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Abstract

By using cDNA microarray analysis, we identified cornulin (CRNN) gene was frequently downregulated in
esophageal squamous cell carcinoma (ESCC). In the present study, we investigated the role of CRNN in ESCC
development. The results showed that CRNN was frequently downregulated in primary ESCCs in both mRNA level
(26/56, 46.4%) and protein level (137/249, 55%), which was significantly associated with lymph node metastases
(P=0.027), advanced clinical stage (P=0.039), and overall survival rate (P<0.001). Multivariate analysis indicated that
the CRNN downregulation was an independent prognostic factor for ESCC. Functional studies with both in vitro and
in vivo assays demonstrated that CRNN had strong tumor suppressive ability in ESCC cells. The tumor-suppressive
mechanism of CRNN was associated with its role in cell cycle arrest at G1/S checkpoint by upregulating expressions
of P21WAFICIP1 and Rb. Silencing CRNN expression by RNA interference could effectively inhibit its tumor suppressive
effect. In conclusion, our findings demonstrate that CRNN is a tumor suppressor gene that plays a critical tumor
suppressive role in ESCC.

Citation: Chen K, Li Y, Dai Y, Li J, Qin Y, et al. (2013) Characterization of Tumor Suppressive Function of cornulin in Esophageal Squamous Cell
Carcinoma. PLoS ONE 8(7): e68838. doi:10.1371/journal.pone.0068838

Editor: Wael El-Rifai, Vanderbilt University Medical Center, United States of America
Received February 20, 2013; Accepted June 3, 2013; Published July 24, 2013

Copyright: © 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Grants from the National Natural Science Foundation of China (81272416, 81172338 and 81000863); the General
Research Fund (HKU 7668/11M); Sun Yat-Sen University “Hundred Talents Program” (85000-3171311) and Sun Yat-sen University Young Talent
Teachers Plan (11ykpy58). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: | have read the journal's policy and have the following conflicts: "Co-author Xin-Yuan Guan is a PLOS ONE Editorial Board member.

* E-mail: xyguan@hkucc.hku.hk (XG); liyan@sysucc.org.cn (YL)

This does not alter our adherence to all the PLOS ONE policies on sharing data and materials."

Introduction

Esophageal carcinoma (EC) is one of the most common
malignancies and has been ranked as the sixth leading cause
of cancer death over the world [1]. As the most common type of
EC, esophageal squamous cell carcinoma (ESCC) shows high
mortality and regional variation in incidence [2]. Despite
advances in multimodality therapy, the prognosis of ESCC
remains poor and the overall 5-year survival is less than 15%
[3]. Like other types of cancers, the development of ESCC is
also believed as a multiple-step process caused by the
accumulation of activation of oncogenes and inactivation of
tumor suppressor genes (TSG). To date, the exact cellular and
molecular mechanisms leading to ESCC have not been
systematically evaluated.

Systematic analysis of expression levels of thousands of
genes by cDNA microarray is an effective approach to identify
new genes and pathways related to the development and
progression of the tested cancer. Recently, our group
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performed an Affymetrix cDNA microarray to compare
differentially expressed genes between 10 pairs of ESCC
tumors and their adjacent non-tumorous tissues (Data have
been submitted to Gene Expression Omnibus under the
accession number GSE33810). About 220 downregulated
genes were detected including cornulin (CRNN). CRNN gene
comprises three exons and encodes a protein of 495 amino
acids, which contains a putative calcium-binding motif similar to
S100 protein family at N-terminus [4], implying that CRNN may
bind to calcium. Another study demonstrates that CRNN, which
is a member of the fused gene family, might play an important
role in epidermal differentiation [5].

Although CRNN has been reported to be downregulated in
esophageal adenocarcinoma (EAC) or ESCC [6-9], and
genetic variants of CRNN appeared to interacte with tobacco
smoking that contributes to the risk for ESCC [10], the precise
mechanism underlying the involvement of CRNN in ESCC
remains to be elucidated.
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In the present study, we studied the expression status of
CRNN in clinical ESCC specimens and ESCC cell lines by
quantitative and semiquantitative RT-PCR respectively. Both in
vitro and in vivo functional assays were used to investigate the
tumor suppressive effect of CRNN in ESCC cell lines. The
results demonstrated that CRNN had strong tumor suppressive
function. In addition, the tumor suppressive mechanism of
CRNN and its clinical significance in ESCC were also
addressed.

