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ABSTRACT

Motivation: By capturing various biochemical interactions, biological

pathways provide insight into underlying biological processes. Given

high-dimensional microarray or RNA-sequencing data, a critical chal-

lenge is how to integrate them with rich information from pathway

databases to jointly select relevant pathways and genes for phenotype

prediction or disease prognosis. Addressing this challenge can help us

deepen biological understanding of phenotypes and diseases from a

systems perspective.

Results: In this article, we propose a novel sparse Bayesian model for

joint network and node selection. This model integrates information

from networks (e.g. pathways) and nodes (e.g. genes) by a hybrid of

conditional and generative components. For the conditional compo-

nent, we propose a sparse prior based on graph Laplacian matrices,

each of which encodes detailed correlation structures between net-

work nodes. For the generative component, we use a spike and slab

prior over network nodes. The integration of these two components,

coupled with efficient variational inference, enables the selection of

networks as well as correlated network nodes in the selected

networks.

Simulation results demonstrate improved predictive performance and

selection accuracy of our method over alternative methods. Based on

three expression datasets for cancer study and the KEGG pathway

database, we selected relevant genes and pathways, many of which

are supported by biological literature. In addition to pathway analysis,

our method is expected to have a wide range of applications in

selecting relevant groups of correlated high-dimensional biomarkers.
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1 INTRODUCTION

With the popularity of high-throughput biological data such as

microarray and RNA-sequencing data, many variable selection

methods—such as lasso (Tibshirani, 1996) and elastic net

(Zou and Hastie, 2005)—have been proposed and applied to

select relevant genes for disease diagnosis or prognosis.

Nevertheless, these approaches ignore invaluable biological

pathway information accumulated over decades of research;

hence, their selection results can be difficult to interpret biologic-

ally and their predictive performance can be limited by a small
sample size of expression profiles. To overcome these limitations,

a promising direction is to integrate expression profiles with rich
biological knowledge in pathway databases. Because pathways

organize genes into biologically functional groups and model

their interactions that capture correlation between genes, this
information integration can improve not only the predictive

performance but also interpretability of the selection results.
Thus, a critical need is to integrate pathway information with

expression profiles for joint selection of pathways and genes

associated with a phenotype or disease.
Despite their success in many applications, previous sparse

learning methods are limited by several factors for the integra-

tion of pathway information with expression profiles. For

example, group lasso (Yuan and Lin, 2007) can be used to utilize
memberships of genes in pathways via a l1=2 norm to select

groups of genes, but they ignore pathway structural information.
An excellent work by Li and Li (2008) overcomes this limitation

by incorporating pathway structures in a Laplacian matrix of a

global graph to guide the selection of relevant genes. In addition
to graph Laplacians, binary Markov random field priors can be

used to represent pathway information to influence gene selec-
tion (Li and Zhang, 2010; Stingo and Vannucci, 2010; Wei and

Li, 2007, 2008). These network-regularized approaches do not

explicitly select pathways. However, not all pathways are rele-
vant, and pathway selection can yield insight into underlying

biological processes. A pioneering approach to joint pathway
and gene selection by Stingo et al. (2011) uses binary Markov

random field priors and couples gene and pathway selection by

hard constraints—for example, if a gene is selected, all the path-
ways it belongs to will be selected. However, this consistency

constraint might be too rigid from a biological perspective: an
active gene for cancer progression does not necessarily imply that

all the pathways it belongs to are active. Given the Markov

random field priors and the nonlinear constraints, posterior dis-
tributions are inferred by a Markov Chain Monte Carlo

(MCMC) method (Stingo et al., 2011). But the convergence of
MCMC for high-dimensional problems is known to take a long

time.
To overcome these limitations, we propose a new sparse

Bayesian approach, called Network and NOde Selection

(NaNOS), for joint pathway and gene selection. NaNOS is a
sparse hybrid Bayesian model that integrates conditional and

generative components in a principled Bayesian framework*To whom correspondence should be addressed.
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(Lasserre et al., 2006). For the conditional component, we use a
graph Laplacian matrix to encode information of each network
(e.g. a pathway) and incorporate it into a sparse prior distribu-

tion to select individual networks. For the generative component,
we use a spike and slab prior distribution to choose relevant
nodes (e.g. genes) in selected networks. For this hybrid model,

we do not impose the hard consistency constraints used by
Stingo et al. (2011). Furthermore, the prior distribution of our
model does not contain intractable partition functions. This en-

ables us to give a full Bayesian treatment over model parameters
and develop an efficient variational inference algorithm to obtain
approximate posterior distributions for Bayesian estimation. As

described in Section 3, our inference algorithm is designed to
handle both continuous and discrete outcomes.
Simulation results in Section 4 demonstrate superior perform-

ance of our method over alternative methods for predicting
continuous or binary responses, as well as comparable or im-

proved performance for selecting relevant genes and pathways.
Furthermore, on real expression data for diffuse large B cell
lymphoma (DLBCL), pancreatic ductal adenocarcinoma

(PDAC) and colorectal cancer (CRC), our results yield meaning-
ful biological interpretations supported by biological literature.

