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Neurobiology of Disease

The Membrane-Active Tri-Block Copolymer Pluronic F-68
Profoundly Rescues Rat Hippocampal Neurons from
Oxygen—Glucose Deprivation-Induced Death through Early
Inhibition of Apoptosis

Phullara B. Shelat, Leigh D. Plant, Janice C. Wang, Elizabeth Lee, and Jeremy D. Marks
Department of Pediatrics, University of Chicago, Chicago, Illinois 60637

Pluronic F-68, an 80% hydrophilic member of the Pluronic family of polyethylene-polypropylene-polyethylene tri-block copolymers,
protects non-neuronal cells from traumatic injuries and rescues hippocampal neurons from excitotoxic and oxidative insults. F-68
interacts directly with lipid membranes and restores membrane function after direct membrane damage. Here, we demonstrate the
efficacy of Pluronic F-68 in rescuing rat hippocampal neurons from apoptosis after oxygen- glucose deprivation (OGD). OGD progres-
sively decreased neuronal survival over 48 h in a severity-dependent manner, the majority of cell death occurring after 12 h after OGD.
Administration of F-68 for 48 h after OGD rescued neurons from death in a dose-dependent manner. Atits optimal concentration (30 um),
F-68 rescued all neurons that would have died after the first hour after OGD. This level of rescue persisted when F-68 administration was
delayed 12 h after OGD. F-68 did not alter electrophysiological parameters controlling excitability, NMDA receptor-activated currents, or
NMDA-induced increases in cytosolic calcium concentrations. However, F-68 treatment prevented phosphatidylserine externalization,
caspase activation, loss of mitochondrial membrane potential, and BAX translocation to mitochondria, indicating that F-68 alters
apoptotic mechanisms early in the intrinsic pathway of apoptosis. The profound neuronal rescue provided by F-68 after OGD and the high
level of efficacy with delayed administration indicate that Pluronic copolymers may provide a novel, membrane-targeted approach to
rescuing neurons after brain ischemia. The ability of membrane-active agents to block apoptosis suggests that membranes or their lipid

components play prominent roles in injury-induced apoptosis.

Introduction

Despite detailed understanding of mechanisms mediating neuro-
nal death after focal and global brain hypoxia—ischemia (HI),
clinical treatments to reduce HI-induced brain injury remain
limited to thrombolysis (Albers et al., 2011) and brain hypother-
mia (Hypothermia after Arrest Study Group, 2002; Jacobs et al.,
2007). In addition to the ionic, oxidative, metabolic, gene regu-
latory, and inflammatory mechanisms that contribute to neuro-
nal death after HI (Zhu et al., 2004; Allen et al., 2005; Wang et al.,
2008; Tu et al., 2010; Adelson et al., 2012; Niatsetskaya et al.,
2012), increasing evidence indicates that damage to neuronal
membranes and changes in membrane function play important
roles. HI decreases membrane integrity by damaging phospho-
lipids (Shanta et al., 2012) and alters lipid metabolism, producing
apoptosis-inducing lipids (Yu et al., 2000; Soeda et al., 2004).
Thus, in mitochondria, production of sphingomyelin metabo-
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lites in the outer membrane plays key roles in outer membrane
permeabilization during apoptosis (Kanno and Nishizaki, 2011;
Chipuk et al.,, 2012). Similarly, peroxidation of cardiolipin in the
inner mitochondrial membrane (Kagan et al., 2005) and its sub-
sequent redistribution to the outer membrane are required for
mitochondrial release of proapoptotic factors (Ji et al., 2012). In
the plasma membrane, HI-induced blebs (Tanaka et al., 1999)
undergo phosphatidylserine externalization and exhibit in-
creased permeability to normally impermeant solutes (Kelly et
al., 2009), decreasing membrane integrity and leading to necrosis
(Marks et al., 2000). Thus, the multiple mechanisms by which
HI-induced membrane damage mediates cell death suggest that
repairing membrane damage may be a useful approach to de-
creasing neuronal death after HI.

Membrane damage has been repaired after mechanical injury
to neurons, alveolae, and myocytes using synthetic surfactants
(Lee et al., 1992; Serbest et al., 2006; Plataki et al., 2011). These
molecules, termed Pluronics, are amphiphilic tri-block copoly-
mers of poly[ethylene oxide] (PEO) and poly[propylene oxide]
(PPO) in a PEO,,—PPO,~PEQ,,, configuration, in which m and n
denote the number of monomers in a block. The ratio of the
number of hydrophilic PEO monomers to the number of lipo-
philic PPO monomers determines the hydrophilic/lipophilic bal-
ance (HLB) of the copolymer. The HLB determines how the
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copolymer interacts with membranes (Wang et al., 2012). Plu-
ronics having lower HLBs (e.g., P85, HLB = 0.50) cross mem-
branes and can transport drugs or DNA across plasma
membranes (Batrakova et al., 2003; Yang et al., 2008). Pluronics
with higher HLBs (e.g., F-68, HLB = 0.80) insert into lipid bilay-
ers (Firestone et al., 2003) and can restore the integrity of dam-
aged membranes (Lee et al., 1992; Marks et al., 2001).

Administration of Pluronic F-68 (F-68) (PEO,~PPO,s—
PEO,,) improves the function of multiple cell types having dam-
aged or inherently leaky membranes (Serbest et al., 2006; Yasuda
etal., 2005; Kilinc et al., 2009; Townsend et al., 2010; Plataki et al.,
2011). F-68 also profoundly rescues cultured hippocampal neu-
rons after excitotoxicity and oxidative stress (Marks et al., 2001),
central mechanisms of HI-induced neurodegeneration. Here, we
describe the efficacy of F-68 in rescuing cultured hippocampal
neurons from death after oxygen—glucose deprivation (OGD), a
widely used in vitro model of HI brain injury, and determined
mechanisms of its action.

Materials and Methods

Materials. Polymer F-68 was from BASF. DRAQ5 and Hoechst stains
were obtained from Axxora. Red SR FLICA Caspase3/7 assay kits were
from Immunochemistry Technologies. Anti-cytochrome ¢ (clone
6H2.B4) was from BD Biosciences Pharmingen, anti-BAX (clone A21)
was from Santa Cruz Biotechnology, and anti-GAPDH was from Abcam.

Cell culture media and supplements, vital dyes, Annexin V fluorescent
conjugates, anti-cytochrome oxidase subunit IV (clone 20E8C12), and
fluorescence-tagged secondary antibodies were from Invitrogen. All
other chemicals were from Sigma.

Hippocampal neuronal cultures. Hippocampal neurons were prepared
as described previously (Plant et al., 2011) from embryonic day 18
Sprague Dawley rat fetuses of either sex, plated onto 15 mm coverslips,
and maintained at 37°C in a humidified incubator in which a 5% CO,,
21% O, environment was maintained. For Western blot studies, 60 mm
dishes containing 1 X 10° neurons were used. Neurons were studied
between 11 and 15 d in vitro.