Materials and Methods

Cell lines and primary ESCC specimens

Chinese ESCC cell lines HKESC1, EC18 and EC109 were
kindly provided by Professor Srivastava (Department of
Pathology, The University of Hong Kong) [11]. Six Japanese
ESCC cell lines (KYSE30, KYSE140, KYSE180, KYSE410,
KYSE510, KYSE520) were obtained from DSMZ, the German
Resource Center for Biological Material [12]. Primary ESCC
tumors and their adjacent non-tumorous tissues were collected
immediately after surgical resection at Linzhou Cancer Hospital
(Henan, China). All patients did not receive preoperative
treatment. Samples used in this study were approved by the
Committees for Ethical Review of Research involving Human
Subjects at Zhengzhou University (Henan, China). Written
informed consents for the original human work that produced
the tissue samples were obtained. The study was also
approved by the Institutional Review Board at Cancer Center,
Sun Yat-sen University.

Quantitative and semiquantitative RT-PCR

Total RNA was extracted by Trizol (Invitrogen, Carlsbad, CA)
and 2ug of total RNA was used to synthesize cDNA with the
Advantage RT-for-PCR Kit (Clontech, Mountain View, CA),
following the standard protocols provided by the manufacturer.
Semiquantitative RT-PCR was performed by using AmpliTaq
(Applied Biosystems, Foster City, CA). The GAPDH or 18s
were used as internal controls. For qRT-PCR, cDNA were
amplified using a SYBR Green PCR Kit (Roche, Basel,
Switzerland). The sequences of primers were listed in Table 1.
Amplification protocol consisted of incubations at 95°C for
15sec, 60 ‘C for 1min for 40 cycles. Quantification was done
using the ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems, Foster City, CA). All gene expression
values were normalized using the internal control and
calculated using the comparative C; method (AAC; method)
[13]. Downregulation was determined if relative quantification
(RQ) value of non-tumor tissue was more than 2-fold change
than RQ of corresponding tumor tissue.

Tissue microarray (TMA) and immunohistochemistry
(IHC)

A TMA composed of 300 ESCC tumor specimens were
collected from Linzhou Cancer Hospital (Henan, China). Tissue
samples used in this study were approved by the Committees
for Ethical Review of Research Involving Human Subjects at
Zhengzhou University. Written informed consents for the
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Table 1. Primers’ sequences.

Primers sequence

CRNN- F 5'-ACTCTTGGAGCAAGAGTTTG-3’
CRNN-R 5-TGGAGGCTTCCAGAACTCTTG-3’
p53-F 5-TTGCCAACTGGCCAAGACCTG-3’
p53-R 5-ACGCAAATTTCCTTCCACTCGG-3’
p21-F 5-TGTCCGTCAGAACCCATGC-3
p21-R 5-AAAGTCGAAGTTCCATCGCTC-3’
GAPDH-F 5-CATGAGAAGTATGACAACAGCCT-3'
GAPDH-R 5-AGTCCTTCCACGATACCAAAGT-3’
18s-F 5-CTCTTAGCTGAGTGTCCCGC-3’
18s-R 5-CTGATCGTCTTCGAACCTCC-3

original human work that produced the tissue samples were
obtained. TMA was constructed as described previously [14].
IHC staining was carried out following standard streptavidin-
biotin-peroxidase complex method [15]. Briefly, TMA sections
were deparaffinized, and nonspecific bindings were blocked
with 10% normal goat serum for 10min. The TMA section was
then incubated with anti-CRNN polyclonal antibody (1:100
dilution, Abcam, Cambridge, UK) at 4 ‘C overnight. Slides were
then incubated with HRP-conjugated goat anti-rabbit
immunoglobulin at a concentration of 1:100 at 37°C for 30min.
Cytoplasmic expression of CRNN was assessed by three
independent investigators. The immunoreactivity of CRNN was
scored by staining intensity only (0 = negative staining; 1 =
weak staining; 2 = strong staining) because no obvious
difference was observed in the percentage of cells stained.

