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Abstract

Background: A large number of insect chemosensory genes from different gene subfamilies have been identified and
annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression
patterns in chemosensory organs could provide important information.

Methodology/Principal Findings: We identified 92 putative chemosensory genes by analysing the transcriptome of the
antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this
species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for
sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The
transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-
PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene
subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a
clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR
transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP
transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone
gland and very few are found in the heads.

Conclusion: Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of
them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative
chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide
further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.
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Introduction signals to electric signals. In addition, some other chemosensory

L . . . . ) ‘ proteins have also been proposed to play a role in insect olfaction.
Olfaction plays an important role in various crucial behaviors of Two important ones are sensory neuron membrane proteins

insects, such as locating food resources, plant and animal hosts and (SNMPs) [9,10] and ionotropic receptors (IRs) [1,11,12].
finding sexual partners. The periphery process of insect olfaction is ’

generally thought to involve two main steps. Firstly, external
chemical volatiles enter into the chemosensilla of insect antennae
or other sensory tissues, and then are captured by odorant binding
proteins (OBPs) [1,2,3] or chemosensory proteins (CSPs) [4,5]

Identification and expression profiling of chemosensory genes
are of primary importance for exploring their functions and the
mechanisms of insect olfaction. In the early studies, the main
method used to identify insect chemosensory genes was direct
cloning [13,14,15,16,17,18,19,20,21,22,23], which normally in-
volves designing degenerate primers, amplifying the fragment and

which are highly abundant in the lymph of chemosensilla.
Secondly, the OBP or CSP bound chemical volatiles are obtaining the full length gene sequences by Rapid Amplification of

transported to the olfactory receptor proteins (ORs) [6,7,8] located cDNA Ends (RACE). This method is very time-consuming and
on dendrite membranes, triggering the transduction of chemical
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Figure 1. Distribution of unigene size in the S. inferens transcriptome assembly.

doi:10.1371/journal.pone.0069715.9001

ineflicient, identifying only one gene each time. Later, the genome
sequencing and annotation projects have allowed to find large-
scale new chemosensory genes in B. mor: [24,25] and several other
insect species [25,26,27], including first identification of insect
ORs from Drosophila melanogaster [28]. Recently, with development
of the next generation sequencing techniques, large scale
chemosensory genes have also been identified from insects whose
genomes have not been sequenced, as reported in Spodoptera
lttoralis [29,30], Manduca sexta [31], Cydia pomonella [32] and
Helicoverpa armigera [33].

Although great numbers of chemosensory genes have been
molecularly identified from insects of almost all insect orders, their
exact functions are mostly unknown, as these genes were identified
mainly based on the sequence similarity to reported genes. The

1.39%
1.43%
3.06%

3.76%

Figure 2. Percentage of homologous hits of the S. inferens transcripts to other insect species. The S. inferens transcripts were searched by
BLASTx against the non-redundancy protein database with a cutoff E-value 10>, Species which have more than 1% matching hits to the S. inferens

transcripts are shown.
doi:10.1371/journal.pone.0069715.g002
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expression profiles, particularly the tissue distribution, could
provide important information on the functions of the chemosen-
sory genes [24,34,35,36,37,38,39,40,41,42].

The purple stem borer (also called pink stem borer), Sesamia
inferens (Lepidoptera: Noctuidae) is a polyphagous insect pest found
in many Asian countries [43]. It damages a variety of crops
including rice, corn, sugarcane, and has become one of the major
rice pests in China since 1990s [44,45]. In this study, we
conducted a transcriptome analysis of adult antennae and female
sex pheromone glands of S. inferens, and identified 92 putative
chemosensory transcripts comprising of 24 OBPs, 24 CSPs, 2
SNMPs, 39 ORs and 3 IRs. We further conducted a comprehensive
examination on the expression profile of these transcripts
regarding to different tissues and life stages by Reverse
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Transcription-PCR (RT-PCR) for all transcripts and by Quanti-
tative Real Time RT-PCR (qRT-PCR) for selected 16 genes. The
results clearly depicted different expression profiles among
different chemosensory genes families between chemosensory

and non-chemosensory tissues, as well as between adults and

larvae developmental stages.

Results
Transcriptome Sequencing and Sequence Assembly

Differential Expression of Chemosensory Genes

gene. Of the 56,210 unigenes, those with a sequence length more
than 500 bp accounted for 20.41% of the transcriptome assembly
(Figure 1). All the unigenes were referred to as transcripts here
after and given a unique unigene id.
Homology Analysis and Gene Ontology (GO) Annotation
Among 56,210 transcripts, 21,796 were matched by the Blastx
homology search to the entries in NCBI non-redundant (nr)
protein database with a cut-oft E-value of 107°. The highest match

percentage (16.20%) is to Tribolium castaneum sequences followed by
the sequences of Bombyx mori (13.21%), Camponotus floridanus

(5.96%), Harpegnathos saltator (5.88%) and Anopheles gambiae str.

