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Autophagy is a process in which a 
eukaryotic (but not prokaryotic) cell 

destroys its own components through the 
lysosomal machinery. This tightly regu-
lated process is essential for normal cell 
growth, development, and homeostasis, 
serving to maintain a balance between 
synthesis and degradation, resulting in 
the recycling of cellular products. Here 
we try to expand the concept of auto-
phagy and define it as a general mecha-
nism of regulation encompassing various 
levels of the biosphere. Interestingly, one 
of the consequences of such an approach 
is that we must presume an existence of 
the autophagic processes in the prokary-
otic domain.

Autophagy Overview

Autophagy (from the Greek for self-eating) 
is a cellular mechanism describing the 
chaperone- or vesicle-mediated recycling 
of excessive or damaged proteins, protein 
complexes and organelles, conducted by 
enzymes originating from the same cell.1-3 
Such recycling serves several essential 
functions including nutrient acquisition,2 
maintenance of cellular homeostasis,1,4 
adaptivity,3 immunity and differentia-
tion.5 In this article we do not touch on 
the molecular basis and functions of auto-
phagy, as they have already been described 
in a number of excellent reviews.1-3,6 
Herein we will focus on autophagy from a 
purely conceptual point of view.

Typically, the term autophagy is 
applied to cellular processes. Meanwhile, 
analogous processes are observed in vari-
ous self-regulated communities at differ-
ent levels of the biosphere (Table 1). These 
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autophagy-like processes occur at the level 
of a single eukaryotic cell (as a community 
of organelles), in organisms (as a commu-
nity of cells and tissues), in ecosystems 
(as a community of living organisms) and 
finally in the entire biosphere (as a com-
munity of ecosystems). For example, at 
the organismal level, one of the manifes-
tations of an autophagy-like process is fat 
consumption during starvation, when the 
organism as a system consumes part of its 
own structure and redistributes the energy 
freed from adipose tissue.7 This process 
compensates for energy influx oscillation 
and is vitally important for the organism. 
Other phenomena, such as placentophagy 
(consuming of the placenta after delivery 
in mammals),9 exuviae eating (eating the 
old skin after molting in amphibians and 
insects),10 or cannibalism in animals,11 at 
first glance also seem reminiscent of auto-
phagy. However, classifying these latter 
phenomena as true autophagy is in fact 
arguable since they are not regular and/or 
absolutely essential for survival of animals, 
and thus might be viewed as episodic 
manifestations of the autophagic princi-
ple. At the level of ecosystems autophagy-
like mechanisms are also present. Stability 
of an entire ecosystem as a self-regulated 
system is maintained by permanent com-
ponent redistribution (known as “trophic 
chains” or “trophic webs”),12 which can 
also be described in terms of autophagy. 
Indeed, like mitochondria being con-
sumed to provide energy for a cell,13 weak 
herbivores being hunted by carnivores to 
redistribute energy for more viable com-
ponents of an ecosystem. Indeed, like 
mitochondria being consumed to pro-
vide energy for a cell13 weak herbivores 
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were found in several bacteria (e.g., Pup 
in Mycobacterium tuberculosis,18 and Samp 
proteins in Haloferax volcanii18,19). In addi-
tion, prokaryotes also have an analog of 
deubiquitinases: a recent discovery of a 
deaminase of Pup (Dop),20 which removes 
the Pup-tag from bacterial proteins, sug-
gests that prokaryote proteolysis systems 
are as flexible as those found in eukaryotes.

Several bacteria, especially the large 
bacteria,21 have a primitive vesicular traf-
fic that provides sorting of multiple factors 
(e.g., quorum sensing molecules),22 toxin 
secretion23 and DNA transfer24 (for more 
examples see refs. 22, 23 and refs. therein). 
Even though functions of these vesicles 
are far from the complexity of eukary-
otic endosomal pathways, they can medi-
ate precise cargo transport in a bacterial 
cell. Furthermore, Podar et al.25 have dis-
covered the presence of vesicle-tethering 
proteins (critical regulators of endosomal 
traffic) in prokaryotes. They have shown 
that a V4R domain (predicted hydrocar-
bon-binding domain, COG1719) in bac-
teria and archaea is highly homologous 
to the Bet3 protein—a component of the 
TRAPPI complex, a conserved eukary-
otic vesicle-tethering complex, involved in 
ER-Golgi vesicular exchange.