2 MODEL

In this section, we present the hybrid Bayesian model, NaNOS,

for network and node selection. First, let us start from the clas-
sical variable selection problem. Suppose we have N independent
and identically distributed samples D ¼ fðx1, t1Þ, . . . , ðxN, tNÞg,

where xi and ti are the explanatory variables and the response
of the i-th sample, respectively. The explanatory variables can be
various biomarkers, such as gene expression levels or single-nu-

cleotide polymorphisms. Following the tradition in variable
selection, we normalize the values of each variable so that its
mean and standard deviation are 0 and 1, respectively. The

response can be certain phenotype or disease status. We aim to
predict the response vector t ¼ ½t1, . . . , tN�

> based on the
explanatory variables X ¼ ½x1, . . . , xN�

T and to select a small

number of variables relevant for the prediction. Because the
number of variables (e.g. genes) is often much bigger than the
number of samples, the prediction and selection tasks are statis-

tically challenging.
To reduce the difficulty of variable selection, we can use

valuable information from networks, each of which contains

certain variables as nodes and represents their interactions.
For example, biological pathways cluster genes into functional

groups, revealing various gene interactions. Based on
M networks, we organize the explanatory variables xi into
M subvectors, each of which comprises the values of explanatory

variables in its corresponding network. If a variable (i.e. a gene)
appears in multiple networks (i.e. pathways), we duplicate its
value in these networks. Note that networks here are exchange-

able with graphs; we can use them to represent not only
biological pathways but also linkage disequilibrium structures
for genetic variation analysis.

Our model is a Bayesian hybrid of conditional and generative
models based on a general framework proposed by
(Lasserre et al., 2006). The conditional component selects

individual networks via ‘discriminative’ training, the generative

component chooses relevant nodes in the selected networks and

the two models are glued together through a joint prior

distribution, so that the selected networks can guide node selec-

tion and, in return, the selected nodes can influence network

selection.

Specifically, for the conditional model, we use a Gaussian data

likelihood function for the continuous response

pðtjX,w, �Þ ¼
YN
i¼1

Nðtijx
T
i w, �

�1Þ ð1Þ

where w are regression weights, each of which represents the

contribution of the corresponding node to the response, and

� is the precision parameter. For the unknown variance �, we
assign an uninformative diffuse Gamma prior, Gamð�jg, hÞ with
g ¼ h ¼ 10�6.

For the binary response, we use a logistic likelihood

pðtjX,wÞ ¼
YN
i¼1

�ðxTi wÞ
ti ½1� �ðxTi wÞ�

1�ti ð2Þ

where ti 2 f0, 1g, w are classifier weights and �ð�Þ is the logistic

function [i.e. �ðyÞ ¼ ð1þ expð�yÞÞ�1]. Based on theM networks,

we partition w into M groups, so that w ¼ ½w1, . . . ,wM�
> where

wk are the weights for the explanatory variables in the k-th

network.
To incorporate the topological information of a network, we

use its normalized Laplacian matrix representation. Specifically,

given an adjacent matrix Gk that represents the edges (i.e. inter-

actions) between nodes in the k-th network, the normalized

Laplacian matrix Lk is defined as

Lkði, jÞ ¼

1 i ¼ j anddegðiÞ 6¼ 0
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

degðiÞdegðjÞ
p i 6¼ j andGkði, jÞ 6¼ 0

0 otherwise

8<
:

where degðiÞ ¼
P

j Gkði, jÞ is the degree of the i-th node in the

k-th network.

Based on the graph Laplacian matrices, we design the follow-

ing mixture prior over wk to select relevant networks:

pðwkj�kÞ ¼ N ðwkj0, s1L
�1
k Þ

�kNðwkj0, s2IkÞ
1��k ð3Þ

where �k is a binary variable indicating whether the k-th network

is selected, s14s2, s2 � 0 and Ik is an identity matrix. We set the

hyperparameters s1 and s2 based on cross-validation (CV) in our

experiments. To make sure Lk is strictly positive-definite, we add

a diagonal matrix 10�6Ik to Lk. In (3), Lk captures the

correlation information between nodes in the k-th network.

Note that if we replace Lk by Ik in the slab component, the

prior ð3Þ becomes a simple generalization of the classical spike

and slab prior (George and McCulloch, 1997) for group

selection. When �k ¼ 1, the k-th network is selected and the

elements of wk are encouraged to be similar to each other due

to the Laplacian matrix Lk; when �k ¼ 0, because s2 is close to

zero, the corresponding Gaussian prior prunes wk. We use a

Bernoulli prior distribution to reflect the uncertainty in

�k, pð�kÞ ¼ ðukÞ
�k ð1� ukÞ

1��k where uk 2 ½0, 1� is the selection

probability. Without any prior preference over selecting or prun-

ing the k-th network, we assign a uniform prior over uk:

pðukÞ ¼ 1 [i.e. pðukÞ ¼ Betaðuk; a, bÞ where a ¼ b ¼ 1].
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To identify relevant nodes, we introduce a latent vector ewk in
the generative model for each network k, which is tightly linked

to wk as explained later. We use a spike and slab prior:

pðewkj�kÞ ¼
Ypk
j¼1

Nð ~wkjj0, r1Þ
�kjNð ~wkjj0, r2Þ

1��kj

¼
Ypk
j¼1

Nð0j ~wkj, r1Þ
�kjNð0j ~wkj, r2Þ

1��kj

¼ pð0jewk, �kÞ

ð4Þ

where pk is the number of nodes in the k-th network, r2 � 0 and

�kj is a binary variable indicating whether to select the j-th node
in the k-th network. We give �kj a Bernoulli prior,

pð�kjÞ ¼ ðvkjÞ
�kj ð1� vkjÞ

1��kj , and a uniform prior over vkj:

pðvkjÞ ¼ 1 (i.e. pðvkjÞ ¼ Betaðvkjjc, dÞ where c ¼ d ¼ 1). As
shown above, the spike and slab prior pðewkj�kÞ has the same

form as pð0jewk, �kÞ, which can be viewed as a generative
model—in other words, the observation 0 is sampled from ewk.

