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ABSTRACT

Motivation: Bioinformatics is faced with a variety of problems that

require human involvement. Tasks like genome annotation, image

analysis, knowledge-base population and protein structure determin-

ation all benefit from human input. In some cases, people are needed

in vast quantities, whereas in others, we need just a few with rare

abilities. Crowdsourcing encompasses an emerging collection of

approaches for harnessing such distributed human intelligence.

Recently, the bioinformatics community has begun to apply crowd-

sourcing in a variety of contexts, yet few resources are available that

describe how these human-powered systems work and how to use

them effectively in scientific domains.

Results: Here, we provide a framework for understanding and apply-

ing several different types of crowdsourcing. The framework considers

two broad classes: systems for solving large-volume ‘microtasks’ and

systems for solving high-difficulty ‘megatasks’. Within these classes,

we discuss system types, including volunteer labor, games with a

purpose, microtask markets and open innovation contests. We illus-

trate each system type with successful examples in bioinformatics and

conclude with a guide for matching problems to crowdsourcing solu-

tions that highlights the positives and negatives of different

approaches.
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1 INTRODUCTION

Imagine having easy, inexpensive access to a willing team of

millions of intelligent workers. What could you accomplish?

Lakhani and colleagues produced 30 new sequence alignment

algorithms that each improved on the state-of-the-art, in 2

weeks, for $6000 (Lakhani et al., 2013). Others improved a

44-species multiple alignment (Kawrykow et al., 2012), de-

veloped a new protein folding algorithm (Khatib et al., 2011a),

produced accurate parasite counts for tens of thousands of

images of infected blood cells (Luengo-Oroz et al., 2012), and

still others are attempting to translate the entire web into every

major language (http://duolingo.com). Crowdsourcing systems

make these and many other monumental tasks approachable.

Here, we explore what these systems are and how they are

being applied in bioinformatics.
The term ‘crowdsourcing’ was coined in 2006 to describe ‘the

act of taking a job traditionally performed by a designated agent

(usually an employee) and outsourcing it to an undefined, gen-

erally large group of people in the form of an open call’ (Howe,
2006). Now, it is used to describe a range of activities that span

the gamut from volunteers editing wiki pages or tagging astro-
nomical images to experienced professionals tackling complex

algorithm development challenges. Here, we will focus specific-
ally on systems for accomplishing directed work that requires

human intelligence. These human-powered systems are built to
solve discrete tasks with clear end points. They are distinct from

other common, community-driven branches of crowdsourcing,
such as wikis, in that they allow for top-down control over the

work that is conducted. (For an extensive introduction to wikis
in biology, see Galperin and Fernandez-Suarez, 2012).

The tasks discussed here have been historically approached
from an artificial intelligence perspective—where algorithms at-
tempt to mimic human abilities (Sabou et al., 2012). Now,

crowdsourcing gives us access to a new methodology: ‘artificial
artificial intelligence’ (https://www.mturk.com/). The objective of

this review is to give insights into how, from a practical perspec-
tive based on recent successes, to use this new force to tackle

difficult problems in biology.
We divide crowdsourcing systems into two major groups:

those for solving ‘microtasks’ that are large in number but low
in difficulty, and those for solving individually challenging

‘megatasks’. In Section 2, we present an overview of microtask
solutions with subsections on volunteer systems, casual games,

microtask markets, forced labor (workflow sequestration) and
education. Section 3 describes crowdsourcing approaches to

megatasks with subsections on innovation challenges and hard
games. Section 4 concludes the article with a guide for matching

problems to potential crowdsourcing solutions, pointers to infor-
mation about forms of crowdsourcing not covered here and a

brief exploration of the potential consequences of crowdsourcing
on society.

2 CROWDSOURCING MICROTASKS

Microtasks can be solved in a short amount of time (typically a

few seconds) by any human who is capable of following a short
series of instructions. In bioinformatics, microtasks often orient

around image or text annotation. In these cases, crowdsourcing
systems provide system designers with access to vast numbers of

workers who, working in parallel, can collectively label enor-
mous volumes of data in a short time. These systems achieve

high quality, typically as good as or better than expert annota-
tors, through extensive use of redundancy and aggregation.

Annotation tasks are presented to multiple workers, and their
contributions are integrated, e.g. through voting, to arrive at the
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2.1 Volunteer (citizen science)

Perhaps the most surprisingly effective strategy for incentivizing

large-scale labor in support of scientific objectives is simply to

ask for volunteers. This pattern, often referred to as ‘citizen sci-

ence’, dates back at least to the year 1900, when the annual

Christmas bird counts were first organized by the National

Audubon Society (Cohn, 2008). Now, it is exemplified by the

Zooniverse project and its initial product Galaxy Zoo (Lintott

et al., 2008). Galaxy Zoo has successfully used the web to tap

into a willing community of contributors of previously unimagin-

able scale. Within the first 10 days of its launch in July 2007, the

Galaxy Zoo web site had captured 8 million morphological clas-

sifications of images of distant galaxies (Clery, 2011). After 9

months, 4100 000 people had contributed to the classification

of41 million images—with an average of 38 volunteers viewing

each image. Now, the Zooniverse project, in collaboration with

Cancer Research UK, is moving into the biomedical domain

with a project called CellSlider (http://www.cellslider.net).
In CellSlider, volunteers are presented with images of stained

cell populations from cancer patient biopsies and asked to label

the kinds and quantities of different cell types. In particular,

volunteers seek out irregularly shaped cells that have been

stained yellow based on the level of estrogen receptor expressed

by the cell. Quantifying the amount of these ‘cancer core’ cells in

a particular patient can help to ascertain the extent to which a

treatment is helping the patient, and thus can be used to help

personalize and improve therapy. Launched on October 24,

2012, the initiative has not published its finding yet, but it

claimed to have analyzed 550000 images in its first 3 months

of operation.