OGD. OGD was induced in a hypoxia workstation (Coy Laboratory
Products), in which a humidified, 37°C environment of 1% O, and 5%
CO,, balance N,, was maintained. OGD was induced by immersing neu-
rons on coverslips into Petri dishes containing a glucose-free,
bicarbonate-buffered saline composed of (in mm) 95 NaCl, 5.3 KCl, 1.3
NaH,PO,, 1.3 MgSO,, 24 NaHCOj,, 25 sucrose, and 2.4 CaCl, in which
the O, and CO, tensions and temperature had been equilibrated with
those in the hypoxia workstation for 18 h before study. To ensure that
control neurons not exposed to OGD were treated identically in all other
ways, neurons were immersed in Petri dishes containing the same saline,
with equimolar replacement of glucose for sucrose, that had been placed
18 h previously in the 21% O,, 5% CO, incubator. After OGD or control
saline exposure, coverslips were placed back into Petri dishes containing
the culture media from which they had been removed and placed back
into the incubator.

F-68 administration. Final concentrations of F-68 were administered
by diluting a stock solution of F-68 (10 mm in water) in culture media.
Cultures subjected to OGD but not receiving F-68 were provided with
the same amount of culture media alone. Cells were incubated in F-68 or
media control immediately after or at various times after OGD.

High-content imaging. Multichannel fluorescence images of neurons
stained with various indicators (see Results) were obtained using cover-
slips with neurons placed in a 24-well plate containing a HEPES-buffered
saline composed of (in mm) 110 NaCl, 5.3 KCl, 1.3 NaH,PO,, 2.4 CaCl,,
1 MgCl,, 20 HEPES, 25 glucose, and 1 succinate, and a computer-
controlled, high-content image acquisition system (Image Xpress Micro;
Molecular Devices), equipped with a plate holder, 300 W xenon illumi-
nation, microscope objectives, a cooled CCD camera, an automated xyz
stage, autofocus, and a five-position filter cube changer containing
matched bandpass emission and excitation filters and dichroic mirrors
optimized separately for DAPI, calcein, tetramethylrhodamine methyl
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ester (TMRM), and Alexa Fluor 647. To ensure unbiased selection of
fields on coverslips, 42 equally distributed fields were obtained to sample
from the entire 15 mm coverslip (Fig. 1B). Single-wavelength images of
labeled neurons were thresholded to allow cell-by-cell segmentation ac-
cording to the structure identified by the dye, e.g., nucleus from DRAQ5,
cytosol from calcein) using MetaXpress software (Molecular Devices).
Cells were then analyzed according to user-set criteria to provide assign-
ment of each cell to a category (e.g., live/dead). For other studies, mean
intensities with segmentation-defined regions within each cell were
measured.

Assessment of neuronal survival. Cells were incubated in calcein-AM to
label living cells and DRAQS5 to identify all nuclei. To restrict our analysis
to cells that were alive at the beginning of the experiment, coverslips
containing neurons were incubated in membrane-impermeant DNase
(900 U/ml) for 1 h to remove exposed nuclei from the coverslip. Images
were obtained using high-throughput imaging of 20X fields as described
above. Cells positive for calcein and DRAQ5 were classified as living,
whereas DRAQ5-positive nuclei without surrounding calcein fluores-
cence were classified as dead.

Electrophysiology. Whole-cell patch clamp was performed as described
previously (Plant et al., 2011) using an Axopatch 200B amplifier and
pClamp software (Molecular Devices) at filter and sampling frequencies
of 5 and 25 kHz, respectively, for voltage-clamp experiments and 1 and
10 kHz, respectively, for current-clamp recording. Current-clamp re-
cordings were performed in a bath solution containing the following (in
mmM): 1 CaCl,, 1 MgCl,, 4 KCl, 140 NaCl, 5 glucose, and 10 HEPES. The
pH was adjusted to 7.4 with NaOH. Electrodes were fabricated from
borosilicate glass (Clark), were coated with Sigmacote (Sigma) before
use, and had a resistance of 4—5 M() when filled with a solution contain-
ing the following (in mm): 136 KCl, 1 MgCl,, 2 K,ATP, 5 EGTA, and 10
HEPES, adjusted to a pH of 7.2 with KOH. Action potentials were studied
in current-clamp mode. Neurons were pulsed with current from —0.2 to
0.5 nA in 0.05 nA intervals every 5 s. The mean voltage (measured at a
stable point and not during an action potential or afterhyperpolariza-
tion) was plotted against current, and the somatic input resistance was
calculated by fitting each set of data with a straight line according to the
equation f(x) = mx + b, where m is the gradient, or resistance, in megao-
hms. All electrophysiology parameters were determined in pClamp and
Excel software and are quoted as mean values = SEM.

NMDA-activated currents were studied in voltage-clamp mode by
application of 10 um NMDA to cells held at —50 mV. Currents were
studied in a bath solution containing (in mm) 150 NaCl, 3 KCl, 1 CaCl,,
and 10 HEPES adjusted to pH 7.4 with NaOH and a pipette solution
containing (in mm) 80 CsF, 60 CsCl, 10 EGTA, 1 MgCl,, and 10 HEPES
adjusted to a pH of 7.4 with CsOH. NMDA and F-68 were applied with a
computer-controlled MPS-2 multichannel perfusion system (WPI), and
experiments were performed at 32°C using a feedback-controlled heated
perfusion system (Warner Instruments)

Assessment of apoptotic death. To restrict our analysis to cells that were
alive at the beginning of the experiment, coverslips containing neurons
were incubated in membrane-impermeant DNase (900 U/ml) for 1 h to
remove exposed nuclei from the coverslip. Apoptotic neuronal death was
assayed on neurons fixed with 4% paraformaldehyde, using terminal
deoxynucleotidyl transferase-mediated biotinylated UTP nick end label-
ing (TUNEL) staining, according to the protocol of the manufacturer
(Roche). All nuclei were identified with Hoechst labeling. Images were
obtained using fluorophore-appropriate filters and mirror via high-
throughput imaging of 20X fields as described above. Cells positive for
TUNEL and Hoechst were counted as apoptotic, whereas Hoechst-
positive nuclei without TUNEL staining were counted as non-apoptotic.

Assessment of Annexin V binding. Living neurons were incubated in
Alexa Fluor 647-labeled Annexin V (5 wg/ml) and calcein-AM. Im-
ages were acquired with a 63X oil-immersion objective using a laser-
scanning confocal microscope (Leica) using the high-content
imaging Matrix system. Sequential images of Alexa Fluor 647 and
calcein were obtained using laser lines at 630 and 488 nm. Studies
were restricted to living neurons defined by calcein labeling. Cells
with Annexin V plasma membrane staining were counted and re-
ported as percentage living cells.