We carried out a next generation sequencing project on a
cDNA library constructed from the mixture sample of antennae
and female sex pheromone glands of S. inferens using Illuminna

HiSeq™ 2000 platform. The transcriptome sequencing provided
about 54 million reads (4.86 Gb), which were assembled into
175,059 contigs (=75 bp) with a mean length of 195 bp and the

N50 length of 234 bp. These contigs were further assembled into
126,081 scaffolds with a mean of 243 bp and the N50 length of

308 bp. After clustering and redundancy filtering, we finally
acquired 56,210 unigenes (=150 bp) with a mean length of 394 bp

PEST (5.41%) (Figure 2).
The Gene Ontology (GO) annotation was used to classify the

transcripts into the functional groups according to the GO

category. Of 56,210 transcripts, 7,195 ones (12.8%) could be
annotated based on sequence homology. As one transcript could

align to more than one biological processes, 7,195 transcripts
resulted in 18,224 alignments in biological process category,
12119 in cellular component category and 7,509 in molecular
function category. In these categories, there were a high
percentage of transcripts in the subcategories such as cellular
process (49.99%), metabolic process (43.25%), cell (54.54%), cell

and the N50 length of 460 bp. We called these 56,210 ones
unigenses according to some recently published papers [33,46],
although each of them may not necessarily represents a unique
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Figure 3. Gene ontology (GO) classification of the S. inferens transcripts with Blast2GO program.

doi:10.1371/journal.pone.0069715.9g003
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part (49.25%), binding (45.83%) and catalytic activity (41.97%)
(Figure 3). In addition, some chemosensory transcripts were highly
abundant in the transcriptome dataset, with 14 of 20 most
abundant transcripts encoding for OBPs and CSPs (Figure 4).

Identification of Putative Chemosensory Genes

By homology analysis, we identified a total of 92 transcripts that
belong to gene families putatively involved in insect chemopercep-
tion, including OBPs (24 transcripts), CSPs (24 transcripts),
SNMPs (2 transcripts), ORs (39 transcripts) and IRs (3 transcripts)
(Table 1 and Table 2). Of the 92 transcripts, 5 transcripts were the
same as sequences deposited in the GenBank: 3 PBPs (GenBank
accession number: JF927621.1, JN984058.1, JF927622.1), one
GOBP (EU825760.1) and one OR (EU825763.1), while the other
87 transcripts found in the current study were new in S. wnferens.
Compared with insects in which the putative chemosensory genes
had been identified by analyzing either genome or transcriptome,
the number of the putative chemosensory genes identified by the
current study in S. inferens (total: 92; OBP : CSP: SNMP : OR:
IR =24: 24 : 2: 39 : 3) was similar to the numbers found in M. sexta
(total: 94; OBP : CSP : SNMP: OR : IR =18: 21 : 2: 47 : 6) and H.
armigera (total: 99; OBP : CSP : SNMP : OR : IR =26: 12 : 2: 47 :
12), but less than that of S. lttoralis (total: 127; OBP : CSP : SNMP
:OR : IR =36: 21 : 2: 47 : 17) and B. mori (total: 147; OBP: CSP:
SNMP: OR: IR =44:18: 2:72: 11) (Figure 5).

Of the 92 chemosensory transcripts, we carried out the
validation experiments for the transcripts encoding for 11 OBPs,
3 CGSPs, and 6 ORs by RT-PCR and confirmed their identity by
sequencing the PCR products. The sequences obtained from
positive clones were of 299% identical at the nucleic acid level

Differential Expression of Chemosensory Genes

with the corresponding sequences from the transcriptome,
indicating that the assembly of the transcripts was adequate.

Among the 87 new putative chemosensory genes, 4 OBPs,
12 CSPs and 3 ORs contained complete open reading frame
(ORF); 9 CSPs and one OR (OR2) were of full-length (Table 1
and Table 2). These genes were obtained by transcriptome
analysis and RACE.

Expression Profile of the Putative Chemosensory
Transcripts

To investigate the general expression profiles, RT-PCR
measurements for all 92 transcripts were conducted (Table 3,
Figure S1 and Table S2), and 16 selected transcripts were further
quantified by qRT-PCR (Figure 6) to validate the RT-PCR
results. As a result, the overall relative expression profiles of these
transcripts in different tissues and stages obtained by the two
methods were similar. In addition, there was a clear agreement
between transcript abundance estimated by transcritptome anal-
ysis and the expression level measured by RT-PCR. Fourteen of
top 20 highly abundant transcripts (Unigene586, Unigene2823,
Unigene2855, Unigene2820, Unigene5096, Unigene5080, Unigened87,
Unigene5089, Unigene2821, Unigene2896, Unigene5091, Unigene5090,
Unigene591 and Unigene5115) (Figure 4) were highly expressed in
the antennae (GOBP2, CSP6, CSP7, PBP1, OBP16, GOBPI, ABPX,
PBP2, PBP3, OBP5, GSP17, CSP16, CSP21 and OBP10) (Table 3).
This suggested that the RT-PCR could be used as an effective
mean to investigate the general expression profiles and the relative
levels of the putative chemosensory genes among different tissues
and developmental stages.

The investigation showed that almost all the transcripts were
expressed in the antennae, 40-50% expressed in other tested
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Figure 4. Top 50 most abundant transcripts in the S. inferens transcriptome dataset. Odorant binding proteins (PBPs, GOBPs, OBPs and
ABP) are indicated by red, chemosensory proteins (CSPs and SAPs) are indicated by green, and the other genes are indicated by blue. The genes
expression abundance is indicated as the Reads Per Kilobase per Million mapped reads (RPKM) values. The transcript annotation by homologous
comparisons with Blastx is indicated in Table 1 for chemosensory transcripts and Table S1 for the non-chemosensory transcripts.

doi:10.1371/journal.pone.0069715.9g004
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1.00E-10
3.00E-36

Bombyx mori]

NP_001103476.1

NP_001155300.1

odorant receptor OR24

NO
NO
NO

336
469

KF008008
KC960483

11050

2802

OR37

Bombyx mori]

ABK27851.1

olfactory receptor 35

OR38

7.00E-49

Bombyx mori]

odorant receptor 38

450

11752 KC960484

OR39

lonotropic Receptor (IR)

IR93a

39
95

2.00E-23

[Drosophila melanogaster]

