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 Introduction 

 Despite ongoing medical and surgical advances, intra-
cerebral hemorrhage (ICH) remains the deadliest and 
least treatable type of stroke  [1] . At present, the treatment 
options are limited with only supportive care and reha-
bilitation shown to improve the outcome after ICH  [2, 3] . 
Furthermore, therapies developed for hematoma growth 
prevention, clot removal or optimization of cerebral per-
fusion pressure have yet to conclusively demonstrate their 
clinical benefits in randomized clinical trials  [4] . In ef-
forts to identify novel therapeutic targets, recent investi-
gations have focused on the mechanisms of secondary 
brain injury at the hemorrhage site and in the perihema-
tomal zone (PHZ) after ICH  [4] . Mounting evidence has 
indicated that the secondary effects of ICH involve blood-
brain-barrier (BBB) disruption, cerebral edema, inflam-
mation autophagy, and cellular necrosis and apoptosis 
 [5–9] . Furthermore, they are important contributors to 
the clinical course and outcome after ICH  [5] . This had 
led to a rapidly growing interest in neuroprotective strat-
egies that aim to improve outcomes by reducing ICH-
induced secondary pathologic processes.
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 Abstract 

 Intracerebral hemorrhage (ICH) is associated with higher 
mortality and morbidity than any other form of stroke. How-
ever, there currently are no treatments proven to improve 
outcomes after ICH, and therefore, new effective therapies 
are urgently needed. Growing insight into ICH pathophysiol-
ogy has led to the development of neuroprotective strate-
gies that aim to improve the outcome through reduction of 
secondary pathologic processes. Many neuroprotectants 
target molecules or pathways involved in hematoma degra-
dation, inflammation or apoptosis, and have demonstrated 
potential clinical benefits in experimental settings. We ex-
tensively reviewed the current understanding of ICH patho-
physiology as well as promising experimental neuroprotec-
tive agents with particular focus on their mechanisms of
action. Continued advances in ICH knowledge, increased un-
derstanding of neuroprotective mechanisms, and improve-
ment in the ability to modulate molecular and pathologic 
events with multitargeting agents will lead to successful clin-
ical trials and bench-to-bedside translation of neuroprotec-
tive strategies.  Copyright © 2010 S. Karger AG, Basel 
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  Neuroprotection consists of heterogeneous strategies 
that modulate specific cellular and molecular pathways 
that are triggered after ICH  [6, 10] . Numerous neuropro-
tective agents have been shown to reduce cell death  [11] , 
decrease hemorrhage and edema volumes  [12–14] , and 
improve functional outcome  [15, 16] . Some are currently 
being investigated in clinical trials and represent novel 
and promising avenues of ICH therapy  [4] . In this article, 
we review the current understanding of the pathophysiol-
ogy of ICH-induced secondary brain injury. In addition, 
we provide an overview of putative neuroprotectants that 
target hematoma-derived products, inflammatory cas-
cades or proapoptotic pathways.

  Mechanisms of ICH-Induced Secondary Brain Injury 

 The current understanding of ICH-induced brain in-
jury is based on both clinical and experimental studies 
( fig. 1 ). Initial injury immediately after ICH onset is from 
the direct mechanical force of the expanding hematoma 
 [4, 8] . In the first 4 h, physical disruption and stretching 
of the surrounding neuronal and glial cells lead to exces-
sive neurotransmitter release, calcium influx and mito-
chondrial dysfunction  [8] . When severe, this results in 
cytotoxic edema and cellular necrosis  [17] . In the ensuing 
days, the degrading hematoma releases its breakdown 
products, such as thrombin and ferrous iron, which lead 
to the activation of oxygen free radicals, matrix metallo-
proteinases (MMPs), complement proteins and inflam-
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  Fig. 1.  Pathophysiology brain injury following ICH. NF � B = Nuclear factor  � -light-chain-enhancer of activated 
B cells; NMDA =  N -methyl- D -aspartic acid; MMP = matrix metalloproteinase; PAR = protease-activated recep-
tor; TNF- �  = tumor necrosis factor- � . 
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matory markers  [4, 5, 8, 9, 18–20]  ( fig. 1 ). These down-
stream molecules increase the BBB permeability  [9] , re-
cruit inflammatory cells  [21] , trigger apoptosis  [22] , and 
ultimately exacerbate cerebral edema and neuronal death 
 [23] .