Shelat et al.  Membrane-Targeted Neuronal Rescue after 0GD J. Neurosci., July 24,2013 - 33(30):12287-12299 « 12289

A
H H H
ISPV RIS
HO ‘\Ll,/o o) ‘\0 ‘ e
no | n nol
H H
76 29
PEO PPO PEO

hydrophilic  hydrophobic  hydrophilic

= Control
= OGD 920.
= OGD then F-68
# 80 #
__ 701
& 60 # 4
T 501 *
S 401
& 30
20
10
0
30 45 60 30 45 60 OGD — + + + + +
OGD duration (min) OGD duration (min) F-68(uM) 0 0 0.3 3 30100
F GA Control
34
90 23 53 = Control
80 = £, 4, =0GD then F-68
~70 # &1 L )
= 60 8 <30
— o — —
2 50 . * A A 5 min s
2 40 NMDA High K ©
5 ~ 2}
»n 30 p
20 B) OGD then F-68 3
10 <3 ol
o ©
0 =P g
—+++++ + + OGD © L 0
1 6121518 24 Jpasto Fis8 <1 Baseline NMDA High K
5 —
wo A A 5 min
NMDA High K
Control OGD then F-68 I J
—Control
Somv —OGD then F-68
— Control
25 ms — F-68

Figure 1. F-68 rescues hippocampal neurons from 0GD insult. A, Structure of the tri-block copolymer F-68. B, Left, Pseudocolored photomontage of contiguous 20X fields obtained by
high-content imaging of cultured hippocampal neurons over an entire 15-mm-diameter coverslip. Images are overlays of calcein (green) and DRAQS5 (red) images. Squares indicate the location of
the 42 fields on the coverslip used for automated cell counting. Scale bar, 500 wm. Top right, Overlaid calcein and DRAQS images from the indicated site in the montage. Scale bar, 10 z.m. Bottom
right, Result of automated image segmentation performed on the image above. Arrows show identified dead (red) and living (green) cells. C—F, Each experimental unit (n) consists of six coverslips
per condition, with high-throughput imaging counting ~1300 cells per coverslip. * indicates significantly different from control (Ctrl); # indicates significantly different from 0GD. C, Changes in
mean == SD neuronal survival over time after 30, 45, and 60 min of 0GD. n = 3 per condition. D, Changes in mean == SD percentage neuronal survival induced by F-68 treatment as a function of 0GD
duration, measured 48 h after 0GD (n = 3 per condition per 0GD duration). E, Concentration dependence of F-68-induced rescue of neurons after 45 min 0GD, measured 48 h later (n = 3 per
condition). F, Changes in mean = SD percentage neuronal survival with increasing delay in F-68 addition after 0GD, measured 48 h after 0GD (n = 3 per condition). Neuronal rescue from 0GD
persists when F-68 addition is delayed as much as 1215 h after 0GD. G, Raw, time-dependent [Ca* ], changes in response to NMDA or potassium-induced membrane depolarization in control
neurons (top left) and in neurons 5 d after rescue from 45 min 0GD with F-68 (30 wum; bottom right). Right, Mean == SD peak fura-2 ratios obtained in each condition (n = 3, each study of at least
5neurons). H, Voltage responses to current injection are similar between control neurons and neurons, 5 d after rescue from 0GD-induced death with F-68 (30 wum). /, Action potential morphology
isidentical between control (orange) neurons and neurons 5 d after rescue from 0GD with F-68 (30 wum; black). Traces are offset for clarity. J, Representative NMDA-activated currents in hippocampal
neurons studied before (orange) and after 3 min exposure to F-68 (30 wum; black). Mean == SD current densities were —24.3 == 2 pA/pF before and —21.4 == 2 pA/pF after exposure of nine cells
to F-68 (30 jum). Mean == SD times to recovery to half-maximal amplitude were 246 == 9.5 and 246 = 8 ms, respectively.

Assessment of caspase activity. To restrict our analysis to cells that were ~ was assayed on a cell-by-cell basis using Red SR FLICA Caspase3/7
alive at the beginning of the experiment, coverslips containing neurons were  Assay Kit (Immunochemistry Technologies) according to the protocol of the
incubated in membrane-impermeant DNase (900 U/ml) for 1 h to remove ~ manufacturer. Cells on coverslips were incubated in cell-permeant SR-
exposed nuclei from the coverslip. The presence of activated caspases ~ DEVD-FMK (sulforhodamine-labeled benzyloxycarbonyl-Asp-Glu-Val-



12290 - J. Neurosci., July 24, 2013 - 33(30):12287-12299

fluoromethyl ketone), which irreversibly binds to activated caspases. Cells
were thoroughly washed to remove unbound SR-DEVD-FMK and were
stained with calcein-AM (to stain live cells) and Hoechst (to stain all cells).
Separate fluorophore-specific images of each 20X field were obtained.

Measurement of mitochondrial membrane potential. Mitochondrial
membrane potential (AW, ) was measured using the cationic fluoro-
phore TMRM in unquenched mode as described previously (Marks et al.,
2005). TMRM is accumulated in the cell and mitochondria as a function
of potential. To allow electrochemical equilibration of TMRM across the
plasma and inner mitochondrial membranes, coverslips that contained
cells that were placed into wells of a 24-well plate were incubated in
TMRM-containing (10 nm) HEPES-buffered saline for 1 h at 37°C, after
which calcein-AM and Hoechst were added. During high-throughput
imaging, cells were maintained at 37°C by means of a thermostatically
controlled plate heater. Imaging of eight 20X fields per coverslip of
TMRM, calcein, and Hoechst fluorescence were obtained using
fluorophore-specific filter cubes. After acquisition of all coverslips in the
plate, AW, was dissipated with carbonyl cyanide-4-(trifluoromethoxy)
phenyl-hydrazone (FCCP; 1 uMm), and the identical fields were reimaged.
Using image segmentation, the soma of each cell was identified with
calcein fluorescence and the nucleus of each cell with Hoechst. Mean
TMRM intensity in the extranuclear region of each cell was obtained.

Calcium imaging. Changes in free cytosolic calcium levels ([Ca®"];)
was measured using fura-2 (Invitrogen) as described previously. Neu-
rons were loaded with 1 um fura-2 AM diluted in culture medium for 30
min at 37°C. After loading, cultures were washed with bicarbonate-
buffered saline for 30 min to ensure complete hydrolysis of the AM ester
from the dye. Fura-2 dye was sequentially excited at 340 and 380 nm
every 20 s by narrow bandpass filters, and the emitted light was imaged in
a band centered around 535 nm. Calcium responses of individual neu-
rons to NMDA (300 um) and KCl (60 mm) were quantified as mean ratio
(340 nm/380 nm) on a cell-by-cell basis.

Immunocytochemistry. For cytochrome ¢ immunocytochemistry, neu-
rons were incubated in 1-ethyl-3-(3-dimethylaminopropyl) carbodiim-
ide (40 mg/ml; Tymianski et al., 1997) for 90 min to preserve
mitochondrial morphology, followed by paraformaldehyde (4%) for 20
min. For BAX studies, neurons were fixed in paraformaldehyde only.
Cells were permeabilized with Triton X-100 (0.2%) and nonspecific
binding antibody binding blocked with serum of the species in which the
secondary antibodies were raised. Cells were incubated with anti-
cytochrome ¢ (5 pg/ml) or anti-BAX (4 wg/ml) for 1 h at room temper-
ature. Cytochrome ¢ immunoreactivity was detected with Alexa Fluor
488-labeled goat anti-mouse IgG. BAX immunoreactivity was detected
with Alexa Fluor 594-labeled goat anti-rabbit IgG. Nuclei were counter-
stained with DRAQ5, and coverslips were mounted in SlowFade.

Quantification of cytochrome c release. Images were acquired with a
laser-scanning confocal microscope (SP5; Leica) viaa 100X, 1.45 numer-
ical aperture (NA) oil-immersion objective, with identical illumination
acquisition settings between treatment groups. Studies of cytochrome ¢
release at 12 h were done on a different SP5 with identical acquisition
settings among the three groups. Three confocal images (500 wm thick)
that were contiguous in the z-axis of each neuronal field were acquired so
that the volume encompassed the nucleus. Using NIH Image], a region of
interest corresponding to the nuclear area was obtained by thresholding
the DRAQ5 image, and the mean intensity with that region in the corre-
sponding cytochrome ¢ image was obtained. Mean intensities for each
cell were summed across the three images.