NP_732567.1

ionotropic receptor 93a, isoform B

NO
NO

384
168

KC907739

11522
14944

2.00E-26

[Spodoptera littoralis]

putative chemosensory ionotropic receptor ADR64683.1

IR75d

IR75d

84

[Spodoptera littoralis]

putative chemosensory ionotropic receptor ADR64687.1

IR76b

Yes

1629

KC907740

1261

IR76b

Note: Genes without accession number represent that the gene fragments obtained in this study were less than 200 bp in length. Gene fragments less than 200 bp are unable to be deposited in the GenBank, and thus no

accession numbers were provided for these genes.

doi:10.1371/journal.pone.0069715.t002
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tissues and only <15% expressed in heads. In addition, the
numbers of detected transcripts were similar in male and female
moth antennae (91 and 90, respectively), showing no sex bias in
chemosensory gene expression (Figure 7A). Thirty nine chemo-
sensory transcripts were detected in female pheromone glands and
larvae (Figure 7B).

OBP Transcript Expression

The tissue expression profiles are shown in Table 3 and Figure 6.
Interestingly, OBPI was the only antenna-specific OBP transcript.
The 3 PBP transcripts and 2 GOBP transcripts displayed highly
antenna biased expression, and other antenna highly expressed
transcripts included OBPS, OBP6, OBP8, OBPI10, OBP15, OBPI6,
OBP17 and ABPX. The transcripts OBP4 and OBPI8 had a similar
expression level between antennae and non-antenna  tissues.
OBPI14 was the only OBP transcripts found in all tissues.

Interestingly, the transcripts of PBPI, PBP3 and others (OBP2,
OBP3, OBP4, OBP6, OBP7, OBPY, OBP12, OBPI3, and OBPI14)
were also detected in the larvae. Three PBP transcripts were not
detected in the pheromone glands, while GOBPI, OBP2, OBP4,
OBP9, OBP10, OBPI1, OBP13 and OBPI4 were detected in the
pheromone glands (Table 3, Figure 6 and Figure S1).

CSP Transcript Expression

Compared to OBP transcripts, CSP transcripts were highly
expressed in non-olfactory tissues as well as olfactory tissues.
Among the 24 newly identified CSP transcripts, 21 displayed a
wide range of tissue distribution, and 7 CGSP transcripts (GSP2,
JSP5-7, CGSP16, CSP20 and GSP23) were expressed in all 14 tissues.
Most of CSP transcripts were highly expressed in larvae and in
pheromone glands (Table 3, Figure 6 and Figure S1).

SNMP Transcript Expression

Two SNMPs homologs were also obtained from S. nferens
transcriptome. In comparison, SNMPI encoding a protein with
78% identity to SNMP1 of B. mori (GenBank accession number:
NP_001037186) was highly expressed in the antennae, whilst
SNMP2 encoding a protein with 83% identity to SNMP2 of
Heliothis virescens (GenBank accession number: B2RFN2.1) was also
expressed in remarkable levels in other tissues such as legs and
wings (Table 3, Figure 6 and Figure S1).

OR Transcript Expression

Of the 39 OR transcripts identified in S. wferens, 34 were
expressed only in antennae of both sexes at lower level, relative to
the expression level of the OBP and CSP transcripts. ORI6 was
female-specific while OR7 and OR29 were male-specific. In
addition, two ORs, OR23 and OR26 were expressed at much
higher levels in female antennae than in male antennae, while
OR27 and OR21 were more highly expressed in male antennae
than in female antennae. Only 5 OR transcripts, (OR6, OR25, and
OR32-54) were expressed broadly in several tissues, including the
female sex pheromone glands and the larvae (Table 3, Figure 6
and Figure S1).

IR Transcript Expression

All 3 IR transcripts of S. inferens were expressed at a high level in
the antennae, and also at low levels in other tissues. In comparison,
IR76b was more specifically detected in the antennae than the
other two IRs (Table 3, Figure 6 and Figure S1).
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Figure 5. The number of chemosensory genes in different insect species, obtained from genome (*) or antenna transcriptome (#).
The digits by the histogram bars represent number of chemosensory genes in different subfamilies (OBP:CSP:SNMP:OR:IR). The data are obtained
from the current study for S. inferens and from the references [6,10,70,71] for Drosophila melanogaster, [6,10,70,71] for Anopheles gambiae,
[10,24,38,65,71,72] for Bombyx mori, [6,10,70,71] for Tribolium castaneum and Apis mellifera, [31] for Manduca sexta, [29,30] for Spodoptera littoralis and

[33] for Helicoverpa armigera.
doi:10.1371/journal.pone.0069715.g005

Phylogenetic Analyses

A phylogenetic tree of OBPs was constructed using protein
sequences of the OBPs from S. wnferens, M. sexta, S. littoralis and B.
mort (Figure 8). It was shown that all PBP and GOBP sequences
were clustered into distinct clades from other OBPs. More
interestingly, the identified SinOBP sequences were clustered in
each subclass (PBP1, PBP2, PBP3, GOBP1 and GOBP2) with at
least one lepidopteran orthologue (Figure 8). Among the 24
putative CSPs, 20 sequences were clustered with at least one
lepidopteran orthologous gene (Figure 9).

In the OR phylogenetic tree, SinfOR2 was clustered with other
lepidopteran OR2 (ORco) sequences, and three SinfORs (OR21,
OR27 and ORZ29) were clustered in the lepidopteran pheromone
receptor (PR) clade (Figure 10). The majority of the identified
SinfORs had at least one lepidopteran orthologue, with only two
(SinfORI and SinfOR19) having no counterpart.

