. 7C). For fixed �, gain scaling improved with decreasing vth � vo and was insensitive to the reset parameter.

A B C D

Figure 11. Computing with a voltage-based neuron: gain scaling. A, Idealized example: perfect gain scaling is enacted by the transformation of the filtered stimulus into the voltage. Consider an
example where a spike is triggered by a 2� event in the filtered stimulus (top). To perform perfect gain scaling, in stimulus space, the threshold for firing a spike must increase with increasing � so
that the encoded event is determined by the relative size of the signal. The variable threshold in stimulus space maps to a fixed threshold in voltage space (middle) and so the mass of the voltage
distribution must correspondingly shift to more hyperpolarized voltages to enact gain scaling. Gain scaling will be assured if the scaled, shifted voltage distribution, Equation 29, is identical for all
input �. B, Limiting dynamics: linear subthreshold integration with a voltage threshold very close to the resting potential. In this limit, all trajectories that start from rest and move to hyperpolarized
voltages linearly integrate the input and so have typical displacement proportional to �v, while all depolarized trajectories are truncated by the occurrence of a spike (top; inaccessible region
shaded). The voltage distribution is half-Gaussian except for the small region between rest and threshold (middle) and scales with �v (bottom). In this limit, the system approximates a linear
stochastic process with a reflecting boundary at the threshold. C, Gain scaling in the EIF model. Example voltage trace (top); steady-state voltage distribution with intrinsic dynamics overlaid
(middle); scaled voltage distribution (bottom). The subthreshold behavior occurs primarily where the dynamics are essentially linear. The intrinsic excitability facilitates spiking, speeding the transit
through the region near vspike and allowing for nearly perfect gain scaling in the presence of a large nonlinearity and distance to threshold. D, Gain scaling in an example mature cortical neuron.
Voltage trajectory (top): as in the EIF model, input integration occurs primarily below the effective resting potential; steady-state voltage distributions (middle); scaled voltage distributions
(bottom). For larger input SDs, the voltage distribution approximately scales according to the properties (Eqs. 25 and 29), but does not scale correctly for small �v. Accordingly, we expect that the
LN models will show nearly perfect gain scaling for larger input strengths, but that scaling will break down for small �v. This is confirmed in Figure 8A. Note that Equation 25 holds for a range of
voltages that are part of the spike event: gain scaling is insensitive to the exact definition of vspike.
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Previously, contributions to gain scaling in single neurons
have been identified as arising from different biophysical prop-
erties. In retinal ganglion cells, gain control has been attributed to
slow sodium inactivation leading to a �-dependent build-up of
inactivation (Kim and Rieke, 2001). In adult barrel cortex neu-
rons, contributions to gain scaling have been associated with a
calcium-activated potassium conductance underlying slow after-
spike hyperpolarization (Díaz-Quesada and Maravall, 2008). In
these cases, the effect was attributed to a relatively slow-timescale
activity-dependent current that reduced threshold in the pres-
ence of increased neuronal activity. Such slow processes might
serve to shift the mean of the subthreshold distribution.

However, gain scaling can be achieved without slow processes,
for example, if the underlying system is described by an LN model
that exhibits a power-law nonlinearity (Miller and Troyer, 2002).
In this case Gaussian stimuli with different variances expose dif-
ferent ranges of the power-law input/output function that, when
scaled by �, collapse to a common curve. This is not the case in
our data; the input/output relations are non-power-law for both
the data and the EIF model that matches the data. In our study, we
observe gain-scaling behavior with only fast spike-generating
currents and no slow processes (Fig. 7). The gain scaling that we
observed does not rely on the specific form of the nonlinearity,
but emerges from the approximate subthreshold linearity of the
leak current and the way in which the fast spike-generating cur-
rents shape how the input probes the dynamics in voltage state
space. The mechanism that we have identified here holds for
models that are one dimensional in the sense that a single dynam-
ical variable (the voltage) is sufficient to account for the dynam-
ics. Generally such models correspond to LN models with a single
filter (Hong et al., 2007). The same conditions could in principle
hold in a multidimensional dynamical model, but it would de-
pend on the properties and geometry of the dynamical threshold
in that multidimensional space (Hong et al., 2007) and is likely to
be less generic.