2.2 Casual games

Aside from simply relying on the altruistic urges of the audience,

a growing number of crowdsourcing initiatives attempt to

reward participation with fun. In these ‘games with a purpose’,

microtasks are presented in the context of simple, typically web-

based games (Ahn and Dabbish, 2008). (We distinguish these

microtask games from other closely related games designed to

solve difficult problems in Section 3.1.) In these ‘gamified’

crowdsourcing systems, the participants earn points and advance

through levels just like other games, but the objectives in each

game are closely aligned with its higher-level purpose. To win,

game players have to solve real-world problems with high quality

and in large quantities. Casual crowdsourcing games have been

actively developed by the computer science community since the

ESP Game emerged with great success for general-purpose image

labeling in 2003 (Ahn and Dabbish, 2004). The first casual games

within the realm of bioinformatics address the tasks of multiple

sequence alignment and image annotation.

2.2.1 Multiple sequence alignment Phylo is a game in which
players help to improve large multiple sequence alignments by

completing a series of puzzles representing dubious sections from

precomputed alignments (Kawrykow et al., 2012). To complete a

puzzle, players move Tetris-like, color-coded blocks representing

nucleotides around until the computed alignment score reaches

at least a predetermined level, with more points awarded for

better alignments. These human-generated alignment sections

are then integrated back into the full computationally generated
alignments. In the first 7 months of game-play, Phylo recruited

412 000 players who collectively completed 4254 000 puzzles.
When the alignment blocks from game players were reassembled,

they resulted in improvements to 470% of the original

alignments.

2.2.2 Image annotation Following shortly after Phylo, two re-
search groups independently developed games focused on the

classification of images related to malaria infection. Mavandadi
and colleagues describe a web-based game called MOLT that

challenges players to label red blood cells from thin blood
smears as either infected or uninfected (Mavandadi et al.,

2012a, b). Luengo-Oroz and colleagues present a game called

MalariaSpot for counting malaria parasites in thick blood
smears (Luengo-Oroz et al., 2012). The similar approaches

taken by both of these systems reflect consistent themes for

microtask platforms; both systems aggregate the responses of
multiple players (sometimes 420) to produce the annotation

for each image and use images with known annotations to
benchmark player performance. Using these techniques, both

MOLT and MalariaSpot achieved expert-level performance on

their respective tasks. Both systems share a vision of using their
crowdsourcing approach to enable the rapid, accurate and inex-

pensive annotation of medical images from regions without
access to local pathologists in a process known as ‘tele-path-

ology’. These systems are also envisioned to play a role in train-

ing both human pathologists and automated computer vision
algorithms.

2.3 Microtask markets

Microtask markets are probably the most well-known and thor-
oughly used variety of crowdsourcing. Rather than attempting to

use fun or altruism as incentives, these systems simply use cash
rewards. Where a game like MalariaSpot provides points for

each labeled image, a microtask market would allow contribu-

tors to earn a small amount of money for each unit of work.
Within bioinformatics, microtask markets have so far been used

for image and text annotation.

2.3.1 Image annotation Although microtask markets have
enjoyed widespread use for general image annotation tasks

since their inception, there are few published examples of appli-

cations in bioinformatics—though many are in progress. Nguyen
and colleagues provide a prototypical example (Nguyen et al.,

2012). They describe the application of the Amazon Mechanical
Turk (AMT) crowdsourcing service to detect polyps associated

with colorectal cancer in images generated through computed–

tomographic colonography. Using the AMT, they paid crowd
workers to label images of polyp candidates as either true or

false. For each task (known as a ‘HIT’ for ‘human intelligence
task’), the workers were presented with 11 labeled training

images to use to make their judgment on the test image.

Workers were paid $0.01 for each image that they labeled. In
the first of two replicate trials with nearly identical results, 150

workers collectively completed 5360 tasks resulting in 20 inde-
pendent assessments of each of 268 polyp candidates. This work

was completed in 3.5 days at a total cost of $53.60 (plus some

small overhead fees paid to Amazon). A straightforward voting
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strategy was used to combine the classifications made by multiple

workers for each polyp candidate. The classifications generated

by this system were then assessed based on agreement with expert

classifications and compared with results from a machine learn-

ing algorithm. The results of the crowd-powered system and the

machine learning system were not significantly different. Both

systems produced an area under the receiver operating charac-

teristic curve close to 0.85. Although this system did not improve

on the automated system, it demonstrated that minimally trained

AMT workers could perform this expert-level task rapidly and

with high quality. In subsequent work, the same research group

reported significant improvements with a new system that inte-

grated the automated predictions with those derived from crowd-

sourcing to produce an area under the receiver operating

characteristic curve of 0.91 on the same data (Wang et al., 2011).