Discussion

In the S. inferens transcriptome data of this study, only 38.8% of
56,210 transcripts have homologous matches to the entries of
GenBank with the cutoff value of 107°, and only 12.8% can be
annotated to one or more GO term by the GO analyses, which is
similar to M. sexta [31] and S. lttoralis [30], indicating that a large
number of S. nferens transcripts are either non-coding or
homologous with genes that do not have any GO term. In
addition, 87 chemosensory transcripts are first reported in S.
wnferens. Further studies using this transcriptome data could provide
insights into insect physiology and pest control strategy [47].

The total number (92) of chemosensory transcripts identified in
the current study is similar with those reported in M. sexta (94) and
H. armigera (99), but much lower than those of 5 species whose
genome has been sequenced, D. melanogaster, A. gambiae, B. mori, T.
castaneum and A. mellifera. The chemosensory gene numbers in B.
mori (147) and S. litorallis (127) is 1.6 and 1.4 times, respectively of
that in S. mferens (Figure 5), suggesting there is a high chance to
identify more S. inferens chemosensory genes. On the other hand,
CSP transcripts found in S. wferens (24) are more than the CSP
genes identified in B. mori genome (18) and in D. melanogaster
genome (4). Therefore, it is more likely that we have identified all
the CSPs, while missed out some larvae-biased OBPs and lower
expressed ORs. These also imply the plant host adaptation and

PLOS ONE | www.plosone.org

species-specific sex pheromone perception of lepidopteran insects
during evolution.

The phylogenetic analysis of SinfOBPs, SinfCSPs and SinfORs
suggest that the identified chemosensory transcripts in S. wnferens
covered main repertoires of the chemosensory genes of the insect.
It is worth noting that two ORs (SinfORI and SinfOR19) had no
counterpart in other species, indicating that the two ORs may
represent new types of OR. However, as SinfORI was a fragment
with only 187 amino acids, it is possible that counterparts might be
found, when the full length sequence is available and used in the
analysis.

The tissue distribution profiles of all 92 S. inferens chemosensory
genes were investigated by RT-PCR, which were confirmed by an
additional qRT-PCR measurementusing16 selected genes. Among
three subfamilies (CSPs, OBPs and ORs) of the chemosensory
gene, GSPs are highly expressed and most widely distributed in
chemosensory tissues as well as in non-chemosensory tissues,
suggesting CSPs in insects may also involve in other functions
apart from chemosensation [48,49,50], such as female survival and
reproduction in Spodoptera exigua [51], limb regeneration in
Periplaneta americana [52] and embryo development in Apes mellifera
[53]. In our present study, OBPs are usually highly expressed in the
antennae relative to other chemosensory tissues (legs, wings,
female sex pheromone glands). However, about half the OBP
transcripts are also weakly expressed in non-chemosensory tissues
(thorax and abdomen) (Figure 7A), indicating that these OBPs
may also have other functions. On the other hand, OBP
transcripts that are exclusively expressed in antennae and legs
(such as PBPs, GOBPs, OBP8, OBP15-17 and ABPX) may play
important role in chemosensory. Interestingly, both PBPI and
PBP3 were detected with weak signals in larvae, similar to that
reported in S. litoralis larvae [54]. Poivet et al (2012) suggested that
the S. lttoralis PBPs in larvae were used to perceive the sex
pheromone adsorbed on or deposited on the eggs when female
moths ovipositing on the leaves of the host plants, and this
perception thus could promote the food search. The larva-
expressed PBPs may play similar roles in S. inferens.

In contrast to CSPs and OBPs, OR transcripts are highly
restricted in the antennae and expressed at lower levels. This
olfactory tissue specific expression profile is well consistent with the
specific functional role that OR gene family plays in the moth
olfaction [7,55,56,57]. Our study also revealed some OR
transcripts (OR25, OR33 and OR34) have a very high expression
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Table 3. Expression of putative chemosensory genes in larvae and different adult tissues of S. inferens.

Gene Tissue

La PG AQ AC Ho Ho TQ TO Abo Abo Lo Lo Wwo wo

Pheromone Binding Protein (PBP)

PBP1 * FRK X * * * * *
PBP2 FRK X * * * * *% *x * *
PBP3 * FRK XXX * * * * * * *

General odorant binding protein (GOBP)

GOBP1 * FR% XXX * * * * * * * *

GOBP2 i % * * * *
Oorant binding protein (OBP)

OBP1? *R% *%

OBPZa *% *% * * ** * XHKX *HKX *% *% *¥ *%
OBP3 * XHKX XK * * * *AKR * *

OBP4 *HKX *% ** *% ** *% ** *% *% *% ** *%
OBP5 *k% *XE * * * *% *

OBP6 * *XX *RR * *

OBP7a *% *¥ *% *

OBPS XXX XK * *

OBPg * * * * * * * *
OBP‘I Oa * XHX XK * * * * *

OBP‘I ‘I a * XHKX XK *% * XK *% ** **
OBP‘I 2 * ** * *% *

OBP‘I 3 *% *% XK ** * * * *% ** *
OBP’I 4 *EX *% XHX *HX * * XHR *HX ** *% *HX XXX ** *%
OBP15? *x% *% *

OBP1 63 XXX HXKR * *

OBP‘I 8 * XK XXX XK XHX XK XXX XXX XXX XXX XXX XXX
ABPX? *RK XXX * *

Chemosensory Protein (CSP)