While effects of stimulus mean and variance on LN model
components have been noted before in single neurons without
slow timescales (Agüera y Arcas et al., 2003; Yu and Lee, 2003;
Paninski et al., 2004; Gaudry and Reinagel, 2007), to our knowl-
edge, this paper is the first report of perfect gain scaling measured
experimentally in single neurons. This manifestation of gain scal-
ing depends on the kinetics of the spike-generating currents.

The linear dependence of firing rate on input SD alongside
gain scaling implies that the feature selection computation in
simple neurons is an example of a multiplexed temporal code
(Fairhall et al., 2001; Wark et al., 2007; Lundstrom et al., 2008;
Panzeri et al., 2010): the mean rate averaged over many spikes
carries information about stimulus context, �, while individual
spikes carry information about fluctuations in the filtered stim-
ulus. This multiplexed code can be generated with a single active
mechanism because the membrane time constant determined by
the leak is long compared with the duration for which the spike-
generating currents are active. The mean state of the neuron be-
tween spikes is only sensitive to the mean rate, and so there is still
freedom for precise modulation of the spike times on shorter
time scales.

Previous studies have explored the robustness of the outputs
of neurons and neural networks with respect to variations in the
high-dimensional space of single neuron parameters (Marder
and Goaillard, 2006). Here, we quantified a neuron’s output
properties not in terms of specific firing patterns but by its ability
to exhibit gain scaling, and found that this property is supported
by a one-dimensional set of conductance parameters—the ratio

of maximal sodium to potassium currents. This suggests that a
partial tuning of intrinsic parameters occurs during develop-
ment. This tuning may contribute to the shift in information
processing that occurs as the cortex prepares for the onset of
sensory experience.

While the input– output properties of a single neuron are a
function of synapses, morphology, and ion channel properties,
here we tested only the developing gain-scaling properties of the
somatic spike-generating mechanism. The developmental period
we investigated is also characterized by significant synaptic mat-
uration (Garaschuk et al., 2000; McCabe et al., 2007; Feldmeyer
and Radnikow, 2009); determining how changing synaptic in-
puts interact with the developing gain-scaling properties of single
cortical neurons is an open question. It is possible that intrinsic
somatic properties can serve to alleviate or normalize out the
effects of changes in synaptic filtering that help to shape the sta-
tistics of the input to the soma.

Numerous studies have shown that developing neural systems
display activity with no apparent sensory correlate—so-called
“spontaneous activity”—and this activity can trigger develop-
mental changes ranging from ion channel expression to network
connectivity (Moody and Bosma, 2005). In the neonatal mouse,
waves of spontaneous activity are initiated in a discrete pace-
maker region in the ventrolateral cortex (Lischalk et al., 2009)
and propagate across the cortex from E17–P2 (Corlew et al.,
2004; McCabe et al., 2006). Our results show that neurons at
these early stages do not adjust excitability to compensate for the
variance of input amplitudes. It is possible that this lower pro-
pensity for spontaneous firing, combined with higher intrinsic
excitability in response to large inputs, may contribute to the
ability of immature neurons to respond to pacemaker input by
participating in spontaneous waves of activity, while at the same
time avoiding asynchronous firing between waves of activity (Lis-
chalk et al., 2009; Conhaim et al., 2010, 2011). In contrast, mature
neurons responded to a wider range of stimuli (Fig. 3B) and so
may be less selective for widespread network activity. Thus, de-
velopmental changes in gain scaling may be part of a process that
changes cortical neurons from participants in waves of spontane-
ous activity that are essential for cortical development into asyn-
chronous and efficient information-processing computational
units.

Computational characterizations of single neurons have dem-
onstrated that sophisticated coding properties can arise from the
combined diversity of morphology and ion channel properties.
We found that in the developing cortex, single neurons exhibit
gain scaling well before the cortical network reaches an adult
state. Furthermore, the interaction of basic voltage-gated chan-
nels that gives rise to spikes provides an intrinsic mechanism for
adaptive coding. Within a developmental context, the emergence
of gain scaling may serve to reduce the early propensity of cortical
neurons to entrain in large-scale spontaneous patterns of activity
and thus terminate such activity on the appropriate developmen-
tal schedule. These results underscore the rich intrinsic compu-
tational repertoire of single neurons.
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