In sum, bacteria have vesicles, vesicle-
tethering proteins and ubiquitin-like tags, 
which in theory may constitute a platform 
for a bona fide autophagic mechanism. 
Nevertheless, autophagy has never been 
identified in bacterial cells, leading to a 
safe conclusion that it is absent from this 
domain of life.

Convergent pieces of evidence indi-
cate that in nature prokaryotes exist as 
differentiated multicellular forms rather 
than isolated cells.26-29 Considering that 
autophagy-like processes are a feature of 

of organelles, cells or organisms) is many 
times longer than an average life span of 
its components. This is achieved through 
constant removal of old or damaged con-
stituents by the system, which in essence 
is autophagy. Removing and subsequent 
recycling of old components protects a 
system from hazardous consequences of 
their malfunctioning. Akin to the way 
cellular autophagy (e.g., mitophagy)2 
updates organelle content during cell life 
time, trophic chains (e.g., predator-prey 
interactions)12 regulate organismal con-
tent of an ecosystem by removing weak 
and sick animals.

These examples show that autophagy 
is not limited by the eukaryotic cell 
membrane but is a general mechanism 
encompassing various levels of the bio-
sphere. Literally, almost any differentiated 
animate community is using autophagy 
as a potent mechanism of surviving and 
self-regulation. We use the word “almost” 
because autophagy has never been 
described in prokaryotes.15 Without lyso-
somes and membrane transport, it seems 
prokaryotes are unable to realize auto-
phagy. Nevertheless, the absence in pro-
karyotes of such an important principle 
looks strange, and herein we try to show 
some evidence of autophagy existing in 
the prokaryotic domain.

Prokaryotes as Multicellular  
Organisms

The presence of autophagy has never been 
reported in a prokaryotic cell. Nevertheless, 
prokaryotes have several recycling mecha-
nisms, such as different types of prote-
olysis16 and proteasomal degradation.15,17 
Recently, ubiquitin-like tags, which mark 
proteins for proteasomal degradation, 

being hunted by carnivores to redistribute 
energy for more viable components of an 
ecosystem.14

Thus, in various biosystems autoph-
agy-like processes are essential for self-
regulation and survival. These processes 
carry out synonymous functions at all 
levels: providing energy during starvation, 
supporting homeostasis and differentia-
tion, promoting development, etc. A key 
example of the autophagic principle is 
observed in energy recycling, which is an 
important characteristic of living matter. 
Since every biosystem (from cell to bio-
sphere) requires constant energy influx 
from outside, which is inherently unreli-
able, the system prudently recycles any 
damaged or excessive constituents rather 
than waste them. Starvation is usually 
provoked by two factors: food deficit and/
or malfunctioning of energy-producing 
elements. In both cases, autophagy-like 
processes are able to restore energy flow 
through dismantling of expendable com-
ponents down to elementary blocks for 
their consequent reusage. In such a way, 
biosystems obtain additional energy for 
restoration, adaptation, transformation or 
even migration. The aforementioned anal-
ogy between cellular autophagy, organis-
mal fat consumption and trophic chains 
illustrates global employment of the auto-
phagy principle in energy recycling.1

Another example of autophagy function 
is maintaining homeostasis. Supporting a 
stable state of internal environment is an 
important property of animate systems, 
and is implemented through a number 
of mechanisms. One of them is constant 
updating of the biosystem’s elements, 
mediated by autophagy-like processes. 
Indeed, a time of existence of any differ-
entiated community (be it an association 

Table 1. Analogs of autophagy at different levels of animate matter

Community Process Examples

Cell Autophagy

Mitophagy (degradation of mitochondria)2

Pexophagy (degradation of peroxisomes)2

Ribophagy (degradation of ribosomes)2

Reticulophagy (degradation of er)2

organism Hibernation, fasting or starvation
Consumption by organism of its own tissues (e.g., adipose tissue)7