  Cerebral edema is a key component of the ICH patho-
physiology ( fig. 1 ). Its rapid development upon onset con-
tributes significantly to the perihematomal volume and 
exacerbates mass effect, ischemia and infarction of adja-
cent structures  [5, 24] . Although cerebral edema’s relation 
to neurological deficit and outcome after ICH remains 
controversial, it has served as a target for numerous can-
didate therapies  [8, 25–27] . ICH-associated cerebral ede-
ma is primarily vasogenic and develops in the PHZ  [8] . 
Cerebral edema develops immediately after ICH onset, 
peaks in the next 5–6 days and lasts up to 2 weeks  [8] . 
Edema formation occurs in 3 phases. During the acute 
phase (within the first few hours of onset), hydrostatic 
pressure and clot retraction cause clot-derived serum to 
move into the PHZ. Subacute (within 2 days of ICH) ac-
tivation of the coagulation cascade and release of throm-
bin contributes to cerebral edema development. This is 
further worsened by the erythrocyte lysis and hemoglo-
bin (Hb) toxicity taking place primarily during the later 
stages  [28] . The BBB disruption, induced by thrombin, 
MMPs, complement proteins and hemolytic byproducts, 
manifests 8–12 h after ICH onset and is also implicated 
in cerebral edema formation  [9, 8, 29] .

  Cellular damage or death, particularly of neurons, is 
another critical endpoint of ICH-induced secondary in-
juries  [30]  ( fig. 1 ). Several interconnected molecular and 
cellular pathways lead to further neuronal injuries, ne-
crosis or apoptosis following ICH  [31] . Thrombin, a major 
contributor to edema formation and BBB damage, is in-
volved in early brain injury  [31] . Hb and its degradation 
products, such as heme, are released after erythrocyte ly-
sis and mediate direct neuronal toxicity and death  [30] . 
Infiltrating inflammatory cells, such as macrophages and 
neutrophils, aggravate the ongoing injury partly through 
production of cytokines, chemokines and reactive oxy-
gen species  [32] . Activated microglia and concurrent as-
trogliosis are also implicated in inflammatory cellular 
damages  [33] . Activation of the complement cascade 
 further heightens the inflammatory response, induces 
erythrocyte lysis to release Hb-related molecules and 
causes cellular death through the formation of mem-
brane attack complexes  [5] . Though deleterious, the in-
flammatory and complement pathways are also critical 
for hematoma absorption, cellular debris clearance and 
postictal recovery  [34, 35] .

  Therapeutic Targets and Strategies 

 Hematoma-Derived Products 
 Thrombin Inhibition 
 Thrombin is a serine protease and critical coagulation 

protein that is produced rapidly after ICH onset  [36]  
( fig. 2 ). Thrombin is a key mediator in stopping the initial 
hemorrhage and preventing hematoma expansion  [37] . 
At low concentrations, thrombin confers neuroprotective 
effect possibly through the upregulation of heat shock 
proteins and iron-handling proteins  [38] . However, at 
high concentrations, as is usually the case in ICH, throm-
bin causes inflammatory cell infiltration, BBB break-
down, cerebral edema formation and neuronal death. 