Assessment of mitochondrial colocalization of BAX. Neurons were in-
fected with an adenovirus harboring the sequence of a GFP targeted to
the mitochondrial matrix. Neurons were studied 24 h later. Cells were
then processed for Alexa Fluor 594-identified BAX immunoreactivity.
Images were acquired with a 100X, 1.45 NA oil-immersion objective on
a laser-scanning confocal microscope with identical illumination and
acquisition settings across fields and conditions. Sequential images of
GFP-labeled mitochondria and Alexa Fluor 594-labeled BAX immuno-
reactivity were obtained and deconvolved to reduce out-of-focus light
(Huygens; Scientific Volume Image). Colocalization of BAX with mito-
chondria was assessed using NIH ImageJ to produce Manders coeffi-
cients of colocalization (Manders et al., 1993).
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Subcellular fractionation. Subcellular fractionation was performed ac-
cording to published methods (Poppe etal., 2001). Sixty-millimeter Petri
dishes, each containing 1 X 10° cells, were scraped into 100 ul of isola-
tion buffer containing 50 mm KCl, 70 mm sucrose, 2 mm K,HPO,,, 20 mm
HEPES, and 1 mm EGTA with the protease inhibitors 1 mm PMSF, 1
ug/ml antipain, 10 ug/ml aprotinin, and 1 pwg/ml leupeptin, pH 7.2, and
maintained at 4°C for the remainder of the fractionation process. The
contents of four dishes per condition (~4 X 10° cells) were collected into
a precooled steel chamber and subjected to nitrogen cavitation (1500 psi
for 30 min). The resultant cell lysate was centrifuged at 1060 X g for 10
min. The supernatant was collected and reserved. The pellet was resus-
pended in isolation buffer and centrifuged again at 1060 X g for 5 min.
The two supernatants were pooled and centrifuged at 14,600 X g for 10
min. This supernatant was saved as the cytosolic fraction. The pellet was
resuspended and centrifuged three times at 14,600 X g for 10 min to
obtain a heavy membrane fraction enriched with mitochondria. Protein
was isolated in 50 ul RIPA buffer (Sigma) containing protease inhibitors
at the same concentration as the isolation buffer. The protein concentra-
tion was measured using the BCA protein assay kit (Pierce) with BSA as
the standard.

Western blot analyses. Equal amounts of protein (20 ug) for each sam-
ple were separated using the Any Kd Mini-Protean TGX System (Bio-
Rad) at 100 V. Proteins were transferred to nitrocellulose membranes,
blocked with 3% BSA in Tris-buffered saline with 0.5% Tween 20, and
incubated overnight in anti-BAX (2 mg/ml in blocking buffer). The sec-
ondary antibody (0.01 ug/ml) was incubated at room temperature for 1 h
before standard enhanced chemiluminescence detection. Blots were
stripped with NaOH and reprobed with either anti-cytochrome oxidase
subunit IV (2 pg/ml) or anti-GAPDH antibody (2 ug/ml). Protein band
intensities were measured as optical density.

Statistical analyses. For normally distributed data, statistical analysis
was performed by one-way ANOVA, followed by Tukey’s test for testing
of individual means. Values of p < 0.05 were accepted as significant. For
analysis of TMRM intensity distributions, the Kolmogorov—Smirnov test
was used to obtain D statistics (Lehman and D’Abrera, 2006). To analyze
the effects of treatment and time on the total number of neurons counted
per coverslip, two-way ANOVA was used, followed by Tukey’s test. Sta-
tistical tests were performed using GraphPad Prism version 6.01 for Win-
dows (GraphPad Software).

Results

F-68 rescues hippocampal neurons from OGD

F-68 (molecular weight, 8600 Da) is made up of two side chains of
76 PEO units each and a central PPO chain of 29 units (Fig. 1A).
Because F-68 rescues neurons from mechanisms underlying HI
brain injury, we sought to understand whether F-68 rescues neu-
rons from HI injury itself. Therefore, we used OGD in cultured
hippocampal neurons, a well-accepted in vitro model of hypoxic—
ischemic brain injury. First, we defined the time course of OGD-
induced neuronal death and assessed how the severity of OGD
affected neuronal survival. Neurons were exposed to 30, 45, or 60
min OGD or to otherwise-identical, control solutions containing
glucose at ambient oxygen tension. After OGD, coverslips were
returned to the normoxic incubator in their original, glucose-
containing media, and unbiased counts of living and dead neu-
rons were made with high-content imaging at various times after
OGD, counting ~1300 total neurons per coverslip (#n = 6 cover-
slips per condition; Fig. 1B). Forty-eight hours after exposure to
control solutions, mean * SEM neuronal survival was 75 =
3.4%. OGD significantly decreased neuronal survival at 48 hin a
severity-dependent manner, such that 30, 45, and 60 min OGD
resulted in ~55.3 ® 2.6, 40 %= 2.3, and 22.5 * 3.3% survival,
respectively (Fig. 1C). With increasing OGD severity, the rapidity
of neuronal death also progressively increased. After 30 min
OGD, neuronal survival did not significantly decrease until 24 h
after insult. After 45 min OGD, neuronal survival was signifi-
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cantly decreased by 12 h after insult and subsequently decreased
more rapidly over time. Notably, after 60 min OGD, neuronal
survival was already decreased to 50.6 * 2.8% by 1 h after insult,
followed by a progressive decline over 48 h (Fig. 1C). This early
death was not observed after shorter OGD exposures.

Next, we assessed how effectively F-68 treatment rescued neu-
rons from OGD-induced death, by adding F-68 (30 uMm) to the
media of half of the culture dishes after OGD. Thus, neurons were
not exposed to F-68 until 15 min after OGD. Neurons remained
in F-68 until assessments of survival at 48 h. After 30 and 45 min
OGD, F-68 treatment restored neuronal survival to levels ob-
served after exposure to control buffer, completely preventing all
OGD-induced neuronal death (Fig. 1D). After 60 min OGD, F-68
increased survival to 54.8 & 2.4%, the similar degree of survival
seen at 1 h after OGD alone. Thus, F-68 treatment provided
profound neuronal rescue after 30 and 45 min OGD and rescued
half of the neurons that would have died after 60 min OGD.

The efficacy of F-68-induced neuronal rescue after OGD de-
pended on F-68 concentration: after 45 min OGD, survival pro-
gressively increased with F-68 concentration, with maximum
survival observed at 30 uM (Fig. 1E). To determine whether F-68
was effective in rescuing neurons from OGD when treatment was
delayed after insult, F-68 was added to the culture medium at 1, 6,
12, 15, and 18 h after 45 min OGD. Application of F-68 6 h after
insult resulted in complete neuronal rescue (Fig. 1F). Treatment
begun at 12 h after OGD was only marginally less effective,
whereas progressively later treatment produced less effective res-
cue. F-68 addition 18 h after OGD provided no neuronal rescue.