Oophagy (e.g., stronger embryos of sharks consume less-developed siblings in utero)8

ecosystem and 
Population

trophic chain
Predator-prey relationships12

Herbivore-plant relationships12
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size (in most cases the size of a single 
lysed bacterium is approximately equal 
to a mitochondrion6,42 or a peroxisome43); 
have the same triggers (starvation or non-
favorable conditions);3,39 have the same 
principal mechanism (regulated partial 
self-consumption of constituents by the 
biosystem);1,22 and also achieve the same 
final goal (survival of a biosystem under 
stress conditions and maintaining homeo-
stasis).3,22 In protophagy, the role of cargo 
vesicles is assumed by a prokaryotic cell, 
while a prokaryotic community is a bio-
system, which recycles parts of digested 
bacteria to maintain self-stability.39

Similar to eukaryotic autophagy, 
protophagy functions are not limited 
to energy homeostasis and quality con-
trol only. For example, protophagy is 
employed by pathogenic bacteria for host 
invasion (Fig. 2). In order to eliminate 
competition for resources within com-
mensal microbiota, some pathogenic bac-
teria use protophagy to manipulate the 
host’s immune system. To remove com-
peting microbiota, a part of the bacterial 
population dies and releases intracellular 
toxins to boost inflammation. Activation 
of the host immune response kills or 
restricts commensal bacteria and allows 
the pathogen to take advantage of reduced 
competition to invade host tissues.44 This 
mechanism is employed by the entero-
pathogenic bacteria Salmonella enterica 
serovar Typhimurium,41 and Clostridium 
difficile.35,44 A similar protophagic strategy 
is also used by Streptococcus pneumoniae 
during lung colonization,45 colicinoge-
nic strains of E. coli,46 Staphylococcus 
aureus,47 and Pseudomonas aeruginosa.48 

of a colony lacking the antitoxin (protein 
SdpI or mazE, respectively).35 Dead cells 
are lysed and consumed by their neigh-
bors, providing them with enough energy 
for sporulation.35,36 Another example of 
an autophagy-like process is inducible 
autolysis, such as that seen in colonies of 
Streptococcus pneumoniae.38,40 Under over-
crowded conditions S. pneumoniae cells 
secrete the pheromone CSP that activates 
two-component signaling transduction 
kinases ComD and ComE, which activate 
expression of the lytA gene, responsible 
for autolysis.40 LytA requires activation by 
another kinase called VncS. Expression of 
the latter is regulated by different stress 
signals and is usually activated in defective 
or old cells, which are undergoing autoly-
sis. After autolysis, DNA from destroyed 
cells is absorbed by the healthy neighbor-
ing cells.38 It is logical to extrapolate to 
the hypothesis that other biomolecules 
from destroyed cells can be acquired along 
with DNA, providing a recycling process 
within the colony. Moreover, similar two-
gene altruistic models have been created 
experimentally.41

Such self-destructive cooperation can 
be seen as an extreme form of the division 
of labor between at least two phenotypes, 
in which one does not survive. For sim-
plicity, here we will introduce the term 
“protophagy” as a synonym of bacterial 
cannibalism, autolysis, programmed cell 
death and other self-destructing patterns 
within bacterial colonies. From a bird’s-
eye view, protophagy processes abide 
by the same rules as, and share a set of 
similarities with, eukaryotic autophagy  
(Fig. 1). Both operate with a similar cargo 

differentiated communities, we presume 
that analogs of autophagy might exist 
in prokaryotic multicellular formations. 
Indeed, multicellular forms of prokaryotes 
such as colonies or biofilms display multiple 
characteristics of differentiated multicellu-
lar organisms. Among these characteristics 
are quorum sensing,28 collective digest-
ing,30 collective prey hunting31 and resis-
tance to antibiotics32 (Table 2).

From this point of view, autophagy 
should appear as another characteristic of  
multicellular form of prokaryote. Indeed, 
a single bacterium is similar to eukaryotic 
organelles like mitochondria,6 and can 
be considered as a membrane-bordered 
organelle-like element of a multicellular 
bacterial community. This presumption 
leads to an interesting conclusion: that 
autophagy is indeed present in the pro-
karyotic world, but it is an attribute of 
a prokaryotic community and not of a 
single bacterium. Actually, autophagy-like 
processes are well described in prokaryotic 
colonies but in different terms—canni-
balism,35,36 altruism,37 autolysis38 or pro-
grammed cell death.38 Below are several 
examples.