In vitro tumorigenic assays

To test tumor suppressive function of CRNN, CRNN was
cloned into pcDNA3.1/V5-His TOPO TA vector (Invitrogen,
Carlsbad, CA) and transfected into ESCC cell line KYSE30 and
KYSE180 cells (CRNN-30 and CRNN-180, respectively).
Stable CRNN-expressing clones were selected for further
study. Empty vector-transfected KYSE30 and KYSE180 cells
(Vec-30/Vec-180) were used as controls. Cell growth, foci
formation, and soft agar assays were carried out as described
previously [11]. For cell growth assay, 1x103 cells were seeded
into 96-well plate and cell growth rate was detected using cell
proliferation XTT kit (Dojindo, Japan) according to the
manufacturer’s instructions. For foci formation assay, 1x103
cells were plated in wells of a 6-well plate. After 7 days culture,
surviving colonies (> 50 cells/colony) were counted with crystal
violet staining. For soft agar assay, 5x10° cells were seeded
into 0.4% bactoagar on a bottom layer of solidified 0.6%
bactoagar in 6-well plates. After 3 weeks, colonies consisted of
more than 80 cells were counted. All above assays’ data were
expressed as the means + S.E.M. of triplicate independent
experiments.

Tumor formation in nude mice

The study was approved by Institutional Animal Care and
Use Committee of Cancer Cancer, Sun Yat-sen University.
Animal experiments were performed in compliance with the
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guidelines for the Welfare of Experimental Animals in Cancer
Center, Sun Yat-sen University. The in vivo tumor-suppressive
ability of CRNN was investigated by tumor xenograft
experiment. About 2x10® CRNN-transfected cells and empty
vector-transfected cells were injected subcutaneously into the
right and left sides of 4-week-old nude mice (n=9 for KYSE30
and n=6 for KYSE180), respectively. Tumor formation in nude
mice was monitored by measuring the tumor volume, which
was calculated by the formula, V=0.5xL (length of tumor) x\W?
(width of tumor) over a 4-week period [16]. To confirm CRNN
expression in xenograft tumor, IHC staining with anti-CRNN
antibody was performed in sections (5um in thick) of paraffin-
embedded xenograft tumor.

RNA interfering (RNAI)

CRNN-expressing clones CRNN-C2, C3 (KYSE30) or
CRNN-C1 (KYSE180) were transfected with double-stranded
siRNAs (Ambion, Carlsbad, CA) with lipofectamine 2000™
reagent (Invitrogen) according to the manufacturer’s
instructions. Forty-eight hours after transfection, the gene-
silencing effect was measured by qRT-PCR and western blot
analysis, respectively. Three independent experiments were
performed.

Cell cycle analysis

CRNN-C2/CRNN-C1 or Vec-30/Vec-180(2x%10%) were fixed in
70% ethanol and stained with propidium iodide, and DNA
content was analyzed by Cytomics FC (Beckman Coulter,
Indianapolis, IN).

Western blot analysis

Western blotting was done according to the standard
protocol with antibodies for GAPDH, CRNN (Santa Cruz
Biotechnology, Santa Cruz, CA), P53, P21WAFVCIP1 " cyclin D1,
CDKA4, cyclin E, CDK2, Rb, tubulin (Cell Signaling Technology,
Danvers, MA).

Statistical analysis

Statistical analysis was performed using SPSS standard
version 13.0 software (SPSS Inc, Chicago, IL). Data were
expressed as mean + S.E.M. from at least three independent
determinations. Significance of difference was analyzed using
Student’s t-tests. The correlation between CRNN expression
and clinicopathologic characteristics was analyzed using the
Fisher's exact test. Cum survival was calculated from the date
of diagnosis to the date of cancer-related death or last follow-
up. Survival curve was assessed by the Kaplan-Meier method
and compared by the log-rank test. Relative risks of cancer-
related death associated with CRNN expression status and
other predictor variables were estimated by univariate analysis.
Multivariate survival analysis was done on all parameters that
were found to be significant on univariate level using the Cox
regression model. Differences were considered significant for
P<0.05.
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Results

Downregulation of CRNN is frequently detected in
ESCC

The mRNA expression of CRNN in 9 ESCC cell lines and 56
primary ESCC tumors and their paired non-tumorous tissues
were detected by semiquantitative and qRT-PCR, respectively.
The results showed that downregulation of CRNN was
detected in 26/56 (46.4%) of primary ESCCs (Figure 1A) and
9/9 of ESCC cell lines (Figure 1B).