2.3.2 Text annotation With much of the world’s biological and
medical knowledge represented in text, natural language process-

ing (NLP) is a core component of research in bioinformatics.

Many tasks in NLP require extensive amounts of expensive lin-

guistic annotation. For example, NLP systems that detect con-

cepts and relationships often need large corpuses of semantically

tagged text for training (Kim et al., 2003). In seeking a faster,

less-expensive method for acquiring these data, the NLP com-

munity was among the first to explore the use of crowdsourcing

for research purposes (Sabou et al., 2012). Early work by Snow

and colleagues demonstrated that expert-level text annotations

could be collected ‘cheap and fast’ using the AMT platform and

also provided a pattern for correcting biases common to crowd-

sourcing systems (Snow et al., 2008). Although this and related

work has achieved good results with common language tasks,

biomedical text (with its more challenging vocabulary) is just

beginning to be approached through crowdsourcing.

Yetisgen-Yildiz and colleagues demonstrated that AMT work-

ers could produce effective annotations of medical conditions,

medications and laboratory tests within the text of clinical trial

descriptions (Yetisgen-Yildiz et al., 2010). Burger and colleagues

also used the AMT to validate predicted gene mutation relations

in MEDLINE abstracts (Burger et al., 2012). They found that

the workers (paid $0.07/task) were easily recruited, responded

quickly and (as is typical of all crowdsourcing systems) displayed

a wide range of abilities and response rates with the best-scoring

worker producing an accuracy of 90.5% with respect to a gold

standard on41000 HITs. Using majority voting to aggregate the

responses from each worker, they achieved an overall accuracy

of 83.8% across all 1733 candidate gene mutation relationships

presented for verification. Finally, Zhai and colleagues recently

showed that crowdsourcing could be used for detailed processing

of the text from clinical trial announcements including the fol-

lowing: annotating named entities, validating annotations from

other workers and identifying linked attributes, such as side ef-

fects of medications (Zhai et al., 2012).

2.3.3 Microtask platforms The AMT was the first and remains

the leading microtask market, but there are a variety of other

platforms emerging (Table 1). In addition, meta-services like

Crowdflower help to address standard problems in microtask

markets, such as spammer identification, worker rating and re-

sponse aggregation. From the task-requestor perspective, the

meta-services generally offer less control over the operation of
the system but solve many common problems effectively. Aside

from these services, a small but growing number of open source
projects for working with crowdsourcing systems are now avail-

able. For example, see Turkit (Little et al., 2010) and
CrowdForge (Kittur et al., 2011).

2.4 Forced labor (workflow sequestration)

If altruism, fun or money is not sufficient to motivate workers, it

is sometimes possible to force them to work for free. This strat-
egy has been used most effectively in the omnipresent

ReCAPTCHA (Ahn et al., 2008). ReCAPTCHA is a security
system for web sites that requires users to type in two words

that they see in a distorted image. One word is known and

thus used for verification that the user is a human (not a pro-
gram), and the other is a scanned image of text that needs to be

digitized. Because this task is difficult to accomplish computa-
tionally, it provides organizations with a way to defend against

automated spammers, thus saving them large amounts of work.
At the same time, the decision by web site owners to use the

system effectively forces hundreds of millions of web users to
work on large-scale optical character recognition tasks for free.
ReCAPTCHA uses the incentive to complete a task that is

important to the users/workers (logging in to a web site) to mo-
tivate them to complete a task that is important to the system

designer (digitize books). McCoy and colleagues recently applied
this pattern for clinical knowledge base construction (McCoy

et al., 2012). In this study, the ‘crowd’ consisted of the physicians
in a large medical community; the incentive was to use an elec-

tronic health record system to prescribe medications, and the
task was to capture links between medications and patient prob-

lems. To prescribe a medication, the physicians were required to
link it to the associated clinical problem. Using this pattern, 867

clinicians created 239 469 problem-medication links in 1 year,

including 41 203 distinct links. To identify problem-medication
links with high precision, the authors implemented a filtering

system that incorporated both the number of patients for
which a pair was asserted (voting) and the baseline probability

of each pair (penalizing pairs likely to co-occur by chance). Using
a manually defined threshold intended to minimize false-positive

findings, this filter yielded 11 166 distinct problem-medication
pairs. Compared with expert review of the associated records,

these links had a specificity of 99.6% and a sensitivity of 42.8%.
The success of this early study, conceptual articles that de-

scribe similar patterns (Hernández-Chan et al., 2012) and the

continued increase in adoption of electronic health record sys-
tems suggest that this approach will enjoy widespread applica-

tion in the biomedical domain. Within bioinformatics, this kind
of workflow sequestration is, so far, most commonly seen in

educational settings as described in the next section.

2.5 Crowdsourcing and education

Genome annotation is a crucial activity in bioinformatics and is

one that requires extensive human labor. With an ever-increasing
supply of genomes to annotate, there is an effectively infinite

amount of work to accomplish and, as this work is non-trivial,
a need to train large numbers of students to accomplish it.