CSP1 *% *R% ik *Rk sk *R% *% *¥ *Rk *R¥ *k *R¥
CSP2 *% *% *% *% * * *x *% *% *% *xk FRX *Rk FRE
CSP3 *% *% * *Rk *% *% *RK *% *% *% FRX *x FRR
CSP4 *RR *RK *xx *Rk *% *% * *% *xk FRX *Rk FRE
CSP5 *H% *% *x% *¥% * * *% *% * *% *¥K *H¥ *xk *R¥
CSP6 *R% *R% *x% *¥K * * *x% *R¥ *x% *R¥ *HK *R% *¥% *R¥
CSP7 * *R¥ *x% *¥k * * *x% *H% *x% *R¥ *¥K *R% *xk *R¥
csps? * * sk *Rk *% *% * *¥ *Rk *R¥ *Rk *R¥
cspo? * * * *% *% *%
CSP10 *¥ * ik *Rk sk *R% * *¥ *% *R¥ *Rk *R¥
CSP11 a *% * *% * * *K* *%

CSP12 * * *RK * *% * *Rk FRX *xx FRR
CSP1 33 HRH HRH *K* HRK *% *% *% *% *RK HRH *KX* HRK
cspP142 *% *% *% *% *% *% *% *¥K *R¥ *% *%
CSP15 *R¥ *R¥ *x% *¥K *x% *R¥ *x% *R¥ *¥K *H¥ *xk *R¥
CSP16 *R% *R¥ *x% *Hk * * *x% *R% *x% *R¥ *¥K *R¥ *¥% *R¥
CSP17 *% *% sk *Rk ek *R¥ *% * *% *R¥ *k FR¥
CSP18 *R¥ *R% sk *Rk sk *% *% *¥ *Rk *R¥ *Rk *R¥
csP19? * sk *Rk *% * * * *% *¥ *% *#%
CSP20 FRX *% *k *Rk * * * *RK *% * *Rk FRX *Rk FRR
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Table 3. Cont.
Gene Tissue
La PG AQ AC Ho Ho TQ TOo Abo Abo Lo Lo Wwo wo
CSPZ‘I a * *X¥ *XX * * * *%* *% * *
CSPZZa *NK ** *X¥ *RKR *X¥ *RKR *X¥ *HK *RKN *HK XX *HX
CSP23 *NK *AKR *¥¥ *RKN * * *X¥ *RKR *¥¥ *AK *RKR *NR *RKR *AX
CSP24 *NK * *¥¥ *RK *% ** *% ** *RK R *XK HHK
Sensory Neuron Membrane Protein (SNMP)
Odorant Receptor (OR)
OR‘I *¥¥ KRR
OR2(OR83b)? b rrE
OR3? * *
OR4a *% *%
ORSa KXK *%
OR63 ** *% *%
OR7 FrE
OR9 *¥¥ XXX
OR10 ** **
OR‘I 'I *X¥ *XX
OR‘I 2 *X¥ *RKN
OR'I 3 *X¥ *RKN
OR14 ** **
OR-I 5 *XX *RR
OR16° b
OR17 - e
OR18 * *
OR19% xx P
ORZO *X¥ *%
OR21° * FrE
OR22° * *
OR23 FrE *
OR24 . P’
ORZS * *% XXX XXX * *% *% FH¥ *% *% *% ¥ *%
OR26a *X¥ *%
OR27% %% P
OR28 * *
OR29 Frx
OR3O *¥¥ *RKR
OR31a XXK HXK
OR32 * *% P P *% * *
OR33a *% * KKK HXK * * * *
OR34 % * . *x% * * *% * *% * * *
OR35 ** **
OR36% * **
OR37? ** *
OR38a XXK *%
OR39 * *% ** * * * * *
lonotropic Receptor (IR)
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Gene Tissue

La PG AQ AC Ho Ho TQ To AbQ Abo Lo Lo wo wo
IR93a * ® *x *x * * *
IR75d ® *x *x * *
IR76b *x *x *x

the gene was obtained by two biological replications.
doi:10.1371/journal.pone.0069715.t003

level in non-chemosensory tissues (thoraxes and abdomens). It is
interesting that two SNMP transcripts displayed very different
expression profiles, with SNMP1 being highly antennal biased,
while SNMP2 was ubiquitously expressed in most tested tissues and
larvae. This may suggest that SNMP1 is important in chemosen-
sory, while SNMP2 have other functions in addition to (if any)
chemosensation.

In conclusion, we identified members within each subfamily of
chemosensory gene family by analysing the trancriptomic
sequencing data of antennae and female sex pheromone glands

o SinfGOBP1 — SinfGOBP2
2 40 $
k1 3 60
E E 40
3 10 2
o o
0 0
VQOY'VQ‘Q&& VV@$ quv-v.ée«« R \,‘ QN
08 0.03
SinfCSP8, SinfCSP9
3 3
306 3
< < 0.02-
z =
% 04 %
° °
2 2 0014
5 02 5
] o}
3 o
0.0 0.00-
\,QOYV-Qub&kv V\,,;\{\ \,Qevv‘bxx««o
0. 25
= SinfSNMP1 - SinfSNMP2
$ 2 20
3 06 3
s S s
% 04 &
° @ 10
& £
3 02 3 05
'3 '3
0.0 0.0
\,Qavvee.««o Vv QD quvve.a««o V\,{\q\
0.04 0.
_ SinfOR23 — SinfOR29
] 3
3 003 3 03
< <
z z
% 0.024 Z 02
2 2
5 0.01 B 041
o [
'3 o
0. 0.0 M e
VQ(?Y‘VQ‘Q\&&‘OV’?VVQ\Q\ LT R «7 ©.9° Vv