This view enables us to combine the sparse conditional model for
network selection with the sparse generative model for node

selection via a principled hybrid Bayesian model.
Specifically, to link the conditional and generative models

together, we introduce a prior on ewk:

pðewkjwkÞ ¼ N ðewkjwk, �IÞ ð5Þ

where the variance � controls how similar ewk and wk are in our
joint model. For simplicity, we set � ¼ 0 so that

pðewkjwkÞ ¼ �ðewk � wkÞ where �ðfÞ ¼ 1 if f¼ 0 and �ðfÞ ¼ 0
otherwise. The graphical model representation of the joint

model is given in Figure 1.
The network and node selections are consistent with each

other in a probabilistic sense. If a network is pruned, all its
node are removed. Because wk ¼ ewk is enforced by the prior

�ðewk � wkÞ, when �k ¼ 0, wk ¼ 0 implies ewk ¼ 0. As a result,
the spike component in (4) will be selected for all the nodes in

the k-th network (i.e. �kj ¼ 0 for j ¼ 1, . . . , pk) with a higher
probability than the slab component. On the other hand, it is

easy to see that if one or multiple nodes in a network are selected,
then this network will be selected too. Note that if a node

appears in multiple networks and is selected, our model will

not force all the networks that contain this node to be chosen.

The reason is that we duplicate the value of this node in the

networks and treat their corresponding regression or classifica-

tion weights as separate model parameters.

3 ALGORITHM

In this section, we present the variational Bayesian algorithm for

model estimation. Specifically, we develop the variational

updates to efficiently approximate the posterior distribution of

weights w, the network-selection indicators �, the node-selection
indicators �, the network- and node-selection probabilities u and

v and the precision parameter � for regression. Based on the

posteriors of � and �, we can decide which networks and

nodes are selected.
For regression, based on the model specification in Section 2,

the posterior distribution of our model is

pðw,ew, �,�, u, v, �jt,XÞ
¼

1

Z
NðtjXw, ��1IÞGammað�Þ�Y

k

pðwkj�kÞpðewkjwkÞpð0jewk,�kÞ Bernð�kjukÞ BetaðukÞ�Y
j

Bernð�kjjvkjÞBetaðvkjÞ

ð6Þ

where pðwkj�kÞ and pð0jewk,�kÞ are defined in (3) and (4),

pðewkjwkÞ ¼ �ðewk � wkÞ and Z is the normalization constant.

For classification, the posterior distribution is similar to (6),

except that we replace the Gaussian likelihood (1) by the logistic

function (2) and remove the precision parameter � and its prior

for regression in (6).
Classical Markov chain Monte Carlo methods can be applied

to approximate the posterior distribution. However, given the

high dimensionality of the parameters (e.g. w and �), it would
take a long time for a sampler to converge. In practice, it is even

difficult to judge the sampler’s convergence. Thus, we resort to a

computationally efficient variational approximation to (6).
Specifically, we approximate the exact posterior

distribution in (6) by a factorized distribution: Q(�)¼
QðwÞQð�ÞQð�ÞQðuÞQðvÞQð�Þ, where � denotes all the latent vari-
ables. Note that, for classification, we do not have Q�ð�Þ.
Because we set pðewjwÞ ¼ �ðew� wÞ, we do not need a separate

distribution QðewÞ. To solve Qð�Þ, we minimize the Kullback-

Leibler (KL) divergence between the exact and approximate

posterior distributions of �:

KLðQð�Þjjpð�jt,XÞÞ ¼

Z
Qð�Þ ln

Qð�Þ

pð�jt,XÞ
d� ð7Þ

Applying coordinate descent for the minimization of (7), we

obtain efficient updates for the variational distributions as

described in the following sections. The updates are iterative:

we update one of the variational distributions at a time while

having all the other variational distributions fixed, and iterate

these updates until convergence. Because these updates

monotonically decrease the value of the KL divergence (7),

which is lower bounded by zero, they are guaranteed to converge

in terms of the KL value (Bishop, 2006).Fig. 1. The graphical model representation of NaNOS
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3.1 Regression

The variational distributions for regression have the following

forms:

QðwÞ ¼ N ðwjm,�Þ ð8Þ

Qð�Þ ¼
Y

k
	�kk ð1� 	kÞ

1��k ð9Þ

Qð�Þ ¼
Y

k

Y
j
ð
kjÞ

�kj ð1� 
kjÞ
1��kj ð10Þ

QðuÞ /
Y

k
ðukÞ

~ak�1ð1� ukÞ
~bk�1 ð11Þ

QðvÞ /
Y

k

Y
j
ðvkjÞ

~ckj�1ð1� vkjÞ
~dkj�1 ð12Þ

Qð�Þ ¼ �ð�j ~g, ~hÞ ð13Þ

Their parameters are iteratively updated as follows:

� ¼ ðAþ h�iXTXÞ�1 m ¼ h�i�XTt ð14Þ

~ak ¼ 	k þ a ~bk ¼ 1� 	k þ b ð15Þ

~ckj ¼ 
kj þ c ~dkj ¼ 1� 
kj þ d ð16Þ

	k ¼ 1=ð1þ expðhlnð1� ukÞi � hln uki þ
pk
2
ln
s1
s2

�
1

2
ln jLkj þ

1

2
tr
�
hwkw

T
k i

� 1

s1
Lk �

1

s2
Ik

�� ð17Þ


kj ¼ 1=
�
1þ exp

�
hlnð1� vkjÞi � hln vkji

þ
1

2
ln
r1
r2
þ
1

2
hðwkjÞ

2
i

� 1

r1
�

1

r2

��� ð18Þ

~h ¼ hþ
1

2
tTt�mTXTtþ

1

2

X
i
xTi hww

Tixi ð19Þ

~g ¼ gþ
N

2
ð20Þ

where A ¼ 1
s1
diagðf	kLkgkÞ þ

1
s2
diagðfð1� 	kÞIkgkÞþ

1
r1
diagð
Þ þ

1
r2
diagð1� 
Þ [note that diagðf	kLkgkÞ is a block-diagonal ma-

trix], h�i means expectation over the corresponding variational

distribution, and the required moments in the above equations

are

hwwTi ¼ �þmmT h�i ¼ ~g= ~h

hln uki ¼  ð ~akÞ �  ð ~ekÞ hlnð1� ukÞi ¼  ð ~bkÞ �  ð ~ekÞ

hln vkji ¼  ð ~ckjÞ �  ð ~fkjÞ hlnð1� vkjÞi ¼  ð ~dkjÞ �  ð ~fkjÞ

where  ðxÞ ¼ d
dx ln�ðxÞ, ~ek ¼ ~ak þ ~bk and ~fkj ¼ ~ckj þ ~dkj.

3.2 Classification

Compared with regression, the classification task is more

challenging. Because of the logistic function (2), we cannot dir-

ectly solve the variational distribution QðwÞ. Therefore, we use a

lower bound proposed by (Jaakkola and Jordan, 2000) to replace
the logistic function in the joint distribution:

�ðyÞtð1� �ðyÞÞ1�t

� �ð�Þ exp
� ð2t� 1Þy� �

2
� fð�Þðð2t� 1Þ2y2 � �2Þ

� ð21Þ

where fðxÞ ¼ 1
4� tanhð�=2Þ, and � is a variational parameter. Note

that the equality is achieved when � ¼ ð2t� 1Þy. Because the

logarithm of the lower bound (21) is quadratic in y, it essentially
converts the logistic function into a Gaussian form so that the

variational inference becomes tractable.
Combining the maximization of the lower bound (21) with the

minimization of the KL divergence (7), we obtain the variational
updates for classification. They are the same as those for the

regression task, except for that QðwÞ ¼ N ðwjm,�Þ, now we have

� ¼
�
Aþ 2

X
i
fð�iÞxix

T
i

��1
m ¼

1

2
�XTð2t� 1Þ ð22Þ

where A is the same as in the regression.
In addition, maximization of the lower bound of the logistic

function gives the update for the variational parameter �i:

�2i ¼ xTi hww
Tixi: ð23Þ

3.3 Computational cost

The computational cost of the proposed algorithm is dominated

by (14) for regression and (22) for classification. For both cases,

it takes Oðp3Þ for matrix inversion to obtain � and OðNpþ p2Þ
to obtain m for each iteration. Thus, the total cost is Oðp3 þNpÞ

and, for most applications where p4N, it simplifies to Oðp3Þ.

4 EXPERIMENTS

In this section, we apply NaNOS to synthetic and real gene
expression data to select pathways (i.e. networks) and genes

(i.e. nodes), and provide biological analysis of our results. We

also compare NaNOS with alternative methods, including lasso
(Tibshirani, 1996), elastic net (Zou and Hastie, 2005), group

lasso (Jacob et al., 2009; Yuan and Lin, 2007), the network-con-

strained regularization approach [Li and Li (2008), henceforth
‘LL’] and the sparse Bayesian model with the classical spike and

slab prior (George and McCulloch, 1997). For lasso and elastic
net, we used the Glmnet software package (www-stat.stanford.

edu/�tibs/glmnet-matlab/). For group lasso, we treat each path-

way as a group. To handle genes appearing in multiple pathways
(i.e. groups), we first duplicated their expression levels for each

group—as suggested by (Jacob et al., 2009)—and then used the

SLEP software package (www.public.asu.edu/�jye02/Software/
SLEP/) for group lasso estimation. For the spike and slab

model, we implemented variational inference similar to our
updates in Section 3. Just as NaNOS, all these software packages

use the Gaussian likelihood for regression and the logistic likeli-

hood for classification. We used the default configuration of
these software packages for the maximum number of iterations,

initial values and the threshold for convergence. To tune regu-
larization weights in lasso, group lasso and the LL approach, we

conducted thorough 10-fold CV on training data (i.e. not using

the test data) using a large computer cluster. The CV grids on the
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free parameters are summarized here: for lasso, � ¼ ½0 : 0:01 : 1�;

for elastic net, � ¼ ½0 : 0:01 : 1� and � ¼ ½0 : 0:01 : 1�; for
group lasso (both regression and logistic regression),

� ¼ ½0 : 0:01 : 1�; and for the LL approach, �1 ¼ ½1 : 25 : 300�

and �2 ¼ ½1 : 25 : 300� (we also did a second-level CV after we

pruned the range of �1 and �2 values based on the first-level CV).