Killing two birds with one stone, a number of annotation

1927

Crowdsourcing for bioinformatics



T
a
b
le

1
.
C
ro
w
d
so
u
rc
in
g
sy
st
em

s

T
a
sk

cl
as
s

S
ys
te
m

ty
p
e

C
o
n
d
it
io
n
s
w
h
er
e
ap

p
ro
p
ri
at
e

E
xa
m
p
le
s

P
ri
m
ar
y
ex
p
li
ci
t

in
ce
n
ti
ve

P
ri
m
ar
y
q
u
al
it
y

co
n
tr
o
l

T
o
o
ls
/p
la
tf
o
rm

s

M
ic
ro

V
o
lu
n
te
er

T
as
k
s
o
f
in
te
re
st

to
ge
n
er
al

p
u
b
li
c,

h
ig
h
-t
as
k
vo

lu
m
e

Im
ag
e
cl
as
si
fi
ca
ti
o
n
(e
.g
.
C
el
lS
li
d
er
,

G
al
ax
y
Z
o
o
)

N
o
n
e

R
&
A

B
o
ss
a,

P
y
B
o
ss
a

M
ic
ro

C
a
su
a
l
ga
m
e

A
cc
es
s
to

ga
m
e
d
ev
el
o
p
er
s,
h
ig
h
-t
a
sk

vo
lu
m
e

M
u
lt
ip
le
se
q
u
en
ce

al
ig
n
m
en
t,
im

ag
e

cl
as
si
fi
ca
ti
o
n
(e
.g
.
P
h
y
lo
,
M
O
L
T
)

F
u
n

R
&
A

N
o
n
e

M
ic
ro

M
ic
ro
ta
sk

m
ar
k
et

A
cc
es
s
to

su
ff
ic
ie
n
t
fu
n
d
s
fo
r
re
q
u
ir
ed

vo
lu
m
e
o
f
w
o
rk

Im
ag
e
cl
as
si
fi
ca
ti
o
n
,
te
xt

an
n
o
ta
ti
o
n

(e
.g
.
p
o
ly
p
cl
as
si
fi
ca
ti
o
n
fo
r
co
lo
n

ca
n
ce
r
d
et
ec
ti
o
n
)

M
o
n
ey

R
&
A

P
la
tf
o
rm

s:
M
ec
h
an

ic
al

T
u
rk
,

C
li
ck
w
o
rk
er
,
M
ic
ro
w
o
rk
er
s,

M
o
b
il
eW

o
rk
s
M
et
a
se
rv
ic
es
:

C
ro
w
d
fl
o
w
er
,
C
ro
w
d
so
u
rc
e

T
o
o
ls
:
T
u
rk
it
,
C
ro
w
d
fo
rg
e

M
ic
ro

F
o
rc
ed

la
b
o
r

C
o
n
tr
o
l
o
ve
r
a
w
o
rk
fl
o
w

th
at

yo
u
r

ta
rg
et

p
o
p
u
la
ti
o
n
n
ee
d
s
to

ex
ec
u
te

C
h
ar
ac
te
r
re
co
gn

it
io
n
,
li
n
k
in
g
d
ru
gs

to
cl
in
ic
al

p
ro
b
le
m
s
(e
.g
.

R
eC

A
P
T
C
H
A
)

C
o
m
p
le
ti
n
g
an

o
th
er

ta
sk

o
f
p
er
so
n
al

im
p
o
rt
an

ce

R
&
A

N
o
n
e

M
ic
ro

E
d
u
ca
ti
o
n
al

T
w
in

go
al
s
o
f
ed
u
ca
ti
o
n
an

d
ta
sk

co
m
p
le
ti
o
n

G
en
o
m
e

an
n
o
ta
ti
o
n
,

d
o
cu
m
en
t

tr
an

sl
at
io
n
(e
.g
.
D
u
o
L
in
g
o
)

E
d
u
ca
ti
o
n

R
&
A

an
n
o
ta
th
o
n
.o
rg

M
eg
a

H
ar
d
ga
m
e

A
cc
es
s

to
ga
m
e

d
ev
el
o
p
er
s,

p
ro
b
le
m

w
it
h

so
lu
ti
o
n

q
u
al
it
y

fu
n
ct
io
n

th
at

ca
n
b
e
ti
ed

to
a
ga
m
e
sc
o
re

P
ro
te
in

fo
ld
in
g,

R
N
A

st
ru
ct
u
re

d
es
ig
n
(e
.g
.
F
o
ld
it
,
E
te
R
N
A
)

F
u
n

A
u
to
m
at
ic

sc
o
ri
n
g

fu
n
ct
io
n

N
o
n
e

M
eg
a

In
n
o
va
ti
o
n

co
n
te
st

A
cc
es
s
to

su
ff
ic
ie
n
t
re
so
u
rc
es

to
p
ro
v
id
e

d
es
ir
ab

le
re
w
ar
d
fo
r
so
lu
ti
o
n
.

A
lg
o
ri
th
m

d
ev
el
o
p
m
en
t
(e
.g
.