Our measure of living neurons was the presence of calcein
fluorescence within the soma, which, although commonly used,
indicates that cells have intact plasma membranes and functional
intracellular esterases. Accordingly, we assessed whether neurons
rescued from OGD by F-68 exhibited appropriate changes in
intracellular Ca®* levels induced by membrane depolarization
and glutamate receptor activation using time-lapse imaging (Fig
1G, top, bottom). At baseline, mean resting fura-2 ratios did not
differ between control neurons and those subjected to OGD and
subsequently rescued by F-68 (n = 15-20 neurons on each of 4
coverslips; Fig. 1G, right). Brief (20 s) applications of either
NMDA (100 wm) or KCI (60 mm) increased peak fura-2 ratios
similarly in control and rescued groups (Fig 1G). Removal of each
stimulus was followed by a similar, rapid return of Ca** to base-
line levels. Accordingly, neurons rescued from OGD by F-68 have
normally functioning neuron-specific responses and intact cal-
cium homeostasis mechanisms.

We next asked whether neurons rescued from OGD by F-68
treatment demonstrated altered electrophysiological properties
compared with control cells. Excitability was not different be-
tween control cells and those subjected to 45 min OGD, followed
by F-68 (30 uMm) treatment for 48 h. Neurons in both groups (n =
8 per group) had mean resting membrane potentials of —65 * 1
mV. In addition, none of the key determinants of excitability—
cellular capacitance, input resistance, or peak firing frequency—
differed significantly between groups (Table 1). In contrast,
electrophysiological measurements were not possible from cells
exposed to OGD in the absence of F-68, reflecting reduced via-
bility and plasma membrane integrity (data not shown). Action
potentials were evoked by current injections of equivalent mag-
nitude and were not different between groups (Fig. 1 H,I; Table
1), indicating that ion channel function and cellular energetics
were intact after neuronal rescue by F-68 after OGD.

NMDA receptor-mediated excitotoxicity is an important
mechanism of neuronal death during and after OGD. Accord-
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Table 1. Comparison of biophysical parameters between control neurons and
neurons rescued by F-68 from 0GD-induced death

Unit Control 0GD + F-68

Whole-cell parameters

Resting potential mV —65*1.2 —65*£0.7

(apacitance pF 20 =24 21+24

Input resistance MQ 87+9 88 +7

Peak firing frequency Hz 325*+4 30 =33
Analysis of first action potential

Current injection pA 70 70

Firing threshold mV —48*9 —48 8

Peak deflection mV 40 =2 40 =17

After hyperpolarization mV —69 £3.7 —67 =24

Half total height mV 55+26 54+17

Duration at half height ms 14 +0.04 1.4 +0.05

Values are means = SEM; n = 8 neurons per condition.

ingly, we assessed whether F-68 altered NDMA receptor func-
tion. Acute exposure to F-68 did not alter NMDA-activated
currents in hippocampal neurons: neither mean NMDA current
densities (—24.3 = 1.9 pA/pF for baseline; —21.4 * 2 pA/pF for
F-68) nor the time to half-recovery (246 = 9.5 ms for baseline;
246 = 8 ms for F-68) was altered after 3 min perfusion of 30 um
NMDA (n = 9 paired measurements; Fig. 1]). These data indicate
that F-68 does not rescue neurons from OGD-induced death
through alterations of NMDA receptor function.

F-68 blocks OGD-induced apoptosis

To understand the mechanisms by which F-68 rescues neu-
rons from OGD-induced death, we first characterized the type
of death after OGD. With the exception of the sharp decrease
in neuronal survival 1 h after 60 min OGD, OGD-induced
neuronal death was, in general, progressive over 48 h. Accord-
ingly, we hypothesized that OGD-induced apoptosis was a
primary mechanism of death. To exclude the contribution of
early (1 h) death, we used 45 min OGD for these and all
subsequent studies. Pan-caspase inhibition with Z-VAD-FMK
(benzyloxycarbonyl-Val-Ala-Asp-(O-Me)-fluoromethylketone)
(50 uM) during and after OGD completely blocked neuronal
death (Fig. 2A), confirming that OGD-induced death in this
model was by apoptosis.

To assess the extent to which F-68 treatment decreased apo-
ptosis, we first identified neurons that were dead or dying of
apoptosis using TUNEL and counted apoptotic and total cells
using high-content imaging (n = 6 coverslips per condition,
~1500 cells per coverslip). Forty-eight hours after OGD, the
mean = SEM number of TUNEL-positive neurons was markedly
increased over control (OGD, 53.15 = 4%; control, 4.5 = 1.2%j;
p < 0.0001; Fig. 2B,C), completely accounting for the OGD-
induced decreases in neuronal survival we observed. In contrast,
F-68 treatment after OGD almost completely prevented the
OGD-induced increase in TUNEL-positive neurons (OGD plus
F-68, 14 £ 2.13%; p < 0.0001; Fig. 2B, C). To obtain additional
evidence that OGD-induced apoptosis was inhibited by F-68, we
assessed the extent of phosphatidylserine externalization on the
plasma membrane, an early sign of apoptosis, using confocal
microscopy to count fluorescently labeled Annexin V on the sur-
face of calcein-loaded neurons. In control neurons, 6 h after 45
min exposure to control buffer, Annexin V labeling was minimal
(1.44 = 0.33%). In contrast, 6 h after 45 min OGD plasma mem-
brane Annexin V binding was markedly and significantly increased
(OGD, 96.81 * 3%; p = 0.0009; see Fig. 6A,B). Finally, neurons
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treated with F-68 after OGD demonstrated
significantly lower Annexin V staining
(9.5 = 1.7%; p = 0.0014). Together, these
data indicate that F-68 treatment markedly
decreases OGD-induced apoptosis.

F-68 prevents OGD-induced

caspase activation

Because F-68 blocked OGD-induced apo-
ptosis, we assessed the extent to which it
altered caspase activation. Using high-
content imaging, we identified total and
living cells using Hoechst and calcein. To
identify neurons with activated caspases,
we simultaneously used a red fluorescent
probe that specifically binds to activated
caspases (FLICA; ImmunoChemistry
Technologies). Using these three markers,
we classified cells as living or dead, and
within each group, as FLICA-positive or
-negative (Fig. 3A).

Six hours after OGD, the number of
FLICA-negative living cells was markedly
decreased compared with control (p <
0.0001; Fig. 3B, left). In contrast, in F-68-
treated cultures, the percentage of these
FLICA-negative, living neurons was greatly
increased and not significantly different
from control cultures (p < 0.0001; Fig. 3B,
left). In like manner, the percentage of all
FLICA-positive cells (living and dead) was
significantly increased after OGD compared
with control, and F-68 treatment markedly
decreased the percentage of these FLICA-
positive neurons (Fig. 3B, middle). Finally,
the numbers of FLICA-negative, dead cells
were low in all groups, with statistically sig-
nificant increases in the OGD group com-
pared with control but not between F-68
and control (Fig. 3B, right). Thus, F-68
treatment prevented the OGD-induced in-
crease in FLICA cells after OGD and pre-
served the number of living cells without
caspase activation.