The relative expression levels of genes in the same tissue were calculated by the ratio of the RT-PCR bands intensity between target gene and internal reference gene
SinfGAPDH [73](Figure S1). *, **and *** indicate the intensity ratio of 0.20-0.59, 0.60-0.99, 1.00-1.39, respectively; the blank indicates no signal. The band intensity was
calculated by Bio-Rad-Quantity one 4.6.2 software). La, larvae (third instar); Adult tissues include PG, pheromone glands; A, antennae; H, heads (without antennae); T,
thoraxes; Ab, abdomens (female without PG); L, legs and W, wings. Q: female, O": male. Superscript “a” followed the gene name represents that the expression level of

from . inferens. This provides a rich resource for investigation and
clucidation of the chemosensation in S. wferens. As the first step
towards understanding their functions, we conducted a compre-
hensive and comparative examination of the chemosensory gene
expression patterns, and demonstrated a wide distribution of these
chemosensory proteins. In particular, the expression of SNMPs,
IRs and some ORs in non-chemosensory tissues indicate new
insights on their roles in insect physiology.
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Figure 6. Relative expression levels of 16 putative chemosensory transcripts using qRT-PCR. La, larvae whole body; PG, female
pheromone glands; A, antennae; H, heads; T, thoraxes; Ab, abdomens (female without PG); L, legs; W, wings; @, female, &, male.

doi:10.1371/journal.pone.0069715.g006
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Figure 7. Tissue distribution of the 92 S. inferens chemosensory transcripts. A: The proportion of chemosensory genes expressed in larvae,
female pheromone gland and other tissues of male and female adults. B: The number of chemosensory gene in each subfamily expressed in larvae,
female pheromone glands, and female and male antennae. The digits by the histogram represent number of genes in each subfamily

(OBP:CSP:SNMP:OR:IR).
doi:10.1371/journal.pone.0069715.g007

Materials and Methods

Insects Rearing and Collection

The purple stem borer S. inferens was originally collected from a
rice field in the Jiangsu Provincial Academy of Agricultural
Sciences, Nanjing, China. To collect the insect naturally occurred
in the above mentioned field, ethical approval was not required,
because the purple stem borer is a common insect pest in South
China including Nanjing city, and the insects in the above
mentioned field was naturally occurred without any special
property. The collected larvae were reared on fresh wild rice
stem in glass bottles (d = 7cm, h = 11cm) until pupation and sexed
as pupae [58]. Rearing conditions were 28*+1°C, 70-80% RH
and a 14 h light:10 h dark photoperiod. Adults were provided
with a cotton swab dipped in 10% honey solution and renewed
daily. Antennae of both sexes and female pheromone glands of 1—
5 day-old adults were collected for transcriptome sequencing.
Antennae from 3-day-old adults of both sexes were collected for
PCR validation of the chemosensory gene sequences obtained
from transcriptomic analysis. Antennae, heads (without antennae),
thoraxes, abdomens (female without pheromone glands), legs and
wings from 3-day-old virginal male and female, female sex
pheromone glands of same adult age, and larvae of third instar
were dissected and collected in two replications for detection of the
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tissue expression by RT-PCR. All samples were collected during
the first hour of the photoperiod and stored at -70°C until use.

cDNA Library Construction and lllumina Sequencing

Total RNA was extracted using TRIzol reagent (Invitrogen),
c¢DNA library construction and Illumina sequencing of the sample
were performed at Beijing Genomics Institute (BGI)-Shenzhen,
Shenzhen, China [59]. The mRNA was purified from 20 ug of
total RNA (a mixture of RNAs from antennae and pheromone
glands at 5:1 ratio) using oligo (dT) magnetic beads and
fragmented into short sequences in the presence of divalent
cations at 94°C for 5 min. Then, the first-strand cDNA was
generated using random hexamer-primed reverse transcription,
followed by synthesis of the second-strand ¢cDNA using RNaseH
and DNA polymerase 1. After the end repair and ligation of
adaptors, the products were amplified by PCR and purified using
the QIAquick PCR Purification Kit to create a cDNA library, and
sequenced on the HisSeqTM 2000 platform.

De novo Assembly of Short Reads and Gene Annotation

Transcriptome de novo assembly is carried out with short reads
assembling program SOAPdenovo [60]. SOAPdenovo first
combines reads with a certain length of overlap, to form longer
fragments without N (N represent unknown sequence) to produce
contigs. The reads are then mapped back to contigs, by using
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Figure 8. Phylogenetic tree of putative OBPs from S. inferens, M. sexta, S. littoralis and B. mori. PBP/GOBP clade is marked in red. The S.
inferens translated unigenes are shown in blue. Accession numbers are given in Table S3. The tree was constructed with MEGA5.0, using the
neighbour-joining method. Values indicated at the nodes are bootstrap values based on 1000 replicates, and the bootstrap values <50% are not
shown. Sinf, Sesamia inferens; Msex, Manduca sexta; Slit, Spodoptera littoralis; Bmor, Bombyx mori.

doi:10.1371/journal.pone.0069715.9g008

paired-end reads that enable identification of contigs from the
same transcript and the distances between these contigs. Next,
SOAPdenovo connects the contigs based on the paired-end reads
for gap filling between each two contigs to build scaffold sequences
with the least Ns. Such sequences are defined as unigenes. In this
study, all the clean reads were submitted and available from the
NCBI/SRA data base (SRA experiment accession number:
SRX286371, BioProject accession number: PRJNA205103).

The Unigenes larger than 150 bp were first aligned by BIASTX
to protein databases, including Nr, Swiss-Prot, KEGG and COG
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(e-value<<10™°), retrieving proteins with the highest sequence
similarity with the given unigenes along with their protein
functional annotations. Then, we used Blast2GO program [61]
to get GO annotation of the unigenes, and got GO functional
classification by using WEGO software [62].