D
T
R
A
)

M
o
n
ey

M
an

u
al

re
v
ie
w

b
y

co
n
te
st

cr
ea
to
rs

In
n
o
ce
n
ti
ve
,
T
o
p
C
o
d
er
,

K
ag
g
le

N
ot
e:
R
&
A
¼
R
ed
u
n
d
an

cy
an

d
ag
gr
eg
at
io
n
.
T
yp

es
o
f
cr
o
w
d
so
u
rc
in
g
sy
st
em

s
ar
e
d
is
p
la
ye
d
,
fr
o
m

th
e
to
p
d
o
w
n
,
in

ro
u
gh

ly
in
cr
ea
si
n
g
o
rd
er

o
f
d
if
fi
cu
lt
y
p
er

ta
sk

an
d
d
ec
re
as
in
g
n
u
m
b
er

o
f
in
d
iv
id
u
al
ta
sk
s
th
at

th
e
sy
st
em

m
u
st

so
lv
e.
T
h
e
ea
si
es
t
an

d
m
o
st
p
ro
li
fi
c
ar
e
th
e
ch
ar
ac
te
r
re
co
gn

it
io
n
m
ic
ro
ta
sk
s
o
f
R
eC

A
P
T
C
H
A
,
w
h
er
ea
s
th
e
m
o
st
d
if
fi
cu
lt
ar
e
th
e
in
n
o
va
ti
o
n
co
n
te
st
s
fo
r
m
eg
at
as
k
s
li
k
e
al
go

ri
th
m

d
ev
el
o
p
m
en
t.
T
h
e
ta
b
le
d
es
cr
ib
es

th
e
d
o
m
in
an

t

ch
ar
ac
te
ri
st
ic
s
o
f
m
o
st

sy
st
em

s
in

ea
ch

cl
as
s,
b
u
t
ca
n
n
o
t
b
e
ex
h
au

st
iv
e.

F
o
r
ex
am

p
le
,
au

to
m
at
ic

sc
o
ri
n
g
fu
n
ct
io
n
s
co
u
ld

ce
rt
ai
n
ly

b
e
ap

p
li
ed

in
so
m
e
in
n
o
va
ti
o
n
co
n
te
st
s,
b
u
t
ar
e
n
o
t
li
st
ed

ex
p
li
ci
tl
y
b
ec
au

se
th
ey

ar
e
n
o
t
a

fu
n
d
am

en
ta
l
re
q
u
ir
em

en
t—

as
th
ey

ar
e
fo
r
al
l
o
f
th
e
h
ar
d
ga
m
es

id
en
ti
fi
ed

th
u
s
fa
r.

1928

B.M.Good and A.I.Su



projects have incorporated the annotation of new sequences dir-

ectly into the curriculum of undergraduate courses (Hingamp

et al., 2008). Using standard crowdsourcing mechanisms, redun-

dancy and aggregation, as well as review by expert curators,

these initiatives have generated thousands of high-quality anno-

tations (Brister et al., 2012).
From both a social and an economic perspective, this ap-

proach has the elegant property of simultaneously accomplishing

the desired work and generating the capital needed to pay the

workers. In this case, the capital is the knowledge that they are

acquiring by interacting with the system. In contrast to other

approaches such as the forced labor of ReCAPTCHA, which

may be considered a nuisance or even an exploitation, offering

education on a topic of interest appears to be a much more fair

exchange. The startup company DuoLingo (founded by the cre-

ator of ReCAPTCHA) now uses this pattern on a massive scale

by helping millions of students learn foreign languages while

simultaneously harvesting their efforts to translate web docu-

ments (http://duolingo.com).

3 CROWDSOURCING MEGATASKS

In addition to rapidly completing large volumes of simple tasks,

different incarnations of the crowdsourcing paradigm can be

applied to solve individual tasks that might take weeks or even

months of expert-level effort to complete. In these cases, the goal

is to use crowdsourcing to seek out and enable the few talented

individuals from a large candidate population that might,

through the heterogeneous skills and perspectives that they pro-

vide, be able to solve problems that continue to stymie trad-

itional research organizations. This shift from high-volume

tasks to high-difficulty tasks affords different requirements for

successful crowdsourcing. Two approaches that have generated

impressive successes in bioinformatics are hard games and innov-

ation contests.

3.1 Hard games

In contrast to casual games like MalariaSpot that are designed to

complete large volumes of microtasks, the games discussed here

provide players with access to small numbers of extremely chal-

lenging individual problems. Although casual games tend toward

what the gaming community describes as ‘grinding’, where the

players perform highly repetitive actions, hard games provide

rich interactive environments that promote long-term explor-

ation and engagement with a challenge. Thus far, two such

games have been successful in bioinformatics, Foldit and

EteRNA.

In Foldit, the goal of most games (or puzzles) is typically to

find the 3D conformation of a given protein structure that results

in the lowest calculated free energy (Cooper et al., 2010). To

achieve this goal, players interact with a rich desktop game en-

vironment that builds on the Rosetta structure prediction tool

suite (Rohl et al., 2004). In contrast to casual games in which

players can play (and contribute solutions) within minutes,

Foldit players must first advance through an extensive series of

training levels that can take several hours to complete. These

introductory levels systematically introduce increasingly complex

game features that allow players to manipulate protein structures

via both direct manipulation (dragging and twisting pieces of the

protein) and through the execution of small optimization algo-

rithms like ‘wiggle’. Importantly, these training levels abstract

the complex mechanics of protein folding into concepts that

are accessible to lay game players.