  Hirudin and a- N -(2-naphthalenesulfonyl)-glycyl-( D )-
A-aminopheny-alanyl-piperidine (NAPAP), as thrombin 
inhibitors  [39] , have been shown to decrease cerebral ede-
ma in rat ICH models. Another thrombin inhibitor, arg-
atroban, has recently been studied due to its ability to 
inhibit clot-bound thrombin, which is present in signifi-
cant quantities in the hematoma  [40] . Direct injection of 
argatroban 3 h after ICH significantly reduced the edema 
volume in animal models. Similarly, administration of 
high-dose systemic argatroban 6 h after ictus led to a sig-
nificant  reduction in cerebral edema. These data suggest 
that thrombin inhibitors may provide a potentially useful 
neuroprotective strategy.
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  Prevention of Hb, Heme and Iron Toxicity 
 The release of Hb and other lysis products into the pa-

renchyma can result in marked cerebral edema, brain in-
jury and neurological deficits  [41, 42] . Hb, in particular, 
is a powerful neurotoxin associated with cellular oxida-
tive damage, necrosis and apoptosis  [43] . Recently, hap-
toglobin (Hp) has been investigated as a potential neuro-
protectant that can ameliorate the deleterious effects of 
Hb in ICH patients  [44] . Hp is an acute-phase plasma pro-
tein that can form a stable complex with Hb to neutralize 
the cytotoxic and pro-oxidative properties of Hb and its 
byproducts  [44] . The expression pattern of cerebral Hp 
closely mirrors the development of cytotoxic injury, cere-
bral edema and tissue damage after ICH. Furthermore, 
natural upregulation of Hp in the PHZ can significantly 
reduce cerebral injury in a rodent model  [44] . Similar re-
sults were demonstrated when the local Hp levels were 
increased with systemic administration of sulforaphane 
 [44] . Thus, Hp and its upregulators, such as sulforaphane, 
are promising neuroprotectants that are capable of atten-
uating Hb-mediated cerebral injury after ICH ( fig. 2 ).

  Iron is released when heme is degraded by heme oxy-
genase (HO) and can reach high concentrations in the 
brain after ICH  [45] . ICH-associated iron accumulation 
begins as early as the first postbleed day and peaks in the 
coming week  [46] . Iron is critical for normal cerebral 
functioning. However, iron overload can independently 
cause cerebral edema, worsen thrombin-induced edema 
 [47]  and induce neuronal damage through oxidative 
stress and excitotoxicity  [48–50] .

  Studies have recently focused on HO, the rate-limiting 
enzyme in the breakdown of heme, as a potential neuro-
protective target. HO exists in 2 isoforms, HO-1 and -2, 
which primarily localize to neurons and microglia, re-
spectively. In the normal brain, HO-2 is the dominant 
form and accounts for the majority of the HO-associated 
activities  [51, 52] . At present, there are conflicting data re-
garding the role of HO in the setting of ICH. Despite re-
ports of HO-1 being neuroprotective, HO-1 overexpres-
sion has been associated with ICH-induced brain damage 
and its absence significantly decreased inflammatory cell 
infiltration, macrophage activation and oxidative DNA 
damage  [22] . Studies have suggested that HO-2 may confer 
neuroprotection after ICH by either degrading heme or 
converting it to carbon monoxide and bilirubin. However, 
others have reported that the deletion of HO-2 attenuates 
Hb-induced neurotoxicity  [53] . Nonspecific HO inhibi-
tors such as tin-mesoporphyrin have been shown to re-
duce brain injury, suggesting that both isoforms may have 
predominantly deleterious effects following ICH  [54] .

  Deferoxamine, an iron chelator, has also been shown 
to decrease production of hydroxyl radicals, activate 
compensatory transcription factors and ameliorate Hb-
associated neurotoxicity  [7]  ( fig.  2 ). Deferoxamine may 
also attenuate cytotoxic edema formation through mod-
ulation of aquaporin-4 channel expression  [28] . Systemic 
administration of deferoxamine in ICH models reduced 
the severity of oxidative damage and cerebral edema, and 
also led to improved neurological and functional out-
come  [55, 56] . Deferoxamine therapy in ICH patients has 
yielded evidence of decreased systemic oxidative stress 
 [7] . Currently, deferoxamine is being investigated as a po-
tential neuroprotectant for ICH patients in a phase I, mul-
ticenter, dose-finding, safety and feasibility study.