Expression Abundance Analysis of the Unigenes

The expression abundance of these unigenes were calculated by
the RPKM (Reads Per Kilobase per Million mapped reads)
method [63], using the formula: RPKM

July 2013 | Volume 8 | Issue 7 | 69715



Z
Qe B
% % %
% v % %
‘94,& a) d)0) >
s S B B
%, @ % =
/@e ]6‘0 o i
» ‘96’7 4 2,
,ofosp 0&9 %
8,’)0/- 'S - <4
M Ro f
Slit <
HO1 83g3
SinfCSP 19 93
1 £,
MsexCSP11 100
‘BmorCSP11
gmorCSP8 i
9T
‘:‘.\'\r\fcsPA
6(00(05?6 o°
?'\'b ol
K A
\]\‘59 GQQ"L S
5\(\‘ Q'\rb 97 o
0‘0 %Qb 00% S
& O L
2 Oy A
¥ S
SR I
9 S O 2 3
¢ & L o
%) ég» g
£

MsexSAP1

SinfCSP3

SlitFQ024845

Bmorcsps

Differential Expression of Chemosensory Genes

©
©
L &
(2] Vo o
&) o
& & R
£ 0 & »
6 & P L
o L © )
FF B
= & D a
& g L Q"
« )
~ 9" L K3
& 4
< S
N .‘\'\o 1
SN g?‘\
< v
: S
9 \\\\) 6«\0‘{
csP?
wse?
5 P5
MsexSA
SinfCSPZZ
99 L_ SIitEZ983355'
109
A
&, 2
Cg
‘0 S///é\ '°2
i )
S %,
& S, s, %
’ 2, %
i . @+ &0
| <y 2 @7 0
I N
z 3 Q &% ¥
® 0 O .
T % 7
O o ‘o
® 2 P
T D
o

Figure 9. Phylogenetic tree of putative CSPs from S. inferens, M. sexta, S. littoralis and B. mori. The S. inferens translated unigenes are shown
in blue. Accession numbers are given in Table S3. The tree was constructed with MEGA5.0, using the neighbour-joining method. Values indicated at
the nodes are bootstrap values based on 1000 replicates, and the bootstrap values <50% are not shown. Sinf, Sesamia inferens; Msex, Manduca sexta;

Slit, Spodoptera littoralis; Bmor, Bombyx mori.
doi:10.1371/journal.pone.0069715.9009

(A)=(10,00,000xC x1,000)/(N xL). In the formula, RPKM (A) is
the expression abundance of gene A; C is the number of reads that
uniquely aligned to gene A; N is total number of reads that
uniquely aligned to all genes; and L is the number of bases on gene
A. The RPKM method is able to eliminate the influence of
different gene lengths and sequencing discrepancy on the

calculation of expression abundance.
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RNA Isolation and cDNA Synthesis for Reverse
Transcription-PCR

Total RNA was extracted by SV 96 Total RNA Isolation

System (Promega, Madison, WI, USA) following the manufactur-
er’s instructions, in which a DNase digestion was included to avoid
the genomic DNA contamination. RNA quality was checked with
a spectrophotometer (NanoDropTM 1000, Thermo Fisher Scien-
tific, USA). The single-stranded cDNA templates were synthesized
using 1.2 pg total RNAs from various samples with oligo (dT) 18
primer as the anchor primers. The M-MLV Reverse Transcriptase
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Figure 10. Phylogenetic tree of putative ORs from S. inferens, M. sexta, H. virescens and B. mori. PR clade is marked in red and ORco in
green. The S. inferens translated unigenes are shown in blue. Accession numbers are given in Table S3. The tree was constructed with MEGAS5.0, using
the neighbour-joining method. Values indicated at the nodes are bootstrap values based on 1000 replicates, and the bootstrap values <50% are not
shown. Sinf, Sesamia inferens; Msex, Manduca sexta; Hvir, Heliothis virescenss; Bmor, Bombyx mori.

doi:10.1371/journal.pone.0069715.g010

(M-MLV) (TaKaRa, Dalian, Liaoning, China) was used for the
c¢DNA synthesis, with the reaction conducted at 42°C for 1 h, and
then stopped by heating at 70°C for 15 min.

RACE Amplification and Sequence Analysis

The SMART'™ RACE ¢DNA Amplification Kit (Clontech,
Mountain View, CA, USA) was used to amplify the 5" and 3’
regions of target genes following the manufacturer’s instructions.
The RACE PCR products were subcloned into pEASY-T3
cloning vector system (TransGene, Beijing, China) and positive
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clones were sequenced by GenScript (Nanjing, China). Full-length
sequences were determined by assembling the cDNA fragments
and the sequences obtained from the 5 and 3" RACE PCR. The
RACE primers (Table S4) were designed using Primer Premier 5.0
(PREMIER Biosoft International, CA, USA).

The open reading frames (ORFSs) of the putative chemosensory
genes were predicted by using ORF finder (http://www.ncbi.nlm.
nih.gov/gorf/gorf.html). The similarity searches were performed
by using the NCBI-BLAST network server (http://blast.ncbi.nlm.
nih.gov/). Putative N-terminal signal peptides of SinfOBPs and
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SinfCSPs were predicted by Signal IP 4.0 (http://www.cbs.dtu.
dk/services/SignalP/) [64]. The TMDs (Transmembrane Do-
main) of SinfORs and SinfIRs were predicted using TMHMM
Server Version2.0 (http://www.cbs.dtu.dk/services/ TMHMM).