Since its inception in 2008, Foldit has captured the attention of

hundreds of thousands of players, some of whom have achieved

remarkable scientific successes. Foldit players have outperformed

some of the world’s best automated structure prediction systems

and aided in the solution of an important retroviral structure

that had eluded specialists for decades (Khatib et al., 2011b).

In addition to solving naturally occurring protein structures,

players have recently succeeded in optimizing the design of en-

gineered enzymes to achieve specific physicochemical goals

(Eiben et al., 2012).
Although these individual successes are impressive, the greater

challenge remains to devise algorithms that fold proteins auto-

matically. In addition to the visually oriented puzzle interface,

Foldit introduced a scripting system that allows players to com-

pose automated workflows. These scripts string together multiple

optimization widgets and may be used in combination with

direct manipulation. In one of the most intriguing developments

from this initiative, Foldit players used the provided scripting

interface to collaboratively write folding algorithms that rival

professionally designed solutions (Khatib et al., 2011a).

Following directly from Foldit’s success, some of Foldit’s cre-

ators have released a new game called EteRNA (http://eterna.

cmu.edu). In EteRNA, the goal is to design an RNA molecule

that will fold into a particular predefined shape. Design contests

are run every week, and the best designs are evaluated in the

laboratory providing real-world feedback. This connection be-

tween the gamer community and the scientists behind the game

has proven effective in recruiting tens of thousands of players—

including a few star players that are not only producing valuable

new designs but are also identifying new rules of RNA behavior

(Koerner, 2012).
Although much is made of the numbers of players to access

these games, it is important to realize that only a small fraction

of these players contribute directly to any important advance.

These games are portals for recruiting, engaging and enabling a

small number of people with exceptional skills who would never

normally have the opportunity to help solve these problems. In

essence, these games are as much about discovering latent scien-

tists as they are about making scientific discoveries (Good and

Su, 2011).
Most of the players are not active scientists by trade and typ-

ically have little to no formal training. Although most do not

contribute directly to solutions, a few bring a different perspec-

tive that opens up an entirely new way of looking at and solving

the problem. Such a diversity of human intelligence, if filtered

and aggregated effectively, is a powerful and much sought-after

force.

3.2 Open innovation contests

Open innovation contests define particular challenges and invite

anyone in the general public to submit candidate solutions. The

solutions are evaluated and if they meet the defined criteria,

the best solutions are rewarded with cash prizes. The prizes
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and the social prestige garnered by winning a large public contest
provide the key incentives driving participation in these
initiatives.

First pioneered by Innocentive, a 2001 spinoff of Eli Lilly
meant to improve its research pipeline, a variety of platforms
for operating these contests have recently emerged. Within bio-

informatics, key open innovation platforms include Innocentive
(which is used on a wide variety of tasks), TopCoder (for soft-
ware development and algorithm design) and Kaggle (for data

analysis).
As with games, contests make it possible to let enormous num-

bers of potential ‘solvers’ try out their unique abilities on the

specified problem. In contrast to games, which require extensive,
costly development time before any possible reward from the
community might be attained, the up-front cost of running an

innovation contest is comparatively small. If no one solves the
posted problem, little is lost by the problem poster. Further,
financial incentives are far easier to tune than game mechanics.

The harder and more important the problem is, the bigger the
offered bounty for its solution. Common prizes range from a few
thousand dollars for small coding challenges that can be accom-

plished by individuals in their spare time to million-dollar con-
tests that can require large project teams and/or long-term time
commitments.

Many successes in bioinformatics have already been attained
at the lower end of the prize spectrum. As an example, Lakhani
and colleagues recently assessed the potential of the TopCoder

platform on a difficult sequence alignment problem (Lakhani
et al., 2013). To test the hypothesis that ‘big data biology is
amenable to prize-based contests’, they posted a challenge related

to immune repertoire profiling on TopCoder with a prize pool of
just $6000. In the 2 weeks that the contest was run, 733 people
participated and 122 submitted candidate solutions. In compari-

son with one prior ‘industry standard’ (NCBI’s MegaBlast), 30
of the submitted solutions produced more accurate alignments
and all ran substantially faster. None of the participants in the

competition was a professional computational biologist, with
most describing themselves as software developers. In addition
to this academic study, industry representatives report extensive

use of these small-scale coding competitions as part of their bio-
informatics research and development pipelines (Merriman et al.,
2012).

At the upper end of the prize spectrum, one of the first suc-
cessful million-dollar contests led to the discovery of a novel
biomarker for amyotrophic lateral sclerosis (Talan, 2011).

Currently, groups such as Life Technologies and the U.S.
Government’s Defense Threat Reduction Agency (DTRA) are
running million-dollar contests for development of novel sequen-

cing technologies and organism detection from complex mixtures
of DNA sequence, respectively.
These examples highlight the potential of open innovation

contests to focus the attention of large numbers of talented

people on solving particular challenging problems. These systems
offer solution seekers with an approach that can be highly cost
effective in recruiting such talent. As an example, Lakhani and

colleagues estimate that contest participants spent �2684 hours
working on their problem. Given a 2-week time period and a
total cost of $6000, this is a remarkable amount of skilled labor

and an incredibly short amount of time.