  Upregulation of NF-Erythroid-2-Related Factor 2 
 NF-erythroid-2-related factor 2 (Nrf2) is a reduction-

oxidation-sensitive transcription factor that is activated 
by oxidative stress  [57] . Nrf2 is thought to attenuate Hb- 
and free radical species-mediated toxicity by inducing 
antioxidant genes, including Hp  [43, 58] . Neurons from 
Nrf2-knockout mice are more vulnerable to oxidative 
stress than those of control animals, and transfection of 
Nrf2 restores reactive oxygen intermediate (ROI) resis-
tance  [59] . Furthermore, the knockout mice exhibit more 
perihematomal cellular DNA damage, apoptosis and 
neurological deficits as compared to controls after exper-
imental ICH  [60] . When Nrf2 was upregulated through 
the use of the upstream inducer sulforaphane in rats, 
there was a reduction in neutrophil migration, increase 
in ROI-detoxifying enzyme levels, and decrease in in-
flammation and oxidative damage after ICH  [61] .

  Inflammatory Pathways 
 Cyclo-Oxygenase Inhibition 
 Cyclo-oxygenase (COX) is a key enzyme involved in 

the formation of prostanoids through the arachidonic 
acid pathway  [62, 63] . There are 3 isoforms, with COX-2 
being the predominant isoform within the central ner-
vous system, present in astrocytes, neurons and micro-
glia  [63] . COX-2 is highly inducible  [64]  and contributes 
to neuronal death in inflammatory settings  [65] . In the 
setting of ICH, COX upregulates the production of pros-
taglandins, prostacyclins and thromboxane, which in 
turn exacerbate the ongoing inflammation at the site of 
hematoma and the PHZ  [66] . Studies have shown that ce-
lecoxib, a selective COX-2 inhibitor, reduces inflamma-
tion and brain edema in a dose-dependent manner in rats 
subjected to ICH  [67] . Furthermore, celecoxib in con-
junction with memantine, a noncompetitive NMDA re-
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ceptor antagonist, worked synergistically to improve 
functional recovery in a rat ICH model ( fig. 3 )  [16] . 

 Targeting Matrix Metalloproteinases 
 MMPs are a family of zinc-dependent endopeptidases 

that play a critical role in the degradation and remodeling 
of extracellular matrix components  [68] . These tightly 
regulated enzymes are implicated in an array of cellular 
functions and are involved in the inflammatory process-
es in various disease states  [68, 69] . Marked upregulation 

of MMPs is seen after ICH as a result of their activation 
by hematoma-derived products, such as plasma, throm-
bin and ROIs  [68] . Thrombin and MMP-9, in particular, 
exacerbate neurotoxicity and death in human fetal neu-
rons and mice by causing detachment of cellular integrin 
from the extracellular matrix  [70] . GM-6001-mediated 
inhibition of MMP-9 led to reduction in neutrophil infil-
tration, oxidative stress, neurodegeneration and brain 
edema in a murine ICH model  [20] . Furthermore, the free 
radical scavenger edaravone was able to reduce ROI- 
induced MMP upregulation, and the anti-inflammatory 
heat shock protein 70 inducer eranylgeranylacetone sig-
nificantly lowered the MMP-9 expression levels and 
brain edema in rodent ICH models  [71] . Furthermore, the 
tetracycline antibiotic minocycline also decreases the 
MMP-2 and -9 levels, reduces MMP-induced microvas-
cular permeability shifts, BBB breakdown, inflammatory 
cell infiltration and iron-mediated neurotoxicity in cell 
cultures  [72] .