Finally, for NaNOS, the CV grids are s1 ¼ r1 ¼ ½0:1, 1, 3� and
s2 ¼ r2 ¼ ½10

�3, 10�4, 10�5, 10�6�.

On the synthetic data for which we knew the true relevant
pathways, we also compared NaNOS with a popular tool for

gene set enrichment analysis (GSEA) (Mootha et al., 2003;

Subramanian et al., 2005). We treated each pathway as a set,

used GSEA’s default configuration and applied its suggested

criterion false discovery rate (FDR) 525% to discover enriched

pathways. We then identified all the genes in these enriched path-

ways as target genes. Because GSEA cannot provide predictions

on responses t, we did not include it for comparison on the real

data.

4.1 Simulation studies

We first compare all the methods on synthetic data in the
following three experiments.

Experiment 1. We followed the first and second data gener-

ation models used by Li and Li (2008). Specifically, we simulated

expression levels of 200 transcription factors (TFs), each control-

ling 10 genes in a simple tree-structured regulatory network, and

assumed that four pathways—including all of their genes—have

effect on the response t. We sampled the expression levels of each
TF from a standard normal distribution, xTF � Nð0, 1Þ and the

expression level of each gene that this TF regulates from

Nð0:7xTF, 0:51Þ. This implies a correlation of 0:7 between the

TF and its target genes.

For the first model with the continuous response, we designed

a weight vector for each pathway, � ¼ ½1, 1ffiffiffiffi
10
p , . . . , 1ffiffiffiffi

10
p �,

corresponding to the TF and 10 genes it regulates, and then

sampled t as follows:

w ¼ ½5�, � 5�, 3�, � 3�, 0>�>

t ¼ Xwþ 


where 
 � Nð0, �2e Þ and 0 is a vector of all zeros.

The second model is the same as the first one, except that the

genes regulated by the same TF can have either positive or nega-

tive effect on the response t. Specifically, we set

� ¼ 1,
�1ffiffiffiffiffi
10
p ,

�1ffiffiffiffiffi
10
p ,

�1ffiffiffiffiffi
10
p ,

1ffiffiffiffiffi
10
p , . . . ,

1ffiffiffiffiffi
10
p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

7

2
664

3
775:

For the first and second models, the noise variance was set to be
�2e ¼ ð�jw

2
j Þ=4 so that the signal-to-noise ratio was 12:85 and

7:54, respectively.
For the binary response, we followed the same procedure as

for the continuous response to generate expression profiles X and

the parameters w. Then we sampled t from (2).
For each of the settings, we simulated 100 samples for training

and 100 samples for test. We repeated the simulation 50 times.

To evaluate the predictive performance, we calculated the

prediction mean-squared error for regression and the error
rate for classification. To examine the accuracy of gene and

pathway selection, we also computed sensitivity and
specificity and summarized them in the F1 score, F1 ¼ 24
ðsensitivity� specificityÞ=ðsensitivityþ specificityÞ: The bigger

the F1 score, the higher the selection accuracy.
All the results are summarized in Figure 2, in which the error

bars represent the standard errors. For all the settings, NaNOS
gives smaller errors and higher F1 scores for gene selection than

the other methods, except that, for classification of the samples

from the second data model, NaNOS and group lasso obtain the
comparable F1 scores. All the improvements are significant under

the two-sample t-test (P50.05). We also show the accuracy of

group lasso, GSEA and NaNOS for pathway selection in
Figure 5. Again, NaNOS achieves significantly higher selection

accuracy. Because the LL approach was developed for regression,
we did not have its classification results. While the LL approach

uses the topological information of all the pathways, they are

merged together into a global network for regularization. In con-
trast, using a sparse prior over individual pathways, NaNOS can

explicitly select pathways relevant to the response, guiding the

gene selection. This may contribute to its improved performance.
Experiment 2. For the second experiment, we did not require

all genes in relevant pathways to have effect on the response.
Specifically, we simulated expression levels of 100 TFs, each

regulating 21 genes in a simple regulatory network. We sampled

the expression levels of the TFs, the regulated genes and their
response in the same way as in Experiment 1, except that we set

� ¼ 1,
1ffiffiffiffiffi
21
p , . . . ,

1ffiffiffiffiffi
21
p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

10

, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
11

2
664

3
775

for the first data generation model and

� ¼ 1,
�1ffiffiffiffiffi
21
p ,

�1ffiffiffiffiffi
21
p ,

�1ffiffiffiffiffi
21
p ,

1ffiffiffiffiffi
21
p , . . . ,

1ffiffiffiffiffi
21
p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

7

, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
11

2
664

3
775 ð24Þ

for the second data generation model. Note that the last 11 zero

elements in � indicate that the corresponding genes have no effect
on the response t, even in the four relevant pathways.