A variety of contests exist in the academic sphere, such as the

long-running Critical Assessment of Protein Structure Prediction

(CASP) for protein structure prediction and the recent series of

challenges in systems biology operated by the Dialogue for

Reverse Engineering Assessments and Methods (DREAM) ini-

tiative (Marbach et al., 2012). For the most part, these contests

remain distinct from other innovation contests in that they focus

on recruiting submissions specifically from academics, using sci-

entific publications as one form of incentive.

4 DISCUSSION

Here, we presented a series of success stories where different

forms of crowdsourcing were successfully applied to address

key problems in bioinformatics. It is worth noting that crowd-

sourcing is not a panacea. Although it is difficult to find pub-

lished examples of crowdsourcing failures in science, clearly not

all attempts will succeed. For example, only 57% of Innocentive

challenges were successfully solved in 2011 (up from 34% in

2006) (Spradlin 2012), many attempts to draw in volunteer

crowds fail (notably among scientific wikis) and attempts to

use the Mechanical Turk often face challenges associated with

spammers or poorly performing workers. In our own unpub-

lished research, we have struggled to find ways to map problems

in bioinformatics to representations that are suitable for

gamification. The challenge of successfully orchestrating a scien-

tific crowdsourcing initiative should not be underestimated. Yet

the successes described above provide ample evidence that, in

many cases, these approaches are worth consideration. As

noted by Innocentive president Dwayne Spradlin, the primary

challenge to successfully applying crowdsourcing is really in

choosing the right problem for the crowd to solve (Spradlin

2012). In the next section, we provide a guide for matching prob-

lems to potential crowdsourcing-driven solutions, noting both

plusses and minuses associated with each system.

4.1 Choosing a crowdsourcing approach

Although diverse in their implementations and goals, the crowd-

sourcing systems described in this review each attempt to ad-

vance science by enabling the overwhelming majority of people

who reside outside of the ivory tower to participate in the process

(Cooper, 2013). How this process unfolds—how well it solves the

problems at hand and how it influences the participants—de-

pends deeply on the nature of each problem and the approach

taken by system architects. Although the diversity of potential

tasks in bioinformatics renders a global rubric for composing

crowdsourcing solutions unlikely, the examples presented in

this review and organized in Table 1 suggest some general guide-

lines (Fig. 1).

Crowdsourcing generally begins where automation fails. Tasks

that can be automated generally should be, and workers should

be focused on tasks that extend the reach of current computa-

tional approaches (Kawrykow et al., 2012). As such, the first

question to answer when deciding how or if crowdsourcing

may be useful is ‘what tasks (or subtasks) of the larger problem

can currently be solved computationally and which cannot’?

Once the tasks that require human abilities are defined, use the

1930

B.M.Good and A.I.Su



following (summarized in Fig. 1) to identify crowdsourcing sys-

tems that may be suitable.
Highly granular, repetitive tasks such as image classification

can be approached via volunteer initiatives, casual games, work-

flow sequestration and microtask markets. Games and direct

volunteer labor are of most value when the number of required

tasks is exceedingly large—too large to pay workers even small

amounts per unit of work. The downsides of depending on vol-

unteers or game players are that there is no guarantee that they

will generate the required amount of labor, and nearly all of the

potentially substantial cost of building the crowdsourcing solu-

tion (the game, the web site) must be paid up-front before any

possible benefit is attained. Depending on the task, workflow

sequestration can be a powerful approach, as it not only effect-

ively forces the required labor but can also be used to target

specific populations of workers. The downside is that the align-

ment of workflows with microtasks will likely not be possible in

many cases. Finally, microtask markets have the benefit of offer-

ing system designers with an immediate workforce of massive

scale and precise control of the nature and volume of their activ-

ities. The main negative aspect of microtask markets is that, be-

cause of the per-unit cost of the work, they do not have the

capacity to scale up in the way that the other forms do.
When it comes to megatasks involving extended work and

specialized skills, innovation contests and hard games can be

considered. Among these, innovation contests are by far the

most popular and generalizable framework. These systems

have repeatedly produced solutions to difficult problems in a

variety of domains at comparatively tiny costs, and we expect

their use to continue to expand. Hard games, like Foldit, are

fascinating for the potential scale, diversity and collaborative

capacity of the gamer/solver population; however, these benefits

are not guaranteed and come at a high up-front cost in develop-

ment time. Furthermore, it simply may not be possible to gamify

many important tasks. The tasks most suited to approaches with

hard games are those that have scoring functions, such as

Foldit’s free energy calculation, that can link performance in
the game directly to the problem under study. Without such

mapping, it will be difficult to provide the players with the feed-

back they need to learn the problem space and thus become

effective solvers.
Looking forward, the didactic division used here between sys-

tems for completing microtasks and those for solving megatasks

will likely be blurred as new integrated systems arise that take

advantage of key aspects of multiple forms of crowdsourcing

(Bernstein, 2012). The emergent community-driven processes
that gave rise to Wikipedia offer some hints at what such

future systems might look like (Kittur and Kraut, 2008). Such

systems will have to promote the rapid formation of extended

communities of participants that display a wide variety of skills

and proclivities who come together to achieve a common high-

level goal. For the moment, such problem-solving communities
remain difficult to generate and to sustain. But, as the science of

crowdsourcing advances, it will be increasingly possible for

system architects to guide these collective intelligences into exist-

ence (Kittur et al., 2011).