  Inhibition of Inflammatory Cell Activation 
 Endogenous microglia become activated after isch-

emic conditions such as ICH and produce molecules such 
as interleukin-1 �  and tumor necrosis factor (TNF)- �  that 
further inflammation in the hematoma site and the PHZ 
 [73] . Tuftsin, a microglial inhibitor, reduces inflamma-
tory cytokine release and attenuates brain edema  [74] . 
Minocycline can also inhibit the microglia and modulate 
their activity in the setting of ICH  [21] .

  Neutrophils are also involved in ICH-induced inflam-
matory injuries to the brain  [75] . Inflammatory adhesion 
molecules become upregulated after ICH and lead to in-
creased neutrophil infiltration into the site of hemor-
rhage and the PHZ  [30] . CD18 on neutrophils allows in-
teraction with the endothelium for extravasation, and its 
deletion results in reduction in cerebral edema after ex-
perimental ICH  [76] . Selective adenosine A 2A  receptor 
agonist, CGS 21680, which activates neutrophilic A 2A  re-
ceptors and blocks leukocytic adherence to the endothe-
lium, also reduces neutrophil degranulation and ROI re-
lease  [77, 78] .

  TNF- �  Modulation 
 TNF- �  is a proinflammatory cytokine that is strongly 

implicated in the pathophysiology of ICH-induced brain 
injury. TNF- �  may cause secondary cerebral injuries 
through interference with astrocyte removal of extracel-
lular glutamate, exacerbation of excitotoxicity, activation 
of microglia and induction of NF � B-driven production 
of inflammatory cytokines and ROIs  [79] . Studies have 
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also shown that the TNF- �  levels directly correlate with 
the extent of brain damage following ICH  [80] .

  Adenosine receptor agonists are potent inhibitors of 
TNF- �  production, and adenosine A 2A  receptor agonist 
CGS 21680 decreases TNF- �  production and neutrophil 
infiltration after experimental ICH  [78] . Due to its short 
half-life and quick desensitization, other upstream tar-
gets are currently being explored  [78] . One example is 
 estrogen, which significantly increases A 2A  receptor 
 expression  [81] . Another agent, ORF4-PE, is a TNF- � -
specific antisense oligodeoxynucleotide, and its intrace-
rebral administration after ICH led to decrease in cell 
death and neurobehavioral deficits  [82] .

  AT1 Receptor Blockade 
 Angiotensin II, a potent vasocontrictor hormone, has 

been implicated in inflammatory responses in neurolog-
ic conditions  [83] . Angiotensin II also is involved in reg-
ulating nitric oxide synthase (NOS), and particularly 
 endothelial NOS (eNOS), whose vasodilatory effect is 
 important for preserving the cerebral blood flow and 
protecting against neuronal oxidative stress and excito-
toxicity after ICH  [84–86] .

  Potent angiotensin II receptor subtype AT1 blocker, 
telmisartan, has been shown to decrease inflammatory 
cell infiltration and edema volume after ICH induced in 
rats  [87] . Additionally, it decreases the levels of inflam-
matory and proapoptotic molecules, including TNF- � , 
Fas and FasL, upregulates eNOS expression, and decreas-
es hemorrhage volume, edema, neutrophil infiltration 
and cellular apoptosis  [87] . Telmisartan is also thought to 
function as a partial agonist of peroxisome proliferator-
activated receptor  � , which is critical for neutralizing free 
radical species and inhibiting the inflammatory cascade 
through decreased expression of the transcription factor, 
NF � B  [88, 89] . Due to their ability to target multiple path-
ways, telmisartan and other angiotensin II receptor sub-
type AT1 blockers may become particularly useful ICH 
neuroprotectants.