Phylogenetic Analyses

The phylogenetic trees were reconstructed for phylogenetic
analyses of SinfOBPs, SinfCSPs and SinfORs, based on the amino
sequences (the signal peptides of sequences had been removed) of
the putative chemosensory genes and the sequences of other
Lepidoptera insects. The OBP data set contained 23 sequences
from S. inferens (amino acids >45 aa), 19 from M. sexta [29,31] and
43 from B. mori. The CSP data set contained the 20 sequences
from S. inferens (amino acids >40 aa), 13 from M. sexta [31],
9 from S. lttoralis [29] and 15 from B. mori [26]. The OR data set
contained 21 OR sequences from . uferens (amino acids
>144 aa), 43 from M. sexta [31], 21 from H. wirescens [41,42]
and 60 from B. mori [65]. The protein name and accession number
of the genes used for phylogenetic tree building are listed in Table
S3. Amino acid sequences were aligned with ClustalX 2.0 [66] and
unrooted trees were constructed by MEGA5.0 [67] using the
Neighbor-joining method, with Poisson correction of distances.
Node support was assessed using a bootstrap procedure base on
1000 replicates.

Reverse Transcription-PCR Analysis

Gene specific primers across ORF of predicted chemosensory
genes were designed using Beacon Designer 7.6 and Primer
Premier 5.0 (PREMIER Biosoft International, CA, USA). The
sequences of these primers were listed in Table S4. PCR
experiments including negative controls (no cDNA template) were
carried out in a MyCycler™ (Bio-Rad, USA) under the following
conditions: 94°C for 4 min; 30 (35 for OBP13) cycles at 94°C for
30 sec, 60°C for 30 sec, and 72°C for 40 sec, and final incubation
for 10 min at 72°C.. The reactions were performed in 12.5 pl with
0.5 ul of single-stranded cDNA, 2.0 mM MgCl,, 0.2 mM dNTP,
0.4 uM for each primer and 1.25 U rTaq DNA polymerase
(TaKaRa, Dalian, Liaoning, China). PCR products were analyzed
by electrophoresis on 2.0% w/v agrose gel in TAE buffer
(40 mmol/L Tris-acetate, 2 mmol/L Nay,EDTA-H,0) and the
resulting bands were visualized with ethidium bromide and
digitized using a GelDoc 2000 (Bio-Rad, USA). The control gene
encoding for the S. wnferens glyceraldehyde-3-phosphate dehydro-
genase (SifGAPDH) was used for quantification.

To detect the relative expression levels of the predicted
chemosensory genes, the gels loaded with PCR products of
different tissues were scanned for quantification of the band
intensity, by using Bio-Rad-Quantity one 4.6.2 software. In
addition, 32 transcripts were randomly chosen to perform a
second biological replication in order to check the repeatability of
the tissue expression. To validate the predicted sequences of
chemosensory genes, the PCR products obtained from cDNA
sample of adult antennae were purified using the AxyPrep™ PCR
Cleanup Kit (Axygen), and then sub-cloned into a T/A plasmid
using the pEASY-T3 cloning vector system (TransGene, China)
following manufacturer’s instructions. The plasmid DNA was used
to transform into Transl-T1 competent cells. Positive clones were
checked by PCR and were sequenced by GenScript (Nanjing,
China).

Quantitative Real Time-PCR Validation

The expression profiling of a total of 16 putative chemosensory
genes was carried out to validate the accuracy of the RT-PCR
results using quantitative real time-PCR (qRT-PCR) experiments.
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The gRT-PCR was performed on an ABI 7500 (Applied
Biosystems, Foster City, CA, USA) using a mixture of 10 pl 2x
SYBR Green PCR Master Mix, 0.4 ul each primer (10 pM),
2.5 ng of sample cDNA, and 6.8 ul sterilized ultrapure HyO. The
reaction programs were 30s at 95°C, 40 cycles of 95°C for 5s and
60°C for 34s. The results were analyzed using the ABI 7500
analysis software SDS 1.4. The qRT-PCR primers (Table S4)
were designed using Beacon Designer 7.7 (PREMIER Biosoft
International, CA, USA). The mRNA levels were measured by
qRT-PCR using the SYBR Premix ExTaq™ (TaKaRa, Dalian,
Liaoning, China). This was followed by the measurement of
fluorescence during a 55 to 95°C melting curve in order to detect a
single gene-specific peak and to check the absence of primer dimer
peaks, and a single and discrete peak was detected for all primers
tested. Negative controls were non-template reactions (replacing
c¢DNA with Hy0).

Expression levels of 16 genes were calculated relative to the
reference gene SinfGAPDH using the Q-Gene method in Microsoft
Excel-based software of Visual Basic [68,69] For each sample,
three biological replications were performed with each biological
replication measured in three technique replications.

Supporting Information

Figure S1 Expression of §. inferens chemosensory
transcripts in whole larvae body and different adult
tissues. GAPDH gene was used as a positive control and NC (no
cDNA template) as a negative control. La, larvae whole body; PG,
female pheromone glands; A, antennae; H, heads; T, thoraxes;
Ab, abdomens (female without PG); L, legs; W, wings;Q, female, O,
male. A, Expression of all chemosensory genes by using the first
cDNA sample; B, Expression of 32 randomly chosen genes for
checking the repeatability of the RT-PCR method by using the
second cDNA sample.

(TIF)

Table S1 The Blastx match of top 50 most abundant
unigenes. Except for the putative chemosensory genes in S.
inferens.

DOC)

Table $2 Data of band intensity of RT-PCR products. It
is showing the repeatability of two biological replicates of 32 genes
randomly chosen from the 92 ones. #: The band intensity was not
calculated because of the irregular images, and were estimated by
comparison with the normal bands.

(DOC)

Table 83 Accession numbers for amino acid sequences
of OBPs, CSPs and ORs used in phylogenetic analyses.
DOC)

Table S4 Primers used for RT-PCR, qRT-PCR and
RACE.
DOC)
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