CRNN downregulation correlates with poor outcome of
ESCC

To investigate the clinical significance of CRNN
downregulation in esophageal carcinogenesis, CRNN
expression in protein level was also studied using ESCC tissue
microarray. Expression of CRNN was classified into absent
(scored as 0), weak-positive (scored as 1+) and strong-positive
(scored as 2+) cytoplasmic staining. Informative expression of
CRNN was detected in 249 ESCC cases. Noninformative
samples included lost sample and sample with too few tumor
cells; such cases were excluded for data complication. Normal
expression of CRNN (strong/weak staining) was observed in all
non-tumorous esophageal epithelial cells (Figure 1C).
Downregulated expression of CRNN (absent staining) was
detected in 137/249 (55.02%) of informative ESCC cases.

The correlation of CRNN expression with various
clinicopathologic features was investigated and the result
showed that downregulation of CRNN was significantly
associated with advanced clinical stage (P=0.039) and lymph
node metastases (P=0.027, Table 2). Furthermore, log-rank
test showed that ESCC patients with CRNN downregulation
(mean survival time: 36 months) had a significant shorter
survival time than patients with CRNN normal expression
(mean survival time: 51 months; P<0.001) (Figure 1D). By
univariable analyses, downregulation of CRNN (P<0.001),
tumor differentiation (P=0.018), tumor invasion (P=0.007), and
presence of Ilymph node metastases (P=0.001) were
significantly negative prognostic factors for cum survival in
ESCC patients (Table 3). Nevertheless, multivariable analyses
showed that downregulation of CRNN and Ilymph node
metastases were independent prognostic markers for ESCC
patients enrolled in this study (P<0.05, Table 3).

CRNN has strong tumor suppressive ability

To determine if CRNN has tumor suppressive function,
CRNN gene was stably transfected into ESCC cell lines
KYSE30 and KYSE180 cells. Stably CRNN-expressing clones
from KYSE30 (CRNN-C2 and CRNN-C3) and from KYSE180
(CRNN-C1) were selected. Empty vector-transfected cells
(Vec-30 and Vec-180) were used as controls. Expression of
CRNN in these clones was confirmed by RT-PCR and western
blotting (Figure 2A). Tumor suppressive function of CRNN was
assessed by cell growth, foci formation and soft agar assays.
XTT assay showed that the cell growth rates in CRNN-
expressing clones were significantly inhibited compared with
control cells (P<0.01) (Figure 2B). Foci formation assay
showed that the frequency of foci formation was significantly
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Figure 1. Downregulation of CRNN in ESCC. (A) qRT-PCR was used to compare CRNN mRNA levels between tumor and
corresponding non-tumor tissues in 56 ESCC cases. **, P<0.01. (B) Absent expression of CRNN could be observed in all tested
ESCC cell lines in both mRNA level (upper panel) and protein level (lower panel) detected by RT-PCR and western blot analysis,
respectively. GAPDH was used as a loading control. N1, pool total RNA or protein from 5 non-tumor esophageal tissue specimens.
(C) Representatives of immunostaining with anit-CRNN antibody in ESCC cases. Positive staining (brown) was detected in non-
tumor esophageal epithelial cells but not in tumor cells. The slide was counterstained with hematoxylin. Original magnification,
200xmagnification. (D) Kaplan-Meier analysis shows that downregulation of CRNN was significantly associated with poorer overall
survival in 249 ESCC cases (P<0.001, Log-rank test).

doi: 10.1371/journal.pone.0068838.g001

inhibited in CRNN-expressing clones compared with control
cells (P<0.05) (Figure 2C). A similar result was obtained from
soft agar assay, in which the colony formation in soft agar was
significantly inhibited in CRNN-expressing clones compared
with control cells (P<0.01 for CRNN-30 and P<0.05 for
CRNN-180) (Figure 2D).
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To further explore the in vivo tumor suppressive ability of
CRNN, tumor formation in nude mice was carried out by the
injection of CRNN-C2 (KYSE30), CRNN-C1 (KYSE180),
whereas Vec-30 and Vec-180 were used as controls. The
results showed that tumor formation in nude mice was
significantly inhibited in CRNN-expressing cells (P<0.01 for
CRNN-30 and P<0.05 for CRNN-180) (Figure 3A and 3B). With
immunohistochemical staining using anti-CRNN antibody, we
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Table 2. Association of CRNN downregulation with
clinicopathological features in 249 ESCCs.