We next asked how F-68 treatment alters

the progression of OGD-induced apoptosis over time, by focusing
on living and dead FLICA-positive cells at 6 and 24 h after insult. In
cells exposed to normoxic control buffer, we observed no significant
differences in the percentages of living or dead FLICA-positive cells
at 6 and 24 h after exposure (Fig. 3C, left). After OGD, however,
living FLICA-positive cells significantly outnumbered dead FLICA-
positive cells at 6 h, by a ratio of 2.6:1. Significant cell death occurred
between 6 and 24 h after OGD, because dead FLICA-positive cells
significantly outnumbered living cells at 24 h, by a ratio of 4:1 (p <
0.0001; Fig. 3C, middle). Thus, after OGD, neurons destined to die
entered the apoptosis cascade by 6 h, with the majority of death
occurring by 24 h. In marked contrast, the percentages of FLICA-
positive cells in F-68-treated neurons after OGD were not
significantly different from control and did not change over
time (Fig. 3C, right). The lack of FLICA positivity in F-68-
treated neurons suggests that F-68 acts upstream of OGD-

induced caspase activation.
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F-68 treatment inhibits OGD-induced cytochrome c release
from mitochondria

Because OGD-induced caspase activation can occur via the intrinsic,
mitochondrial apoptotic pathway, with release of apoptogenic pro-
teins and subsequent activation of caspases (Zimmermann et al.,
2000), we assessed whether F-68 alters OGD-induced mitochondrial
release of cytochrome ¢, an important mitochondrial mediator of
apoptosis. We used confocal imaging of neurons in which the nu-
cleus was identified with DRAQ5 and cytochrome ¢ identified with
immunofluorescence. Neurons exposed to control buffer showed
distinct, punctuate cytochrome c staining typical of healthy mito-
chondria (Fig. 4A). Three hours after OGD, the majority of neurons
demonstrated diffuse cytochrome c staining throughout the soma.
Staurosporine-treated neurons that were used as positive control for
cytochrome c release also demonstrated diffuse cytochrome c stain-
ing. In contrast, treatment of neurons with F-68 after OGD showed
punctuate staining in most cells, similar to the distribution in control
cells.
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cells, although not as greatly increased
(p = 0.0042; Fig. 4B). Notably, in F-68-
treated cells, nuclear volume cytochrome
¢ intensity was significantly decreased
from OGD alone and not significantly dif-
ferent from that of control cells (Fig. 4B).
Thus, these data suggest that F-68 pre-
vents the release of cytochrome ¢ from the
mitochondria.

Overlay
B ® £l

F-68 treatment inhibits OGD-induced
loss of AW,

Cytochrome c¢ release typically precedes
dissipation of AW during apoptosis
(Heiskanen et al., 1999; Goldstein et al.,
2000). Accordingly, we assessed the extent
to which AW dissipation had occurred
by 6 h after OGD. We used high-
throughput image acquisition of cells
loaded with Hoechst, calcein, and
TMRM, a cationic indicator that accumu-
lates within mitochondria as a function of
AW (n = 6 coverslips per condition,
~150 neurons measured per coverslip).
At the end of each experiment, AW was
dissipated with FCCP, and AW of the
same cells was remeasured. We con-
structed frequency histograms of mean
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significantly different from the paired bar.

To quantify mitochondrial cytochrome c release on a cell-by-
cell basis, we used the confocal images to measure the intensity of
fluorescent cytochrome ¢ immunoreactivity throughout the nu-
clear volume. This volume contains few mitochondria, so that
immunofluorescence from free cytochrome ¢ can be attributed to
cytochrome c release. However, the diffusion limit of proteins set
by the nuclear pore (60 kDa; Wang and Brattain, 2007) allows
cytosolic cytochrome ¢ (12 kDa) to equilibrate within the nuclear
volume. We first confirmed the validity of the assay using stau-
rosporine. Six hours after staurosporine treatment, cytochrome ¢
immunoreactivity over the nuclear volume was markedly and
significantly increased over untreated cells (p < 0.001; Fig. 4B).
In OGD-exposed cells, cytochrome c intensity within the nuclear
volume was also significantly increased compared with control

6 hrs

F-68 prevents 0GD-induced caspase activation. 4, Using calcein (green) to label living neurons, DAPI (cyan) to label all
neurons, and FLICA (red) to label caspase-positive neurons allows identification of neurons as living/dead and caspase activation as
positive/negative. Images obtained 6 h after 45 min exposure to control buffer or 0GD, with and without immediate treatment
thereafter with F-68 (30 m). Scale bar, 10 m. Arrow, Living neuron, FLICA negative; filled arrowhead, living neuron, FLICA
positive; open arrowhead, dead neuron, FLICA positive; double arrowhead, dead neuron, FLICA negative. B, €, Each experimental
unit (n) consists of six coverslips per condition, with high-throughput imaging counting ~1300 cells per coverslip. * indicates
significantly different from control; # indicates significantly different from 0GD. B, Mean == SD percentage of total cells at 6 h after
0GD or control (n = 3). C, Mean = SD percentage of FLICA-positive cells over time after 0GD or control (n as in B). * indicates

cellular TMRM intensities in each condi-
tion (Fig. 4C).

In control cells at baseline, the TMRM
intensity histogram was skewed rightward,
demonstrating a range of membrane poten-
tials. FCCP treatment produced a much
more narrowly distributed, symmetric his-
togram that was shifted leftward toward
zero, demonstrating quite uniform dissipa-
tion of AW, across cells (Fig. 4C). In con-
trast, OGD treatment markedly dissipated
AW in the majority of cells: the histogram
peak overlapped the peak of the histogram
obtained after treatment of these cells with
FCCP, demonstrating AW, dissipation in a
large proportion of cells. The distribution of
TMRM intensities in control cells differed
significantly from that of cells subjected to
OGD (D = 0.6621, p < 0.0001). Impor-
tantly, in cells treated with F-68 (30 wm)
after OGD, TMRM intensities had a similar
distribution to that seen in control cells and was significantly differ-
ent from the distribution seen in cells subjected to OGD alone (D =
0.5666, p < 0.0001). In fact, the peak of the distribution was higher in
F-68-treated cells compared with control (D = 0.1737, p < 0.01).
Thus, F-68 treatment prevented or alleviated the OGD-induced
AW dissipation.

24 hrs

F-68 inhibits BAX translocation from the cytoplasm to

the mitochondria

Mitochondrial cytochrome ¢ release depends on permeabiliza-
tion of the outer mitochondrial membrane (OMM), which is
ultimately induced by formation of pore-forming homo-
oligomers of the effector proteins BAX or BAK in the OMM. In
the case of BAX, homo-oligomer formation is preceded by trans-
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location of cytosolic BAX to the OMM. Because F-68 treatment
prevented OGD-induced loss of mitochondrial cytochrome ¢, we
assessed whether F-68 treatment alters BAX translocation from
cytosol to the mitochondria. First, neurons expressing adenovi-
rally transduced mitochondrially targeted GFP (mito-GFP) were
subjected to OGD, and images of Alexa Fluor 594-reported BAX
immunofluorescence and mito-GFP were obtained with confocal
microscopy. To quantify colocalization on a cell-by-cell basis
(n = 7-10 cells per condition), unbiased intensity correlation
analysis was performed, reported as the Manders coefficient
(Manders et al., 1993). In control neurons, mito-GFP exhibited
interconnected worm-like structures consistent with healthy mi-
tochondria, and BAX immunoreactivity was primarily cytosolic
(Fig. 5A, top, and inset). In contrast, OGD-treated cells exhibited
rounded, coalesced mitochondria, and BAX immunoreactivity
was similarly coalesced into large puncta, overlapping with mito-
GFP (Fig. 5A, middle and inset). Mean Manders colocalization
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coefficient was markedly and significantly increased in OGD-
treated neurons compared with control (p < 0.01; Fig. 5B). In
neurons treated with F-68 (30 um) after OGD, mitochondrial
morphology and the distribution of BAX immunoreactivity were
indistinguishable from that seen in control neurons (Fig. 54,
bottom and inset). In these cells, mean Manders coefficient was
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significantly decreased from that in neurons exposed to OGD and
not significantly different from control neurons.