The results for both the continuous and binary responses are
summarized in Figures 3 and 5. For regression based on the first

data model, NaNOS and LL obtain the comparable F1 scores;

for all the other cases, NaNOS significantly outperforms the
alternative methods in terms of both prediction and selection

accuracy (P50.05).
Experiment 3. Finally, we simulated the data as in Experiment

2, except that we replaced
ffiffiffiffiffi
21
p

in the denominators in (24) with

21, to obtain a weaker regulatory effect of the TF. Again, as
shown in Figures 4 and 5, NaNOS outperforms the competing

methods significantly.

4.2 Application to expression data

Now we demonstrate the proposed method by analyzing
gene expression datasets for the cancer studies of DLBCL

(Rosenwald et al., 2002), CRC (Ancona et al., 2006) and

1991
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PDAC (Badea et al., 2008). We used the probeset-to-gene map-

ping provided in these studies. For the CRC and PDAC datasets

in which multiple probes were mapped to the same genes, we

took the average expression level of these probes. We used the

pathway information from the KEGG pathway database (www.

genome.jp/kegg/pathway.html) by mapping genes from the

cancer studies into the database, particularly in the categories

of Environmental Information Processing, Cellular Processes

and Organismal Systems.

4.2.1 Diffuse large B cell lymphoma We used gene expression

profiles of 240 DLBCL patients from an uncensored study in the

Lymphoma and Leukemia Molecular Profiling Project

(Rosenwald et al., 2002). From 7399 probes, we found 752

genes and 46 pathways in the KEGG dataset. The median sur-

vival time of the patients is 2.8 years after diagnosis and chemo-

therapy. We used the logarithm of survival times of patients as

the response variable in our analysis.
We randomly split the dataset into 120 training and 120 test

samples 100 times and ran all the competing methods on each

partition. The test performance is visualized in Figure 6a.

NaNOS significantly outperforms lasso, elastic net and group

lasso. Although the results of the LL approach can contain con-

nected subnetworks, these subnetworks do not necessarily cor-

respond to (part of) a biological pathway. For instance, they may

consist of components from multiple overlapped pathways. In

contrast, NaNOS explicitly selects relevant pathways. Four path-

ways had the selection posterior probabilities larger than 0.95

and they were consistently chosen in all the 100 splits. Two of

these pathways are discussed below.

First, NaNOS selected the antigen processing and presentation

pathway. The part of this pathway containing selected genes is

visualized in Figure 7a. A selected regulator CIITA was shown to

regulate two classes of antigens MHC I and II in DLBCL (Cycon

et al., 2009). The loss of MHC II on lymphoma cells—including

the selected HLA-DMB, -DQB1, -DMA, -DRA, -DRB1, -DPA1,

-DPB1 and -DQA1—was shown to be related to poor prognosis

and reduced survival in DLBCL patients (Rosenwald et al., 2002).

(a) (b) (c) (d)

Fig. 2. Prediction errors and F1 scores for gene selection in Experiment 1. ENet, S&S and GLasso stand for elastic net, the spike and slab model and

group lasso, respectively; Data 1 and 2 indicate the first and second data generation models

(a) (b) (c) (d)

Fig. 3. Prediction errors and F1 scores for gene selection in Experiment 2

(a) (b) (c) (d)

Fig. 4. Prediction errors and F1 scores for gene selection in Experiment 3

(a) (b)

Fig. 5. F1 scores for pathway selection. ‘EXP’ stands for ‘Experiment’

and ‘D’ stands for ‘Data model’
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The selected MHC I (e.g. HLA-A,-B,-C,-G) was reported to be

absent from the cell surface, allowing the escape from immuno-

surveillance of lymphoma (Amiot et al., 1998). And the selected Ii/

CD74 and HLA-DRB were proposed to be monoclonal antibody

targets for DLBCL drug design (Dupire and Coiffier, 2010).
Second, NaNOS chose cell adhesion molecules (CAMs).

Adhesive interactions between lymphocytes and the extracellular

matrix (ECM) are essential for lymphocytes’ migration and

homing. For example, the selected CD99 is known to be overex-

pressed in DLBCL and correlated with survival times (Lee et al.,

2011), and LFA-1 (ITGB2/ITGAL) can bind to ICAM on the

cell surface and further lead to the invasion of lymphoma cells

into hepatocytes (Terol et al., 1999).

4.2.2 Colorectal cancer We applied our model to a CRC data-
set (Ancona et al., 2006). It contains gene expression profiles

from 22 normal and 25 tumor tissues. We mapped 2455 genes

from 22 283 probes into 67 KEGG pathways. The goal was to

predict whether a tissue has the CRC or not and select relevant

pathways and genes.

We randomly split the dataset into 23 training and 24 test sam-

ples 50 times and ran all the methods on each partition. The test

performance is visualized in Figure 6b. Again, based on a two-

sample t-test, NaNOS outperforms the alternatives significantly

(P50.05). Three out of the four pathways with the selection pos-

terior probabilities larger than 0.95 are discussed below. They

were selected 20, 50 and 50 times in the 50 splits.
First, NaNOS selected the cell cycle pathway. This selection is