Clinical features Number CRNN downregulation P value*
Age (years old) 0.907
<57 117 61 (52.1%)

>57 132 76 (57.6%)

Gender 0.873
Male 137 76 (55.5%)

Female 112 61 (54.5%)

Differentiation 0.243
Well 56 36 (64.3%)

Moderate 162 88 (54.3%)

Poor 31 13 (41.9%)

Tumor invasion 0.371
T, 15 7 (46.7%)

Iz 19 11 (57.9%)

T, 54 24 (44.4%)

T 161 95 (59.0%)

Clinical stage 0.039
| 11 6 (54.5%)

1l 155 76 (49.0%)

I} 83 55 (66.3%)

Lymph node metastasis 0.027
No 141 69 (48.9%)

N, 108 68 (63.0%)

#: 2-tailed Fisher’s exact test.

Table 3. Cox proportional hazard regression analyses for
overall survival.

Clinical features Univariable analysis* Multivariable analysis*

HR (95% CI) P value HR (95% CI) P value
Gender 1.143 (0.740-1.764)  0.547
Age 1.000 (0.977-1.025)  0.981
Differentiation 1.565 (1.080-2.268) 0.018  1.408 (0.964-2.057) 0.077
Tumor invasion  1.526 (1.125-2.072) 0.007 1.412 (0.964-2.069 0.077

( )

( )

LN metastasis ~ 2.059 (1.338-3.168) 0.007  1.980 (1.017-3.856)  0.045
CRNN 0.375 (0.232-0.607) <0.001 0.429 (0.263-0.701) 0.001
*. HR = hazard ratio; Cl = confidence interval.

confirmed that CRNN expression was re-established in CRNN-
C2 or CRNN-C1-induced tumors (Figure 3C).

CRNN arrests cell cycle at G1/S transition

To elucidate the mechanism underlying growth inhibition by
CRNN, flow cytometry was used to compare cell distribution in
cell cycle between CRNN-transfectants and control cells. The
percentage of CRNN-30 in GO/G1 phases was significantly
increased (P<0.01), whereas the percentage in S-phase was
significantly decreased (P<0.05), compared with that in control
cells, suggesting that CRNN was able to arrest cell cycle at
G1/S phase (Figure 3D). Similar results were also observed in
CRNN-180 cells (Figure 3D), which is consistent with the
previous report [17]. To further reveal the potential molecular
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mechanism of CRNN in cell cycle arrest, the effects of CRNN
on key cell cycle regulators P53, P21WAFICIP1 gnd Rb were
tested. The result showed that expressions of P21WAFICIP1 - Rp
were upregulated significantly in CRNN-transfected cells
compared with control cells (Figure 3E). P53 was also
upregulated slightly in CRNN overexpressed cells. However,
no significant difference was detected for CDK4 in this study.

The mRNA level of p27 also increased in CRNN
overexpressed cells.
To test whether CRNN expression could induce a

“differentiated state” of cells, we investigated keratin-4, an
epidermal differentiation marker, in the CRNN overexpressing
cells. No staining was observed in both CRNN overexpression
and vector control cells (Figure S1).

Knockdown of CRNN inhibits its tumor suppressive
ability

Expression of CRNN in CRNN-transfectants was silenced by
RNAI with two siRNAs targeting CRNN. Western blotting result
showed that CRNN expression could be effectively silenced
(Figure 4A). Cell growth assay demonstrated that the cell
growth rate was significantly increased in siCRNN-treated cells
compared with scramble-treated cells (P<0.05) (Figure 4B).
Similarly, foci formation assay revealed that the frequency of
foci formation was significantly increased in siCRNN-treated
cells compared with scramble-treated cells (Figure 4C). Soft-
agar assay results demonstrated that the number of colonies
formed in soft agar increased in CRNN knock-down cells
compared with scramble control cells (Figure 4D). Furthermore,
DNA content analysis by flow cytometry showed that silencing
CRNN expression was able to increase the G1/S transition.
The percentage of cells in the S phase was significantly
increased in siCRNN-treated cells compared with scramble-
treated cells (P<0.05) (Figure 5A). Western blot analysis
showed that p21WAFYCP1 and Rb were downregulated in
siCRNN-treated cells compared with scramble-treated cells
(Figure 5B).