To confirm these imaging results, we assessed BAX translocation
in large populations of neurons using Western blot analysis. BAX
levels in cytosolic [GAPDH-positive, cytochrome ¢ oxidase subunit
4 (COX IV-negative)] and heavy membrane (GAPDH-negative,
COX IV-positive) fractions of neuronal lysates obtained 6 h after
OGD were analyzed (Fig. 5C). After OGD, BAX levels were signifi-
cantly increased in the heavy membrane fraction and significantly
decreased in the cytosolic fraction (p = 0.0220, p = 0.0192; Fig.
5D, E). In neurons treated with F-68 after OGD, BAX levels in the
heavy membrane fraction were not significantly different from con-
trol levels. Similarly, BAX levels in the cytosolic fraction were not
significantly different from control levels. Therefore, these data sug-
gest that F-68 treatment prevents OGD-induced BAX translocation
from the cytosol to the OMM.

Inhibition of apoptosis persists when F-68 treatment is
delayed 12 h after OGD

When administered 12 or 15 h after OGD, F-68 provided equivalent
neuronal rescue to that seen with F-68 administration immediately
after OGD (Fig. 1F). However, 6 h after OGD, neurons not exposed
to F-68 demonstrated BAX translocation to the mitochondria, re-

left). In like manner, the percentage of all
FLICA-positive cells (living and dead) was
significantly increased after OGD com-
pared with control. F-68 treatment pro-
vided 12 h after OGD decreased the
percentage of these FLICA-positive neu-
rons to control values (Fig. 6A, middle).
Finally, the numbers of FLICA-negative,
dead cells were low in all groups, with sta-
tistically significant increases in the OGD
group compared with control and a decrease in the F-68-treated
group compared with control (Fig. 6A, right).

Because the total number of cells on coverslips could have
been systematically decreased by either the treatment condition
(with or without OGD) or by the time after OGD when the cells
were counted (6 vs 24 h), we performed a two-way ANOVA of
total cells counted on each coverslip, using treatment (control,
OGD, OGD + F-68) and time (6 h after OGD, 24 h after OGD) as
factors. There were no significant main effects of treatment
(Fiooo) = 171, p = 0.18) or time (F, 49, = 0.123, p = 0.73),
neither were there any important interactions between treatment
and time. Thus, there were no significant differences in total cells
between groups to contribute to the differences in cell survival or
FLICA positivity that we observed. Together, these data demon-
strate that F-68 treatment at 12 h after OGD results in the absence
of an increase in caspase activation in surviving neurons 24 h after
OGD.

Next, mitochondrial cytochrome ¢ release was quantified 12 h
after F-68 treatment on a cell-by-cell basis. In OGD-exposed
cells, mean cytochrome ¢ intensity within the nuclear volume was
significantly increased compared with control cells (p = 0.0005;
Fig. 6B). Notably, in F-68-treated cells, mean cytochrome c in-
tensity over the nuclear volume was significantly decreased from
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that after OGD and not significantly different from that of con-
trol cells (Fig. 6B). Thus, delayed F-68 treatment at 12 h after
OGD decreased mitochondrial cytochrome c release at 24 h after
OGD.

Finally, the effect of delayed F-68 treatment on BAX translo-
cation was assessed, using Western blots of BAX in heavy mem-
brane and cytosolic fractions of cell lysates. Twelve hours after
OGD or control buffer exposure, cultures were treated with F-68
or control buffer. Lysates were harvested 12 h later and fraction-
ated into cytosolic and heavy membrane fractions. In the heavy
membrane fraction, normalized BAX levels were increased after
OGD compared with control lysates (p = 0.021; Fig. 6D) and
decreased in the cytosolic fraction (p = 0.001; Fig. 6E), demon-
strating translocation of BAX from cytosol to the mitochondria.
Notably, after delayed F-68 treatment, the OGD-induced BAX
increase in the heavy membrane fraction was significantly de-
creased compared with untreated OGD (p = 0.043; Fig. 6D),
demonstrating an F-68-mediated decrease in BAX translocation.
Therefore, these data indicate that F-68 treatment delayed until
12 h after OGD decreases OGD-induced BAX translocation to
the mitochondria seen at 12 h after treatment.

Discussion

In this study, we show that the PEO-PPO-PEO copolymer F-68
provides profound rescue of hippocampal neurons after OGD. In
fact, F-68 rescued all neurons that did not die with the first hour
after OGD. These data build on our previous findings that F-68
rescues neurons from a variety of excitotoxic and oxidative in-
sults, mechanisms that underlie death from OGD and brain HI in
vivo (Marks et al., 2001). The similarity of the [Ca*"]; imaging
responses between uninjured and rescued neurons to NMDA
receptor activation and membrane depolarization, as well as the
identical electrophysiological parameters between these groups,
indicate that F-68 treatment restored intact neuronal function
after insult. Importantly, this degree of neuronal rescue persisted
when F-68 treatment was delayed as late as 12 h after insult. The
absence of F-68 effects on NMDA receptor-activated whole-cell
inward currents indicate that neuronal rescue is not attributable
to F-68-induced NMDA receptor antagonism.

Whether neurons die by apoptosis or necrosis after injury can
depend on injury severity (Ankarcrona et al., 1995; Bonfoco et al.,
1995). After 60 min OGD, a proportion of neurons died within
1 h of injury. The rapidity of this death, and its appearance only
after the most severe injury used, strongly suggest that these neu-
rons died by necrosis. In contrast, the remainder of the death,
which began at 6 h and progressed over 48 h, was apoptotic, as
demonstrated by TUNEL staining and the sensitivity of this death
to pan-caspase inhibition. In fact, the amount of Z-VAD-FMK-
sensitive death completely accounted for the number of neurons
rescued by F-68 after 45 min of OGD. F-68-induced inhibition of
apoptosis has been reported previously in in vitro models of neu-
ronal trauma (Serbest et al., 2005; Kilinc et al., 2007) and chon-
drocytes (Bajaj et al., 2010).

To understand how F-68 prevents OGD-induced apoptosis,
we systematically investigated the points at which F-68 might
interfere in the intrinsic apoptotic pathway. F-68 prevented
phosphatidylserine externalization, the earliest indicator of apo-
ptosis, and caspase activation. F-68 also prevented OGD-induced
AW dissipation and mitochondrial cytochrome c release, sug-
gesting that F-68 acts upstream of mitochondrial outer mem-
brane permeabilization (MOMP), a central event in apoptosis.
Finally, F-68 blocked translocation of cytosolic BAX to mito-
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chondria, an event leading to MOMP in many apoptosis models
(for review, see Tait and Green, 2010).

Apoptosis after acute metabolic stress, including OGD, occurs
after the activation of multiple processes, including [Ca**]; de-
regulation and activation of Ca®"-dependent proteases, ATP
consumption, and mitochondrial dysfunction (Budd and Nich-
olls, 1996; Duchen, 1999; White et al., 2000; Pivovarova and An-
drews, 2010). These processes all occur within minutes or several
hours of insult. Although F-68 may modulate these early re-
sponses, its ability to rescue neurons from apoptosis 12—15 h after
OGD strongly suggests that F-68-mediated neuronal rescue does
not occur by modulating these processes.