  Proapoptotic Pathways 
 Valproic Acid 
 The anticonvulsant drug valproic acid (VPA) has re-

cently become a focus of investigation as a neuroprotec-
tant in ICH. VPA is thought to induce the extracellular 
signal-regulated kinase/cAMP response element-binding 
protein pathway to increase the expression of the anti-
apoptotic gene, bcl-2, after ICH  [91] . VPA also increases 
the expression of heat shock protein 70  [92] , which, as 
aforementioned, downregulates MMP-9, FasL and other 

proinflammatory cytokines and confers antiapoptotic 
effects through the inhibition of caspase-3 activation  [93] . 
Studies have demonstrated that VPA protects rat cortical 
neurons from glutamate-induced excitotoxicity  [94]  and 
increases the longevity of cultured cortical neurons. Fur-
thermore, VPA has been shown to significantly limit 
 hematoma expansion, reduce post-ICH upregulation in 
MMP-9 levels, and increase bcl-2 expression after exper-
imental ICH ( fig. 4 )  [95] .

  Inhibition of c-Jun  N -Terminal Kinase 
 c-Jun  N -terminal kinase (JNK) is a potent stress-acti-

vated kinase that mediates apoptosis in the setting of neu-
rological insult  [96, 97] . It is thought that JNK is activated 
in neurons and microglia after ICH through the induc-
tion of stress receptors, such as apoptosis signaling kinase 
1 and FasL receptors. Intravenous administration of XG-
102, a selective inhibitor of JNK, into mice 3 h after ICH 
induction was associated with significant decrease in 
both edema and hematoma volume. In addition, XG-102-
treated animals had an improved neurological outcome 
24 h after ictus  [97] . XG-102 is also a mediator of inflam-
mation and has been implicated in microglial activation 
and TNF- �  upregulation  [98] . Therefore, XG-102 and 
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other JNK inhibitors may be useful neuroprotectants able 
to ameliorate both apoptosis and inflammation following 
ICH.

   N -Methyl  D -Aspartate/ � -Amino-3-Hydroxyl-5-
Methyl-4-Isoxazole-Propionate Antagonism 
 The amino acid glutamate is the most predominant 

excitatory neurotransmitter in the central nervous sys-
tem, but causes cellular dysfunction and apoptosis when 
pathologically released in large quantities  [99] . Follow-
ing ICH, glutamate accumulates at the site of injury and 
binds to the  N -methyl  D -aspartate (NMDA) and  � -ami-
no-3-hydroxyl-5-methyl-4-isoxazole-propionate recep-
tors, leading to massive elevation of intracellular calcium 
and decrease in intracellular adenosine-5 � -triphosphate 
levels  [100] . Glucose hypermetabolism also occurs, ulti-
mately leading to the production of oxidative byproducts 
 [101] . Toxicity is thought to be initiated by the thrombin-
mediated protease activated receptor-induced phos-
phorylation of the Src protein  [102] . Src proteins enhance 
 glutamate release from synaptic vesicles and potentiate 
NMDA receptors, thereby enhancing the neurotoxic cal-
cium influx and free radical generation  [103] . Targeting 
this pathway through molecular blockade has been 
shown to attenuate many of the aforementioned apop-
totic and inflammatory effects. For instance, the Src ki-
nase inhibitor, PP1, decreases pathologic glucose hyper-
metabolism and cell death after ICH  [11] . The NMDA 
antagonist  memantine also reduces hematoma expan-
sion, and administration of its functional analog, MK801, 
has demonstrated a reduction in neurotoxicity, calcium 
overload and cerebral edema in porcine ICH models 
 [104–106] .

  Surfactant Poloxamer 188 
 Surfactant poloxamer 188 is a novel neuroprotective 

approach in ICH. The compound is thought to facilitate 
membrane repair of damaged neurons, thereby leading 
to restoration of intracellular compartmentalization and 
preservation and recovery of cellular functions  [107, 108] . 
Poloxamer 188 protects cells against excitotoxic injury, 
possibly by intercalating into neuronal membranes and 
decreasing the rates of electrophysiological change after 
insult  [107] . It also acts as an anti-inflammatory agent 
 [109] , decreasing macrophage infiltration and lipid per-
oxidation, as well as hematoma volume  [13] .