Discussion

CRNN has been proposed as a squamous-cell specific gene
because of its expression in esophageal tissue, cervical
squamous epithelium, and murine skin, and absence of
expression in another 15 glandular tissues [18,19].
Downregulation of CRNN was reported in some cancers,
including esophageal cancer [6-10], oral squamous cell
carcinoma [17], and head and neck squamous cell carcinoma
[20]. However, the molecular mechanism of CRNN in tumor
remains unclear. In the present study, we found that CRNN
was downregulated in 55.02% of primary ESCC tumors, which
was significantly associated with advanced clinical stage
(P=0.039), lymph node metastases (P=0.027) and poor
survival of patients with ESCC (P<0.001). Multivariable
analyses showed that the downregulation of CRNN could be
used as an independent prognostic predictor for ESCC
patients. Furthermore, we investigated the mechanisms
underlying CRNN downregulation in ESCC cells. However,
neither hypermethylation nor histone modification was
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Figure 2. Tumor-suppressive function of CRNN in ESCC cell lines. (A) Expression of CRNN in CRNN-transfected ESCC cell
lines KYSE30 (clones 2 and 3) and KYSE180 (clone 1) were confirmed by RT-PCR and western blot analysis, respectively. Empty
vector-transfected ESCC cells (Vec-30 and Vec-180) were used as controls. GAPDH and Tubulin were used as internal and loading
controls, respectively. (B) Growth curves of CRNN-transfected cells were compared with controls by XTT assay. Results were
summarized from three independent experiments. *, P<0.05; **, P<0.01. (C) Representative inhibition of foci formation in monolayer
culture by CRNN. Quantitative analyses of foci numbers are summarized from three independent experiments. *, P<0.05; **,
P<0.01. (D) Inhibition of colony formation in soft agar by CRNN. The results are summarized from three independent experiments. *,
P<0.05; **, P<0.01.

doi: 10.1371/journal.pone.0068838.g002
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Figure 3. CRNN inhibits tumor formation in nude mice. (A) Representatives of tumors formed in nude mice induced by vector-
transfected KYSE30 cells (left) and CRNN-transfected cells (right), respectively. Representatives of tumors derived from tested
animals were shown in the upper panel. Tumor volumes were summarized in the lower panel. *, P<0.05; **, P<0.01. (B) Similar
results were obtained in CRNN-transfected KYSE180 cells compared with vector controls. *, P<0.05; **, P<0.01. (C) IHC staining
was performed to confirm the expression of CRNN in the tumors induced by CRNN-transfected cells but not in the tumors induced
by vector-transfected cells. Original magnification, 200xmagnification. (D) Representative and summary of DNA content detected by
flow cytometry. The percentage of cells in S phase was significantly decreased in CRNN-transfected cells compared with control
cells. *, P<0.05; **, P<0.01. (E) Western blot analysis shows that CRNN could upregulate P21WAFYCIP1 and Rb expression
significantly. P53 also increased slightly in CRNN-transfected cells. Tubulin was used as a loading control. p27 mRNA level was
determined by qRT-PCR. *, P<0.05; **, P<0.01.

doi: 10.1371/journal.pone.0068838.g003

associated with  CRNN downregulation in ESCC (data not cases. Four known SNPs were found in this promoter region.

shown). After systematical analysis, none of them was significantly
Loss of heterozygosity (LOH) at 1921 region has been associated with  CRNN downregulation (data not shown).

frequently detected in various solid tumors, including Another possible mechanism might be involved in the CRNN

esophageal squamous cell carcinoma [21], breast cancer [22], inactivation, micro-RNA regulation [25], was not investigated in

insulinoma [23] and esophageal adenocarcinoma [24]. the present study.