4.2 Related systems

Here, we focused only on crowdsourcing approaches that are

specifically relevant to common problems in bioinformatics.

For broader reviews, see ‘Crowdsourcing systems on the world

wide web’ (Doan et al., 2011), ‘Human computation: a survey

and taxonomy of a growing field’ (Quinn and Bederson, 2011)

and ‘Crowd-powered systems’ (Bernstein, 2012).
Within bioinformatics, two other important emerging

approaches that depend on the crowd, but not the crowd’s intel-

ligence, are distributed computing and online health research.
Systems like Rosetta@home and the more-general purpose

Berkeley Open Infrastructure for Network Computing

(BOINC) use the spare cycles of thousands of personal com-

puters to advance research in bioinformatics, particularly protein

folding and docking simulations (Sansom, 2011). In the medical

Fig. 1. Crowdsourcing decision tree. When considering a crowdsourcing approach, work through the tree from the top left to identify approaches that

may suit your particular challenge. In many cases there might not be a known crowdsourcing approach that is suitable
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domain, the term crowdsourcing is often used to describe large-

scale patient data collection through online surveys. Personal

genomics companies, such as 23andme, have surveyed their gen-

otyped ‘crowd’ to enable many new discoveries in genetics

(Do et al., 2011; Tung et al., 2011). In addition, a variety of

initiatives have begun exploring the crowdsourcing of both pa-

tient-initiated and researcher-initiated (non-clinical) patient

trials. Such ‘crowdsourced health research’ is an important and

growing area, but conceptually distinct from the crowdsourcing

applications considered here. For a recent survey of the literature

on this topic, see Swan (2012).

4.3 Social impact

While we have focused primarily on the economic aspects of

crowdsourcing, kinds of work and cost, there is another aspect

that is important to consider. Crowdsourcing is not just a new

way of performing difficult computations rapidly and inexpen-

sively; it represents a fundamental change in the way that scien-

tific work is distributed within society. Recalling the original

definition, crowdsourcing is a shift from work done in-house

to work done in the open by anyone that is able. This means

not only that we can often solve more problems more efficiently,

but also that different people are solving them. As a result, there

are both ethical concerns about worker exploitation that must be

addressed and novel opportunities for societal side benefits that

are important to explore.

Some have expressed concern for the well-being of players of

scientific crowdsourcing games (Graber and Graber, 2013), and

it is reasonable to ask about the morality of forcing hundreds of

millions of people to solve ReCAPTCHAs to go about their

daily work. However, the majority of worry about real exploit-

ation is related to the workers in microtask markets. In some

cases, people spend significant amounts of time earning wages

that amount to5$2/hour (Fort et al., 2011). Although problem-

focused, resource-strapped researchers may rejoice at the oppor-

tunity to address the new scientific questions that this workforce

makes possible, it is both socially responsible and vital for long-

term success to remain aware that there are people at the other

end of the line completing these tasks. In fact many of the newer

crowdsourcing companies, e.g. MobileWorks, now make worker

conditions a top priority with guaranteed minimum wages and

opportunity for advancement within their framework. Keeping

worker satisfaction in mind should not only help encourage fair

treatment but will also help designers come up with more effect-

ive crowdsourcing solutions. Paying workers well, building up

long-term relationships with them and providing tasks that

may provide them with benefits aside from any direct per-task

reward in fun or money not only makes for a happier workforce

but also makes for a far more powerful one (Kochhar et al.,

2010). While much is made of the power of our visual system

in the context of crowdsourcing, our ability to learn is what

separates us from the rest of the animal kingdom. Tapping

into this innate ability and our strong desire to use it will produce

crowdsourcing systems that not only solve scientific problems

more effectively but, in the process, will end up producing

many more scientifically literate citizens.
Before crowdsourcing models started to appear, only a small

fraction of society had a direct input into the advance of science.

Consider protein folding. Foldit changed the number of people

thinking about and working on protein-folding problems from

perhaps a few thousand to hundreds of thousands. Consider also

the new phenomenon of ‘crowdfunding’ (Wheat et al., 2013).

Now members of the public, not just members of government

grant review panels, have a vote in what science is funded.
The majority of Foldit players will not directly contribute to

an important advance, but some will. Perhaps, more import-

antly, Foldit players and contributors to the various other

crowdsourcing initiatives discussed here are much more cogni-

zant of these scientific problems than they ever were before. If

fostered effectively by system architects, a new crowdsourcing-

generated awareness will improve how the general public per-

ceives science and will affect how they vote and how they

encourage future generations.
Taken together, the different manifestations of the crowdsour-

cing paradigm open up many new avenues for scientific explor-

ation. From the high-throughput annotation of millions of

images, to the one-off introduction of a novel twist on RNA

structure design by a librarian, these new systems are expanding

scientific problem-solving capacity in unpredictable ways. To

take advantage of these new ways of accomplishing work takes

both openness and, in some cases, some amount of humility. The

scientific community must be willing to share our greatest prob-

lems and step aside to let others help us solve them.
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