Biophysical approaches have demonstrated that F-68 interacts
directly with phospholipid membranes, in supported lipid
monolayers (Wu et al., 2004, 2005) and in lipid bilayers (Fire-
stone et al., 2003). Small-angle x-ray scattering (SAXS) has dem-
onstrated that the nature of the interactions of 80% hydrophilic
Pluronics with lipid bilayers critically depends on the length of
the central PPO chain: copolymers with short PPO chains (e.g.,
15 units) exhibit SAXS profiles consistent with the preferential
association of the hydrophobic PPO chain with alkyl chains of the
membrane phospholipids. With F-68 (29 PPO units), SAXS pro-
files are consistent with increased anchoring to the membrane,
because the increased length of the PPO chain likely increases
incorporation into the membrane (Firestone et al., 2003). Using
giant unilamellar vesicles, we showed recently that, during os-
motic stress, an injury in which lipid packing density is decreased,
F-68 acutely adsorbs to the lipid bilayer, retarding the osmotic
stress-induced loss of membrane integrity (Wang et al., 2010).

F-68 reverses cell dysfunction arising from plasma membrane
defects, including electropermeabilization (Lee et al., 1992;
Marks et al., 2001) and genetic defects in myocyte compliance
(Yasuda et al., 2005). F-68-mediated abolition of shear stress-
induced increases in neuronal plasma membrane permeability
(Kilinc et al., 2008) indicates that F-68 interacts with damaged
neuronal plasma membranes. Of note, fluorophore-tagged Plu-
ronics applied to cells are rapidly internalized (Sahay et al., 2008),
achieving access to intracellular structures.

Six hours after OGD, BAX translocation to the mitochondria
was apparent, a key step in MOMP and subsequent release of
intra-mitochondrial proapoptotic factors into the cytosol (Put-
cha et al., 1999; Ghatan et al., 2000; Fan et al., 2012). In contrast,
after F-68 treatment, BAX translocation was not seen at 6 h, and
neither cytochrome c release nor caspase activation occurred,
providing a mechanism by which apoptosis was inhibited. Strik-
ingly, when F-68 treatment was delayed 12 h after OGD, hours
after BAX translocation and its downstream effects had occurred,
the levels of mitochondrial BAX, cytosolic cytochrome ¢, and the
numbers of FLICA-positive neurons had returned to baseline
levels, indicating that F-68 can arrest ongoing OGD-induced ap-
optosis. Proapoptotic factors are released from individual mito-
chondria in a one-step process (Goldstein et al., 2005; Bhola et al.,
2009). In multiple cell types, this release propagates to adjacent
mitochondria in spatially and temporally regulated waves (Bhola
et al., 2009; Garcia-Perez et al., 2012), in some studies, in a reac-
tive oxygen species (ROS)-dependent manner (Garcia-Perez et
al., 2012). That cytochrome c can be released from at least 15% of
the cellular mitochondrial volume without inducing apoptosis
(Khodjakov et al., 2004) supports the idea that the number of
mitochondria undergoing MOMP by 12 h after OGD has acti-
vated insufficient caspases to make apoptosis irreversible. The
restoration of mitochondrial BAX levels suggests that F-68 may
restore MOMP, as has been observed for plasma membranes
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after permeabilization (Marks et al., 2001; Plataki et al., 2011;
Spurney etal., 2011).The dependence of apoptosis on mitochon-
drial lipids, including cardiolipin oxidation (Kuwana et al., 2002;
Kagan et al., 2005), ceramide, and its metabolites (Siskind et al.,
2006; Chipuk et al., 2012), suggest candidate lipid species with
which F-68 may interact to restore OMM integrity and prevent
progression of apoptosis. The efficacy of endogenous and modi-
fied brain lipids, e.g., 16:0 N-acetyl-ethanolamine, in rescuing
neurons from focal ischemia (Garg et al., 2010) further support a
role for membrane-targeted interventions in rescuing neurons
from death. Alternatively, if F-68 acts before BAX translocation
to promote neuronal survival, the return of mitochondrial BAX
levels to baseline may be attributable to ongoing mitophagy of
damaged mitochondria (Zhu et al., 2013).

After mechanical injury, F-68 decreases apoptosis in PC2 cells
and chondrocytes, associated with p38 inhibition (Serbest et al.,
2005) and activation of Stat-1 (signal transducer and activator of
transcription-1) and ATF-2 (activating transcription factor-2)
(Bajaj et al., 2010). In both models, specifically inhibiting p38
activation accounts for <<50% of the survival benefit afforded by
F-68, suggesting that F-68 inhibits apoptosis upstream of p38
activation. In neuronal systems, p38 activation depends on ROS
production (Kawasaki etal., 1997; Behrens etal., 1999; Choietal.,
2004). In fact, increased ROS production during and after acute
insults are central mechanisms of neuronal death after ischemia
(Abramov et al., 2007). For lipid membranes, the primary conse-
quences of injury-induced increases in ROS production are lipid
peroxidation and production of 4-hydroxynonenal, a highly re-
active lipid electrophile (Liu et al., 2011). These processes can
lead to impaired lipid packing density and decreases in mem-
brane integrity. We showed previously that F-68 blocks the on-
going lipid peroxidation in the plasma membrane induced by
exogenous Fenton reagents (Marks et al., 2001). Therefore, re-
gardless of the upstream initiating events for ROS production,
F-68 may rescue neurons through inhibition of lipid peroxida-
tion, either through acting as a chain-breaking anti-oxidant or as
a direct inhibitor of ROS production.

Although the precise membrane mechanisms of neuronal res-
cue by F-68 remain unclear, this report demonstrates that a syn-
thetic copolymer that interacts with membrane bilayers provides
near-complete neuroprotection after OGD and acts by inhibiting
apoptosis early in the mitochondrial pathway. The ability of F-68
to rescue injured neurons in vitro suggests that this membrane-
targeted approach may also rescue neurons after brain HI in vivo.
The efficacy of F-68 when given 12-15 h after OGD positions
80% hydrophilic Pluronics as potential treatments for reperfused
stroke, in which patients present hours after the onset of injury.
The requirement for F-68 coatings on poly(alkyl cyanoacrylate)
nanoparticles to deliver blood—brain barrier-impermeable com-
pounds (Kreuter, 2004; Gelperina et al., 2010) demonstrates that
F-68 crosses the blood—brain barrier, removing a potential im-
pediment to its use as an intravenous therapy. In addition, F-68
and related Pluronics have demonstrated acceptable safety pro-
files in commonly used species (Duvinage et al., 1996; Singh-Joy
and McLain, 2008), as well as in humans (Ballas et al., 2004).
Finally, the pharmacokinetics of F-68 are well described (Willcox
et al., 1978; Jewell et al., 1997; Grindel et al., 2002a,b), allowing
protocols for achieving and maintaining desired serum F-68 lev-
els to be developed. Therefore, the ability of F-68 to rescue neu-
rons after delayed administration makes testing its efficacy and
the efficacy of related Pluronics in in vivo models of cerebral
ischemia important future studies.
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