Interestingly, loss of 1921 has been associated with tumor CRNN gene is located on the chromosome 1g21, where

malignancy [23] and shorter overall survival [24]. To explore thirteen S100 family members are tightly clustered [26,27]. The
whether CRNN inactivation is correlated with single nucleotide functions of S100 genes are very complex and they play
variation in the promoter region of CRNN, a fragment (-2,000 to different roles in cancer development and progression [28]. For
-1) from promoter region of CRNN was sequenced in 10 ESCC example, S100A4, S100A6, S100A7 and S100B play
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Figure 4. Silencing CRNN expression increases tumorigenicity. (A) Expression of CRNN was decreased by siRNA against
CRNN compared with scramble control cells detected by western blot analysis (left panel). Fold change of CRNN expression was
calculated from siRNA-CRNN relative to the scramble control (right panel). *, P<0.05. (B) Growth curve of CRNN-transfected cells
treated with siRNA-CRNN were compared with scramble control cells by XTT assay. The results are summarized from three
independent experiments. *, P<0.05; **, P<0.01. (C) Representatives of foci formation induced by cells treated with siRNA-CRNN,
compared with scramble control treated cells. The number of foci was calculated and summarized in bar chart. The results are
summarized from three independent experiments *, P<0.05; **, P<0.01. (D) Representatives of colonies formed in soft-agar in cells
treated with siRNA and scramble control. The results are summarized from three independent experiments. **, P<0.01.

doi: 10.1371/journal.pone.0068838.g004
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Figure 5. Silencing CRNN expression increases improper G1/S transition. (A) Cell distribution in cell cycle between siRNA-
CRNN treated and scramble control cells. The results are summarized from three independent experiments (lower panel). *, P<0.05;
** P<0.01. (B) Expressions of P21WAF1CP1 and Rb expression in siRNA treated and scramble control cells were compared by

western blot analysis. Tubulin was used as a loading control.
doi: 10.1371/journal.pone.0068838.9g005

oncogenic roles in cancer development [29,30],
whereasS100B, S100A2, and S100A11 are believed as TSGs
[31-33]. In the present study, tumor suppressive function of
CRNN was characterized by both in vitro and in vivo assays
including cell growth, foci formation and soft agar assays, and
tumor formation in nude mice. The results demonstrated that
CRNN could effectively suppress cell growth, foci formation
and colony formation in soft agar, and inhibit tumor formation in
nude mice. A further study revealed that CRNN was able to
inhibit G1/S transition through the upregulation of P21WAF1/CIP1
and Rb. G1/S phase transition is a major checkpoint for cell
cycle progression and P21WAFI/CIP1 js one of the critical negative
regulators during this transition [34,35]. Rb is another important

PLOS ONE | www.plosone.org

tumor suppressor in the cancer development. When it is
mutated or deleted, E2F transcription factor would be released
and induce the expression of genes that stimulate cell growth
[36,37]. We further tested P53 protein level and found that P53
increased slightly in CRNN overexpressed cells compared with
vector control cells. It was reported that p53 could be activated
by DNA damage in KYSE30 with mutant p53 as other ESCC
cell line with wide-type p53 [38]. gqRT-PCR results also
indicated that p27 mRNA level increased in CRNN
overexpressed cells. Taken together, we hypothesize that
overexpression of CRNN could upregulate P53, and it
subsequently increases P21 and Rb and inhibit G1/S transition.

July 2013 | Volume 8 | Issue 7 | 68838



In the present study, the tumor suppressive function of
CRNN has been clearly demonstrated, however, the molecular
mechanism of CRNN in ESCC development remains unclear.
CRNN has been reported to allow cells to tolerate normally
lethal levels of deoxycholic acid and protect from the toxic
effect of bile acid as a survival factor [39]. Further study
identified CRNN as a potential component of epithelial
immunity based on its strong signature of adaptive evolution on
DNA sequence of a type that is commonly associated with a
coevolutionary arms race with a pathogen [40]. Therefore, the
expression of CRNN protein will presumably help maintain the
barrier function in squamous epithelium in response to injury
and function as a tumor suppressor [10]. In conclusion, we
demonstrate that CRNN is a potential tumor suppressor in
ESCC via arresting cell cycle progression at G1/S checkpoint
by upregulating P21WAFYCIP1 and Rb. A better understanding of
the tumor suppressive role of CRNN will significantly improve
our knowledge in the development of ESCC, and may lead to a
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inactivation of CRNN.
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