consistent with the original result by Ancona et al. (2006). As

shown in Figure 7b, NaNOS selected mitotic spindle assembly

related genes. Specifically, Bub1 and Mad1 may regulate the

checkpoint complex (MCC) containing Mad2, BubR1 and

Bub3. The upregulated MCC may in turn inhibit ability of

APC/C to ubiquitinate securin and further lead to mitotic event

extension in CRC (Menssen et al., 2007). NaNOS also chose

cyclin/CDK complexes, among which CycD/CDK4 overexpres-

sion is found in mouse colon tumor and CDK1, CDK2, CycE are

increased in human CRC (Vermeulen et al., 2003; Wang et al.,

1998). NaNOS further identified the minichromosome mainte-

nance (MCM) complex—including MCM2 and MCM5—which

are biomarkers for the CRC stage identification (Giaginis et al.,

2009). Moreover, the selected TP53 and c-Myc are known to be

closely related to CRC (Menssen et al., 2007).
Second, NaNOS chose the intestinal immune network for IgA

production. A greatly increased level of IgA—as a result of long-

term intestinal inflammation—can increase the chance of CRC

(Rizzo et al., 2011) and serve as an effective biomarker for early

diagnosis of CRC (Chalkias et al., 2011). Also, selected chem-

kines in this pathway, such as CXCR4 and CXCL12, may con-

tribute to CRC progression (Sakai et al., 2012).
Third, NaNOS selected the cytokine–cytokine receptor inter-

action pathway as well as several well-known CRC-related

molecules in this pathway. For instance, CXCL13 is a biomarker

for stage II CRC prognosis (Agesen et al., 2012), CXCL10 dra-

matically increases with CRC progression (Toiyama et al., 2012)

and IL10 secreted by CRC cells can accelerate tumor prolifer-

ation and be used for the prognosis of CRC progression

(Toiyama et al., 2010).

4.2.3 Pancreatic ductal adenocarcinoma This cancer dataset in-
cludes expression profiles from 39 PDAC and 39 normal subjects

(Badea et al., 2008). By mapping 2781 genes from 54677 probes

(a) (c)

(b)

Fig. 7. Examples of part of identified pathways. (a) The antigen processing and presentation pathway for DLBCL; (b) the cell cycle pathway for CRC;

(c) the TGF-� signaling pathway for PDAC. Shaded and unshaded boxes indicate selected and not selected genes, respectively

(a) (b) (c)

Fig. 6. Predictive performance on three gene expression studies of cancer

Joint network and node selection for pathway-based genomic data analysis

1993



into KEGG pathways, we obtained 67 pathways. Our goal was

to predict whether a subject has the pancreatic cancer and select

relevant pathways and genes. We randomly split the dataset into

39 training and 39 test samples 50 times and ran all the methods

on each partition. The test performance is visualized in Figure 6c.

Based on a two-sample t-test, NaNOS significantly outperforms

lasso, elastic net and group lasso.
To investigate the sensitivity of NaNOS to the structural noise

in the pathway database, we randomly chose 20, 50, 80 and

100% edges in each pathway and removed them. We tested

NaNOS for each case and reported the average test error rate

in the new Figure 8. As expected, the error rate of NaNOS grad-

ually increases with more edges being removed because less topo-

logical information in pathways is available. But NaNOS still

consistently outperformed all the alternative methods such as

elastic net, the second best method on this dataset. This experi-

ment demonstrates (i) that by exploiting subtle correlation infor-

mation embedded in the pathway topology, NaNOS can boost

its modeling power and predictive performance, and (ii) that

NaNOS is robust to small perturbation in pathway topology.
We also examined the impact of the important prior distribu-

tions on pathway and gene selection probabilities uk and vkj. As

described in Section 2, we used the uniform priors [i.e. the

Beta(1,1) prior] over uk and vkj, indicating no prior preference

over selecting a pathway or gene or not. The average test error

based on the uninformative priors is 9:15	 0:5, as visualized in

Figure 6c. If we change the prior to an informative one,

Beta(1,10) (mean 0:09 and standard deviation 0:083) that

strongly prefers sparsity, then the average test error increases

slightly to 10:0	 0:4. This minor increase in error may stem

from the oversparification caused by the sparsity prior that are

overconfident (suggested by a small variance). Now if we use

another informative prior Beta(10,1) (mean 0:91 and standard

deviation 0:083) that strongly prefers dense—instead of

sparse—estimation, then the average test error increases to

11:2	 0:5. This relatively larger error increase is exactly what

we expected because now the wrong dense prior aims to select

most pathways and genes. What is important is that, no matter

which of these two informative priors we chose, NaNOS consist-

ently outperformed lasso and group lasso in Figure 6c. Between

these two extreme cases, if we use an uninformative or weak

sparse prior [e.g. Beta(0.5,0.5)], we find that similar prediction

error rates were obtained for NaNOS as in Figure 6c. The above

analysis indicates that NaNOS is robust to the prior choice.

In addition to using the even splitting strategy with the same
number of training and test samples, we also tested the perform-
ance of all the algorithms in another setting with more training

samples—specifically, 62 training and 16 test samples. We
repeated the random partitioning 50 times. The average error
rates for NaNOS, elastic net, lasso and group lasso are

8:00	 0:89, 9:90	 1:00, 12:0	 1:0 and 11:0	 0:14, respect-
ively. Again, the two-sample t-test indicates that NaNOS outper-
forms the alternative methods significantly (P50.05).

Three out of the five pathways with the selection posterior
probabilities larger than 0.95 are discussed below. They were
selected 35, 50 and 50 times in the 50 splits.