  Erythropoietin 
 Erythropoietin (EPO) is a glycoprotein hormone that 

normally induces the differentiation of hematopoietic 

stem cells into erythrocytes via the BBB through abun-
dant specific capillary receptors  [110] . Evidence suggests 
that EPO is also an important modulator of various mo-
lecular cascades critical to cell functioning, survival and 
vascular responses, such as the STAT-3 and eNOS path-
ways, and it may prevent glutamate excitotoxicity, apop-
tosis and inflammation  [110–113] . Recent work has sug-
gested that EPO and its long-lasting analog, darbepoetin 
 � , bind the EPO receptor to exert neuroprotective and 
antiapoptotic effects through JAK-2- and Akt-dependent 
mechanisms  [114] .

  Discussion 

 Neuroprotection constitutes a novel category of ICH 
therapy with sound biological rationale and significant 
potential for improving outcomes. Ongoing investigation 
continues to identify more effective therapeutic targets as 
well as optimal timing and methods for intervention. 
Nevertheless, ICH neuroprotection is an emerging field 
and there remain a number of challenges as it progresses 
towards becoming an effective treatment option in clini-
cal settings.

  Firstly, the development of neuroprotective strategies 
has been limited by incomplete understanding of ICH 
pathophysiology and mechanisms of secondary cerebral 
injuries. Although studies have implicated alterations in 
various molecular pathways and genetic expression pat-
terns, the exact mechanisms of ICH-induced injuries 
and their association with outcome are incompletely un-
derstood  [31, 115] . For instance, the clinical significance 
of cerebral edema remains controversial. Rodent studies 
have suggested an association between reduced edema 
volume and improved functional outcome  [55, 116, 117] . 
However, significant functional recovery can be achieved 
in the absence of edema reduction, suggesting that abso-
lute edema volume does not independently predict out-
come  [118] . Furthermore, relative edema volume (edema 
volume/hematoma volume) has been shown to indepen-
dently predict improved functional recovery following 
hyperacute spontaneous ICH (within 3 h after onset) 
without intraventricular extension; this suggests that hy-
peracute (within 24 h after onset) and delayed edemas 
are distinct entities associated with different pathophysiol-
ogy and outcome  [17] . The current controversy under-
scores the need to better understand the mechanisms of 
edema formation as a dynamic process that is signifi-
cantly affected by many factors, such as the etiology of 
ICH and time since onset  [17, 119, 120] . Efforts should be 



 Hwang et al. Cerebrovasc Dis 2011;31:211–222218

made to elucidate the relationship between hyperacute 
and delayed edemas and the timing of edema volume 
measurement should be carefully noted when interpret-
ing experimental results. In addition, it should be recog-
nized that edema volume may be insufficient as a sole 
outcome measure to demonstrate potential clinical effi-
cacy and it is becoming increasingly critical for neuro-
protectants to show evidence for enhanced functional/
neurological outcome in addition to other outcome mea-
sures. Deferoxamine, celecoxib/memantine, ORF4-PE 
and XG-102 are such agents that are promising candi-
dates for further investigation and initial efforts towards 
clinical translation.

  Other aspects of ICH pathophysiology that require 
further investigation include the contribution of ische-
mia to edema formation and interactions among cerebral 
edema, perihematomal hypometabolic-hypoperfusion 
and cell death  [38] . The mechanisms behind neuronal in-
juries leading to worse neurological outcome also need to 
be further defined. Timing of key molecular events and 
temporal alterations in their expression are still being 
worked out as well. Continued advances in the under-
standing of ICH will improve the therapeutic efficacies of 
neuroprotectants through more specific targeting and 
modulation of pathways of interest, coupled with optimal 
timing and degree of intervention.