Typical autophagy-like patterns have 
been described in bacteria during starva-
tion.35 This pattern is widespread in bacte-
rial species and known as toxin-antitoxin 
systems.37,39 One of the functions of 
these two-gene modules are regulation 
of colony density in response to different 
stimuli such as amino acid starvation or 
by antibiotics.39 Briefly, under nutrient 
limitation, bacteria secrete a toxic peptide 
(e.g., SdpC in Bacillus subtilis or mazF in 
Escherichia coli) that induces death of part 

Table 2. examples of multicellular organization and cell-cell interactions of some prokaryotes

Taxon Example of multicellular organization and cell–cell interactions

Cyanobacteria

Photosynthetic bacteria that can differentiate into specialized cells (heterocysts) which lack chlorophyll but can convert 
nitrogen gas into a usable form for photosynthetic neighbors (vegetative cells).33 Form intercellular channel system for 

exchange of fixed nitrogen and photosynthetic products between these two types of cells.

often grow as connected chains of cells or as a mat, and in many ways resemble multicellular algae (were first classified as 
members of the plant kingdom).27

deltaproteobacteria

Myxococcus xanthus uses cell-cell interactions to behave cooperatively when hunting for food. Predation involves the 
release of lytic substances that degrades prey organisms, thereby creating a public pool of growth substances.

when starved for nutrients, the group of M. xanthus cells undergo a change in which the cells form a fruiting body contain-
ing spores that can disperse and rejuvenate into motile cells when they sense that prey are present.34

Gammaproteobacteria
A small number of antibiotic-resistant mutants of E. coli can provide protection to other sensitive cells, enhancing the  

survival capacity of the overall population in stressful environments.32
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Figure 1. Key similarities between protophagy (left) and autophagy (right).

Figure 2. Analogous role of protophagy and autophagy in induction of inflammation (see the text for an explanation). mHC-ii, major histocompatibil-
ity complex class ii.
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Interestingly, in the absence of compet-
ing microbiota, such as germ-free mice, S. 
typhimurium colonizes the intestine effi-
ciently without causing inflammation.44 
This suggests that protophagy is used 
by a number of bacteria as an advanced 
mechanism of survival in a dense micro-
bial community.

Some Applications of the  
Protophagy Concept

Introduction of the concept of protophagy 
not only has theoretical value, but may 
also be useful in practical applications. 
Classifying the processes listed above as 
related to autophagy might serve as a basis 
for new insights into prokaryotic life. In 
bioinformatics, the concept of protophagy 
may uncover new patterns of the evolu-
tion of recycling processes. We did not 
find evolutionary connections between 
protophagy and autophagy genes using 
BLAST and PSI-BLAST (using standard 
protocols),49 which may suggest that pro-
tophagy is not a direct evolutionary prede-
cessor of eukaryotic autophagy, but rather 
an independent parallel realization of the 
recycling principle. However, more sophis-
ticated professional analysis may find some 
homologies between the autophagy and 
protophagy genes in a similar way to the 
discovery that many apoptotic genes are 
conserved between pro- and eukaryotes.50

Moreover, understanding of general pat-
terns that govern bacterial life may bring a 
great practical benefit. Industry widely 
uses bacteria as biofactories, and manipula-
tion through protophagy could help tackle 
some hurdles associated with growing 
large-scale bacterial cultures. For example, 
when large biomass production is required, 
modulators of protophagy may improve 
the yield by means of enhancing natural 
mechanisms of eliminating impaired or 
damaged microorganisms. Protophagy 
may also be a beneficial concept in pre-
diction and modeling of the behavior of 
multicellular (natural) forms of bacteria in 
biodegradation or bioremediation fields, 
where microorganisms applied over large 
areas can spontaneously differentiate into 
their natural multicellular forms.

Another critical area that may benefit 
is medicine. A growing problem of con-
temporary medicine is development of 
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