The first selected pathway was the transforming growth factor
beta (TGF-�) signaling pathway. It is essential in epithelial-mes-
enchymal transition (EMT)—a critical component for develop-

mental and cancer processes—and related to PDAC (Krantz
et al., 2012). The selected part of this pathway is visualized in
Figure 7c. It shows that IFNG, TNF-�, LTBP1, DCN, TGF-�
and its receptor TGF-� R1 were selected. The TGF-� ligand—
via its receptor—propagates the signal through phosphorylation

of Smads including the selected Smad 4, which in turn translocate
into the nucleus and interact with Snail TFs to regulate EMT
(Krantz et al., 2012). The selected BMP ligand (i.e. BMP2) is

bound to BMP R1 and R2 receptors to activate Smad1, which
is in a protein complex including Smad4. Gordon et al. (2009)
showed that in PANC-1 cell line, this protein complex mediates

EMT partially by increasing the activity of MMP-2.
The second identified pathway was ECM–receptor interaction.

It is associated with desmoplastic reaction, a hallmark in PDAC

(Shields et al., 2012). In this pathway, NaNOS selected the in-
tegrin receptors—including ITGB1, ITGA2, ITGA3, ITGA5,
ITGA6—and the ECM proteins—collagens including COL1A1

and COL1A2, and laminins including LAMC2 and LAMB3.
Important interactions among them were revealed in a previous
study by Weinel et al. (1992).

The third chosen pathway was CAMs. CAMs are pivotal in
pancreatic cancer invasion by mediating cell–cell signal transduc-
tion and cell–matrix communication (Keleg et al., 2003). In this

pathway, the selected molecules include calcium-dependent cad-
herin family molecules (CDH2, CDH3) and neural-related mol-

ecules (MAG); both of them have shown to be related to PDAC
(Kameda et al., 1999; Keleg et al., 2003).

5 DISCUSSION

As shown in the previous section, the new Bayesian approach,

NaNOS, outperformed the alternative sparse learning methods
on both simulation and real data by a large margin. Now we
discuss three factors that may contribute to the improved per-

formance of NaNOS.
First, the spike and slab prior (3) and its generalization (4) in

NaNOS separate weight regularization from the selection of vari-

ables (pathways or genes). Both the (generalized) spike and slab
prior and elastic net can be viewed as mixture models in which
one component encourages the selection of variables and the

other helps remove irrelevant ones. However, unlike the elastic
net where the weights over l1 and l2 penalty functions are fixed,
the spike and slab prior has the selection indicators over these

two components estimated from data. When a variable is

Fig. 8. The predictive performance of NaNOS when the pathway struc-

tures are inaccurate. When more edges are randomly selected and

removed from each pathway, the performance of NaNOS degrades

smoothly, but still better than the competing methods

S.Zhe et al.
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selected, the model has a Gaussian prior over its value (i.e.

weight) that is equivalent to a l2 regularizer (as in ridge regres-

sion) and does not shrink the value of the selected variable as l1
penalty would do. By contrast, lasso or elastic net, with a fixed

mixture weight, has sparsity penalty over both pruned and se-

lected variables, which can greatly shrink the values of selected

variables and hurt predictive performance.
Second, NaNOS incorporates correlation structures encoded

in pathways for variable selection. Specifically, it uses pathway

structures into the extended spike and slab prior distribution to

explicitly model the detailed relationships between correlated

genes. In contrast, lasso and elastic net do not use this valuable

correlation information in their models. By comparing prediction

accuracies of NaNOS when 0 and 100% edges are removed from

pathways (Fig. 8), we can see that the detailed correlation infor-

mation captured by the pathway topology can greatly improve

modeling quality.

Third, NaNOS has the capability of selecting both relevant

pathways and genes due to its two-layer sparse structure. By

contrast, with l1=l2 penalty, group lasso encourages the selection

of all the genes in chosen pathways, leading to dense estimation.

This may be undesirable in practice and deteriorate the predictive

performance of group lasso. NaNOS enhances the flexibility of

group lasso by conducting sparse estimation at both the pathway

(or group) and gene levels. Meanwhile, our Bayesian estimation

effectively avoids overfitting, a problem often plaguing flexible

models.

NaNOS has been applied to joint pathway and gene selection

in this article. Inspired by the seminal works in (Chuang et al.,

2007; Fröhlich et al., 2006; Srivastava et al., 2008; Zycinski et al.,

2013), we can use NaNOS in a variety of biomedical applications

where there are abundant high-dimensional biomarkers of indi-

vidual samples and other information sources—for example, the

gene ontology (GO) and protein–protein interaction networks

information—that capture correlation in the high-dimensional

space. Here we discuss two approaches to apply NaNOS when

we have only GO or other group information without network

topology. The first approach is to compute some distance or

similarity scores between genes based on the GO information

[e.g. following the approach by Srivastava et al. (2008)] and

then estimate the network topology based on a network learning

method, for example, graphical lasso (Friedman et al., 2008).

With the estimated network topology, we can compute the

graph Laplacian matrices and apply NaNOS to select genes

and groups of genes. The second approach is to directly use

the group membership information in NaNOS by replacing the

graph Laplacian matrices with identity matrices. This approach

becomes useful when we even do not have any information avail-

able to learn the network topology. As shown in Figure 8, even

when all the edges were removed and we had only group infor-

mation, NaNOS still outperformed the second best method, elas-

tic net, in terms of prediction accuracy.
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