  Secondly, ICH-induced brain injuries result from 
complex interconnected molecular pathways, which fur-
thers the need for neuroprotective strategies capable of 
attenuating multiple targets. This approach will better 
account for the heterogeneity of ICH pathophysiology 
and maximize the therapeutic benefits. Neuroprotec-
tants such as XG-102 and sulforaphane are examples of 
agents that are capable of affecting different molecular 
pathologic pathways. Combination of neuroprotective 
agents may also allow synergistic effects on outcome, as 
demonstrated by the dual administration of celecoxib 
and memantine. Agents that confer protection on mul-
tiple cell types would also be useful as mounting evidence 
indicates that neuronal recovery and survival after ICH 
are strongly dependent on the status of surrounding non-
neuronal cells  [33] . Of note, many pathologic molecular 
pathways triggered after ICH may have beneficial roles at 
different time points during the clinical course. Exam-
ples include the hemostatic and neuroprotective proper-
ties of thrombin  [37, 121]  and the involvement of comple-
ment in hematoma absorption, cellular debris clearance 
and postictal neurogenesis  [5, 35] . Therefore, multitarget-
ing agents and combination therapies should allow care-
ful modulation of individual targets.

  Thirdly, a majority of ICH neuroprotectants currently 
under investigation remain experimental and have yet to 
be tested in a clinical setting  [4, 6] . Furthermore, few clin-
ical trials have been attempted to date, and none have been 
appropriately powered to detect significant clinical ben-
efit. The bench-to-bedside translation of ICH neuropro-
tective strategies has been challenging largely due to the 
inherent differences between experimental and clinical 
ICHs  [122] . Although animal models are highly useful for 
characterizing ICH-associated injuries and underlying 
mechanisms, they are ultimately insufficient and/or inac-
curate representations of human ICH  [4] . The rodent in-
trastriatal autologous blood injection model  [123]  is wide-
ly used but has been limited by its inability to reproduce 
spontaneous or ongoing bleeding  [122] . The bacterial col-
lagenase injection model  [124] , which is another com-
monly used method, has been associated with heightened 
collagenase-induced inflammatory response and neuro-
toxicity  [122] . The 2 models may also differ with regard to 
their reproducibility, location and degree of structural in-
jury, characteristics of neurological impairment and re-
covery, and optimal neurological assessment method 
 [122] . Moreover, both methods involve anesthesia and in-
vasive anatomical access, which may alter the molecular 
environment and treatment response in an uncontrolled 
manner  [4, 8] . In the absence of a model that perfectly 
mimics human ICH, rigorous, comprehensive and long-
term assessment of outcome should proceed with the best 
available ICH models. Furthermore, cautious interpreta-
tion of the existing data, thorough understanding of each 
model’s strengths and limitations, and insight into the 
precise differences between experimental and human 
ICHs will be critical to successful clinical trials.

  A number of well-designed trials have recently begun, 
including the Dose Finding and Safety Study of Deferox-
amine in Patients with Brain Hemorrhage, Administra-
tion of Celecoxib for Treatment of Intracerebral Hemor-
rhage, Safety of Pioglitazone for Hematoma Resolution in 
Intracerebral Hemorrhage and Intravenous Taurourso-
deoxycholic Acid trials. Many of these trials have incor-
porated lessons learned from the previous neuroprotec-
tion trials in ischemic stroke and represent an important 
progress in ICH neuroprotection research. Ongoing ef-
forts towards meticulous consideration of trial design, 
outcome measures, optimal timing of intervention and 
heterogeneity among study subjects will significantly ex-
pedite the much-anticipated clinical translation of ICH 
neuroprotection.
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  Conclusion 

 As neuroprotective strategies move from bench to 
bedside, they hold the potential to become an important 
treatment option for ICH. Increasing insight into the 
pathophysiology of ICH-induced cerebral injuries will 
continue to aid the development and refinement of neu-
roprotective strategies. Furthermore, improved under-

standing and application of experimental models will en-
hance the clinical translation of results and contribute
to successful randomized clinical trials. In the future, 
neuroprotection will likely contribute to multimodality 
managements, along with intensive care and surgical 
treatments, to optimize the extent of clot removal, in-
crease neuronal survival and improve clinical outcomes 
after ICH.
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